DE102007005053A1 - Verfahren zur enzymatischen Herstellung von Wasserstoffperoxid - Google Patents

Verfahren zur enzymatischen Herstellung von Wasserstoffperoxid Download PDF

Info

Publication number
DE102007005053A1
DE102007005053A1 DE102007005053A DE102007005053A DE102007005053A1 DE 102007005053 A1 DE102007005053 A1 DE 102007005053A1 DE 102007005053 A DE102007005053 A DE 102007005053A DE 102007005053 A DE102007005053 A DE 102007005053A DE 102007005053 A1 DE102007005053 A1 DE 102007005053A1
Authority
DE
Germany
Prior art keywords
oxidase
choline
substrate
acid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102007005053A
Other languages
English (en)
Inventor
Thomas Dr. Weber
Timothy Dr. O'connel
Nina Hoven
Ralf Weidenhaupt
Astrid Spitz
Karl-Heinz Dr. Maurer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE102007005053A priority Critical patent/DE102007005053A1/de
Priority to PCT/EP2007/062837 priority patent/WO2008089860A2/de
Publication of DE102007005053A1 publication Critical patent/DE102007005053A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38654Preparations containing enzymes, e.g. protease or amylase containing oxidase or reductase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung betrifft Verfahren zur enzymatischen Herstellung von Wasserstoffperoxid, in denen auf den Einsatz von Cholin bzw. Cholinderivaten als Substrat für die Oxidase-Enzyme, die in diesen Verfahren eingesetzt werden, verzichtet werden kann. Die Erfindung betrifft weiterhin neue Oxidase-Enzyme, die für den Einsatz in diesen Verfahren geeignet sind und nicht auf Cholin bzw. Cholinderivate als bevorzugtes Substrat beschränkt sind. Ferner betrifft die Erfindung Verwendungen dieser neuen Oxidase-Enzyme sowie Mittel, die diese neuen Oxidase-Enzyme enthalten.

Description

  • Die vorliegende Erfindung betrifft Verfahren zur enzymatischen Herstellung von Wasserstoffperoxid, in denen auf den Einsatz von Cholin bzw. Cholinderivaten als Substrat für die Oxidase-Enzyme, die in diesen Verfahren eingesetzt werden, verzichtet werden kann. Die Erfindung betrifft weiterhin neue Oxidase-Enzyme, die für den Einsatz in diesen Verfahren geeignet sind und sich durch die Fähigkeit auszeichnen, nicht auf Cholin bzw. Cholinderivate als Substrat beschränkt zu sein und Alkohole des Typs R-CH2-OH oxidieren zu können. Ferner betrifft die Erfindung Verwendungen dieser neuen Oxidase-Enzyme sowie Mittel, die diese neuen Oxidase-Enzyme enthalten.
  • Aus dem Stand der Technik sind Cholinoxidasen als wichtige Vertreter von Oxidase-Enzymen bekannt (Ikuta, S., Imamura, S., Misski, H., and Horiuti, Y. 1977. Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem (Tokyo) 82: 1741–1749., Deshnium, P., Los, D. A., Hayashi, H., Mustardy, L., and Murata, N. 1995. Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol 29: 897–907.). Bekannt ist auch, dass Oxidasen (Alkoholoxidasen, Aminosäureoxidasen) zusammen mit ihren Substraten für die Wasserstoffperoxidgenerierung zur Bleiche und Farbübertragungsinhibierung in Waschmitteln oder zur enzymatischen Haarfärbung und Bleiche in kosmetischen Mitteln eingesetzt werden können.
  • In der Veröffentlichung von Gadda et al. (Arch. Biochem. Biophys. 421 (1), 149–158, 2004. „Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance") beschreiben die Autoren eine Cholinoxidase aus dem Bakterium Arthrobacter globiformis (Datenbank-Zugriffsnummer AAP68832 der NCBI („National Center for Biotechnology Information")-Proteindatenbank; UniProtKB/TrEMBL Eintrag Q7X2H8), die in der vorliegenden Anmeldung als Sequenz 2 (SEQ ID NO: 2) angegeben ist und insbesondere für Sequenzvergleiche herangezogen wird.
  • In der WO 97/21796 wird beschrieben, dass Oxidasen aus ihren entsprechenden Substraten unter technischen Bedingungen (z. B. einer Waschmittelmatrix) mit Hilfe von Luftsauerstoff Wasserstoffperoxid freisetzen und damit zur Bleiche eingesetzt werden können. Die Bildung von Wasserstoffperoxid erfolgt kontinuierlich wobei die Effizienz der Produktbildung durch die Temperatur- und pH-Stabilität, sowie die Toleranz gegenüber Substrat und Produkt bestimmt wird.
  • Für die herkömmliche chemische Bleiche werden anorganische, alkalische Wasserstoffperoxidlieferanten wie Percarbonat oder Perborat in Kombination mit Bleichboostern (TAED) eingesetzt. Die Bleichkomponente Wasserstoffperoxid entsteht durch spontanen Zerfall der Additionsverbindung und führt damit schnell aber kurzfristig zu hohen Konzentrationen. Eine schonende Bleiche ist nicht möglich.
  • Für die Haarfärbung wird herkömmlich eine Bleiche zur Nivellierung von Grautönen vor der Färbung mit Wasserstoffperoxid und Ammoniaklösung durchgeführt. Die kurzfristig hohen Wasserstoffperoxidkonzentrationen in Kombination mit dem alkalischen pH führen zu einer deutlichen Haarschädigung.
  • In der deutschen Patentanmeldung 102 60 930.6-41 der Anmelderin wird dargelegt, dass und wie sich aus den Bakterien Arthrobacter nicotianae und Arthrobacter aurescens Cholinoxidasen isolieren lassen, die unter weitgehender Vermeidung der dem einschlägigen Stand der Technik anhaftenden Nachteile in Bleichsystemen eingesetzt werden können. Der Arthrobacter nicotianae Stamm KC2, der die Cholinoxidase gemäß SEQ ID NO: 3 beinhaltet, ist bei der DSMZ GmbH (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) in 38124 Braunschweig, Inhoffenstraße 7 B, Deutschland, hinterlegt (DSMZ-ID 96-878, Hinterlegungsnummer DSM 11234). Der Offenbarungsgehalt dieser Anmeldung wird daher ausdrücklich in die vorliegende Anmeldung einbezogen.
  • Cholinoxidase setzt allerdings bevorzugt Cholin um. Generell ist jedoch die Verfügbarkeit von Enzymen mit unterschiedlicher Substratspezifität wünschenswert. Je nach Fragestellung kann so in einem Prozess auf das bevorzugte Substrat zurückgegriffen werden.
  • Aus dem Stand der Technik sind Veröffentlichungen bekannt, die sich mit der Substratbindung und dem Katalysemechanismus von Cholinoxidase-Enzymen befassen. So werden in den weiteren Veröffentlichungen von Gadda et al. (Arch. Biochem. Biophys. 430(2), 264–73, 2004. "The trimethylammonium headgroup of choline is a major determinant for substrate binding and specificity in choline oxidase") sowie Arch. Biochem. Biophys. 451(2), 182–7, 2006. „On the contribution of the positively charged headgroup of choline to substrate binding and catalysis in the reaction catalyzed by choline oxidase") die Bedeutung der positiv geladenen Trimethylammonium-Gruppe des Cholins für die Substratbindung und Spezifität der enzymatischen Katalyse offenbart. In diesem Zusammenhang beschreiben Ghanem et al. (Biochemistry 44(3), 893–904, 2005. „On the catalytic role of the conserved active site residue His466 of choline oxidase") den Beitrag des Histidinrestes an Position 466 der verwendeten Cholinoxidase für den Katalysemechanismus. Diesen Veröffentlichungen ist jedoch keine Lehre zu entnehmen, wie die Substratspezifität der offenbarten Cholinoxidase-Enzyme zugunsten von Substraten, die sich von Cholin bzw. Cholinderivaten unterscheiden, verändert werden kann.
  • Aus der Veröffentlichung von Lountos, George T. (2005, „Structural and mechanistic insights from high resolution crystal structures of the toluene-4-monooxygenase catalytic effector Protein, NAD(P)H oxidase and choline oxidase", ISBN 0-542-43394-X) ist bekannt, dass ein Austausch der Aminosäure Glutaminsäure an Position 312 der verwendeten Cholinoxidase, die an der Substratbindung beteiligt ist, zu Alanin oder Aspartat die Aktivität der Cholinoxidase zur Umsetzung von Cholin deutlich vermindert. Als weitere an der Substratbindung beteiligte Aminosäurereste werden W61, W331, H351, F357, V464, Y465 und H466 genannt. Jedoch ist aus der genannten Veröffentlichung keine Information darüber zu entnehmen, dass eine Veränderung der Aminosäure an den genannten Positionen zu einer Veränderung der Substratspezifität der Oxidaseaktivität zugunsten von anderen Substraten, die sich von Cholin unterscheiden, führt.
  • In der noch nicht veröffentlichten internationalen Patentanmeldung PCT/EP2006/009890 der Anmelderin, die die Priorität der deutschen Patentanmeldung DE 10 2005 049 908 in Anspruch nimmt, werden Cholinoxidase-Enzyme mit optimierter Spezifität gegenüber den Substraten Cholin, Bis(2-hydroxyethyl)dimethylammoniumchlorid(Dimethyldiethanolammoniumchlorid, DMDEA) und Triethanolamin (TEA) sowie Tris(2-hydroxyethyl)methylammoniumchlorid (MTEA) beschrieben. Bei diesen Enzymen handelt es sich um Varianten der Cholinoxidase KC2 aus dem Bakterium Arthrobacter nicotianae, die Mutationen in Molekülbereichen bzw. Domänen, bezogen auf die Cholinoxidase KC2, aufweisen, die ausgewählt sind unter der Substratbindungsdomäne und der FAD-Bindungsdomäne. Bevozugt ausgewählt sind eine oder mehrere Mutationen an Aminosäuresequenzpositionen, die ausgewählt sind unter den Positionen 4, 21, 62, 69, 79, 116, 128, 166, 215, 243, 249, 260, 286, 321, 348, 349, 351, 393, 394, 530 und 531, wobei die Nummerierung der Sequenzpositionen auf die in der vorliegenden Anmeldung angegebene Sequenz 3 (SEQ ID NO: 3) bezogen ist. Es findet sich allerdings kein Hinweis darauf, dass eine gezielt herbeigeführte Herabsetzung der Aktivität der Enzyme gegenüber dem Substrat Cholin zur Steigerung der Aktivität gegenüber Substraten verwendet werden kann, die sich von den in dieser Anmeldung genannten Substraten unterscheiden.
  • Die aus dem Stand der Technik bekannten Verfahren zur enzymatischen Herstellung von Wasserstoffperoxid, insbesondere diejenigen, die eine enzymatischen Katalysschritt durch Cholinoxidasen beinhalten, die aus dem Stand der Technik bekannt sind, weisen den Nachteil auf, dass eine enzymatische Oxidation von Cholin, welches als Substrat für die Cholinoxidase dient, zu starken Geruchsproblemen durch Trimethylamin führen kann. Es besteht somit Bedarf, auf Cholin als Substrat der Cholinoxidase in einem solchen Verfahren verzichten zu können und somit solche Enzyme in diesen Verfahren einsetzen zu können, die zur Umsetzung eines Substrates, welches sich von Cholin unterscheidet, befähigt sind.
  • Ferner handelt es sich bei Cholin um ein Biomolekül, das in biologischen Systemen vorhanden ist. Durch die Herstellung von Oxidase in Zellen, in denen auch Cholin vorhanden ist, entsteht für die enzymproduzierenden Zellen unter aeroben Bedingungen oxidativer Stress durch das entstehende Wasserstoffperoxid. Dadurch wird die Enzymproduktion beeinträchtigt, beispielsweise durch den Erhalt von unlöslichem oder oxidativ geschädigtem Protein, schlechte Ausbeute, schlechte Reproduktion der Fermentationsabläufe, gesteigerte Katalaseproduktion, usw. Somit besteht ein großer Bedarf an Oxidasen, deren Substrate nicht oder nur zu einem geringen Anteil in den Produktionszellen vorkommen.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur enzymatischen Herstellung von Wasserstoffperoxid bereitzustellen, in dem auf den Einsatz von Cholin bzw. Cholinderivaten als Substrat für die Oxidase-Enzyme, die in diesem Verfahren eingesetzt werden, verzichtet werden kann.
  • Eine weitere Aufgabe der vorliegenden Erfindung ist es, eben solche Oxidase-Enzyme bereitzustellen, die sich durch die Fähigkeit auszeichnen, Alkohole des Typs R-CH2-OH oxidieren zu können und nicht auf Cholin bzw. Cholinderivate als Substrat beschränkt sind und insbesondere zur Oxidation eines Substrates, welches sich von Cholin unterscheidet, besser befähigt sind als zur Oxidation von Cholin.
  • Diese Aufgabe wird erfindungsgemäß gelöst gemäß der Lehre des Anspruchs 1 durch die Anwendung und Bereitstellung von Oxidasen, die sich durch Veränderung der Aminosäuresequenz der Cholinoxidase KC2 aus dem Bakterium Arthrobacter nicotianae bzw. Teilsequenzen hiervon (SEQ ID NO: 3 sowie SEQ ID NO: 1) erhalten lassen und die auf Grund ihrer Veränderung zur Oxidation von Substraten befähigt sind, welche sich von Cholin bzw. Cholinderivaten unterscheiden, und die insbesondere zur Oxidation eines Substrates, welches sich von Cholin unterscheidet, besser befähigt sind als zur Oxidation von Cholin. SEQ ID NO: 1 stellt diesbezüglich im Vergleich zu SEQ ID NO: 3 eine um sechs Aminosäuren verkürzte Variante dieser Cholinoxidase dar (1). Der Arthrobacter nicotianae Stamm KC2, der die Cholinoxidase gemäß SEQ ID NO: 3 beinhaltet, ist bei der DSMZ GmbH (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) in 38124 Braunschweig, Inhoffenstraße 7 B, Deutschland, hinterlegt (DSMZ-ID 96-878, Hinterlegungsnummer DSM 11234). Erfindungsgemäß weisen die Oxidasen bevorzugt Veränderungen in denjenigen Aminosäureresten auf, die die Struktur der Substratbindungsdomäne der Oxidase beeinflussen. Erfindungsgemäße Oxidasen sind daher in Prozessen vorteilhaft einsetzbar, in denen aus bestimmten Gründen kein Cholin eingesetzt werden kann oder soll. Zur Verdeutlichung des Sachverhaltes, dass die erfindungsgemäßen Enzyme durch Veränderung einer Cholinoxidase erhalten werden, jedoch vorteilhafterweise gerade nicht für die Oxidation von Cholin bzw. Cholinderivaten als Substrat eingesetzt werden, werden die erfindungsgemäßen Enzyme in der vorliegenden Anmeldung nicht als Cholinoxidasen, sondern als Oxidase-Enzyme bzw. Oxidasen bezeichnet.
  • Einen Gegenstand der vorliegenden Erfindung bilden somit Verfahren zur enzymatischen Herstellung von Wasserstoffperoxid mit einer Oxidase, die dadurch gekennzeichnet sind, dass die Aminosäuresequenz der Oxidase eine Aminosäuresequenz beinhaltet, die zu SEQ ID NO: 1 zu mindestens 96% identisch ist, unter Umsetzung eines Substrates, welches sich von Cholin unterscheidet. Es ist jedoch ebenfalls möglich, Oxidasen einzusetzen, deren Aminosäuresequenz eine Aminsäuresequenz beinhaltet, die zu SEQ ID NO: 1 zu mindestens 97%, 98%, 99%, zu 99,5% und weiterhin zu 100% identisch ist.
  • In einer Ausführungsform der Erfindung ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um eines mit der Struktur R-CH2-OH handelt, wobei R 1–20 Kohlenstoffatome, 0–5 Stickstoffatome, 0–5 Sauerstoffatome, 0–2 Schwefelatome, 0–2 Phosphoratome und 0–10 Halogenatome enthält. Das Substrat kann in gesättigter oder ungesättigter Form vorliegen.
  • In einer weiteren Ausführungsform handelt es sich bei dem Substrat, welches sich von Cholin unterscheidet, um eines mit der Struktur R-CH2-OH, wobei R ausgewählt ist aus der Gruppe von -Phenyl, -Benzyl, -CH2-SO2-OH, -CH2-PO(OH)2, -PO(OH)2, -CH2-tertButyl, -CH2-C(Me2, OH). Besonders bevorzugte Ausführungsformen der Erfindung sind dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um 2-Phenylethanol, 3-Methyl-1,3-butandiol, Isethionsäure (2-Hydroxyethansulfonsäure) oder 3-Benzylalkohol handelt.
  • In dem erfindungsgemäßen Verfahren können generell alle Substrate, deren Volumen kleiner als 2 × 10–8 m3 ist, eingesetzt werden, da die Bindungstasche der Oxidase, die in dem Verfahren eingesetzt wird, dieses Volumen aufweist. Somit ist eine weitere Ausführungsform der Erfindung dadurch gekennzeichnet, dass das Substrat ein Volumen aufweist, das kleiner als 2 × 10–8 m3 ist.
  • Unter einem Enzym ist im Sinne der vorliegenden Anmeldung ein Protein zu verstehen, das eine bestimmte biokatalytische Funktion ausübt. Unter Oxidasen im Sinne der vorliegenden Anmeldung werden Enzyme verstanden, welche die bei der Oxidation eines Substrates freiwerdenden Elektronen auf Sauerstoff (O2) übertragen. Dabei dient der Sauerstoff als Elektronenakzeptor und wird zu Wasser (H2O) oder Wasserstoffperoxid (H2O2) reduziert. Die Aktivität einer Oxidase kann einen nicht-proteinischen Kofaktor benötigen, der frei oder an die Oxidase kovalent oder nichtkovalent gebunden vorliegen kann. Beispielsweise kann es sich hierbei um Flavin-Adenin-Dinukleotid „FAD" oder redoxaktive Metallionen handeln.
  • Ein Protein ist im Sinne der vorliegenden Anmeldung ein aus den natürlichen Aminosäuren zusammengesetztes, weitgehend linear aufgebautes, zur Ausübung seiner Funktion zumeist dreidimensionale Struktur annehmendes Polymer, d. h. ein Polypeptid, zu verstehen. Ein Peptid bezeichnet In der vorliegenden Anmeldung werden die proteinogenen, natürlich vorkommenden L-Aminosäuren mit den international gebräuchlichen 1- und 3-Buchstaben-Codes bezeichnet. Zahlreiche Proteine werden als sogenannte Präproteine, also zusammen mit einem Signalpeptid gebildet. Darunter ist dann der N-terminale Teil des Proteins zu verstehen, dessen Funktion zumeist darin besteht, die Ausschleusung des gebildeten Proteins aus der produzierenden Zelle in das Periplasma oder das umgebende Medium und/oder dessen korrekte Faltung zu gewährleisten. Anschließend wird das Signalpeptid unter natürlichen Bedigungen durch eine Signalpeptidase vom übrigen Protein abgespalten, so dass dieses seine eigentliche katalytische Aktivität ohne die zunächst vorhandenen N-terminalen Aminosäuren ausübt. Pro-Proteine sind inaktive Vorstufen von Proteinen. Deren Vorläufer mit Signalsequenz werden als Prä-Pro-Proteine bezeichnet. Für technische Anwendungen sind aufgrund ihrer enzymatischen Aktivität die maturen Peptide, das heißt die nach ihrer Herstellung prozessierten Enzyme gegenüber den Präproteinen bevorzugt. Die Proteine können von den sie produzierenden Zellen nach der Herstellung der Polypeptidkette modifiziert werden, beispielsweise durch Anknüpfung von Zuckermolekülen, Formylierungen, Aminierungen, usw. Solche Modifikationen werden als posttranslationale Modifikationen bezeichnet. Diese posttranslationalen Modifizierungen können, müssen jedoch nicht einen Einfluss auf die Funktion des Proteins ausüben.
  • Durch Vergleich mit bekannten Enzymen, die beispielsweise in allgemein zugänglichen Datenbanken hinterlegt sind, läßt sich aus der Aminosäure- oder Nukleotid-Sequenz die enzymatische Aktivität eines betrachteten Enzyms folgern. Diese kann durch andere Bereiche des Proteins, die nicht an der eigentlichen Reaktion beteiligt sind, qualitativ oder quantitativ modifiziert werden. Dies könnte beispielsweise die Enzymstabilität, die Aktivität, die Reaktionsbedingungen oder die Substratspezifität betreffen.
  • Solch ein Vergleich geschieht dadurch, dass ähnliche Abfolgen in den Nukleotid- oder Aminosäuresequenzen der betrachteten Proteine einander zugeordnet werden. Dies nennt man Homologisierung. Eine tabellarische Zuordnung der betreffenden Positionen wird als Alignment bezeichnet. Bei der Analyse von Nukleotidsequenzen sind wiederum beide komplementären Stränge und jeweils allen drei möglichen Leserastern zu berücksichtigen; ebenso die Degeneriertheit des genetischen Codes und die organismenspezifische Codon-Usage. Inzwischen werden Alignments über Computerprogramme erstellt, wie beispielsweise durch die Algorithmen FASTA oder BLAST; dieses Vorgehen wird beispielsweise von D. J. Lipman und W. R. Pearson (1985) in Science, Band 227, S. 1435–1441 beschrieben.
  • Eine Zusammenstellung aller in den verglichenen Sequenzen übereinstimmenden Positionen wird als Konsensus-Sequenz bezeichnet.
  • Solch ein Vergleich erlaubt auch eine Aussage über die Ähnlichkeit oder Homologie der verglichenen Sequenzen zueinander. Diese wird in Prozent Identität, das heißt dem Anteil der identischen Nukleotide oder Aminosäurereste an denselben Positionen widergegeben. Ein weiter gefaßter Homologiebegriff bezieht die konservierten Aminosäure-Austausche in diesen Wert mit ein. Es ist dann von Prozent Ähnlichkeit die Rede. Solche Aussagen können über ganze Proteine oder Gene oder nur über einzelne Bereiche getroffen werden.
  • Homologe Bereiche von verschiedenen Proteinen sind durch Übereinstimmungen in der Aminosäuresequenz definiert. Diese können auch durch identische Funktion gekennzeichnet sein. Sie geht bis zu völligen Identitäten in kleinsten Bereichen, sogenannten Boxen, die nur wenige Aminosäuren umfassen und meist für die Gesamtaktivität essentielle Funktionen ausüben. Unter den Funktionen der homologen Bereiche sind kleinste Teilfunktionen der vom gesamten Protein ausgeübten Funktion zu verstehen, wie beispielsweise die Ausbildung einzelner Wasserstoffbrückenbindungen zur Komplexierung eines Substrats oder Übergangskomplexes.
  • Einen weiteren Gegenstand der Erfindung bilden Oxidasen, die dadurch gekennzeichnet sind, dass eine oder mehrere Aminosäuren an den Positionen 55, 306, 325, 345, 351, 458, 459 und 460 bezogen auf SEQ ID NO: 1 verändert sind, wobei die Aminosäure an einer der Positionen 55, 325, 345, 351, 458, 459 und 460 ausgewählt ist aus der Gruppe von Alanin, Arginin, Asparagin, Asparaginsäure, Cystein, Glutamin, Glutaminsäure, Glycin, Histidin, Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Prolin, Serin, Threonin, Tryptophan, Tyrosin und Valin und sich von derjenigen unterscheidet, die in SEQ ID NO: 1 an der entsprechenden Position vorhanden ist und die Aminosäure an der Position 306 ausgewählt ist aus der Gruppe von Arginin, Asparagin, Cystein, Glutamin, Glutaminsäure, Glycin, Histidin, Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Prolin, Serin, Threonin, Tryptophan, Tyrosin und Valin.
  • Überraschenderweise wurde gefunden, dass eine Veränderung der Aminosäure in einer oder mehreren dieser Positionen die Fähigkeit des Enzyms, Cholin als Substrat zu oxidieren, zwar vermindert, jedoch unerwarteterweise die Fähigkeit des Enzyms zur Oxidation weiterer, neuer Substrate, erhöht. Somit bewirkt eine solche Änderung der Aminosäure eine Änderung der spezifischen Aktivität des Enzyms. Besonders überraschend und bemerkenswert ist die Möglichkeit der Substratveränderung weg von der positiv geladenen Trimethylammonium-Gruppe des Cholins hin zu ungeladenen oder negativ geladenen Gruppen der neuen Substrate.
  • Ferner kann die Veränderung einer Aminosäure in Sequenznachbarschaft, bevorzugt in unmittelbarer Sequenznachbarschaft, zu den Aminosäuren an den Positionen 55, 306, 325, 345, 351, 458, 459 und 460 bezogen auf SEQ ID NO: 1 ebenfalls zu einer Veränderung der Substratspezifität führen, da eine solche Veränderung zu Verschiebungen der an der Substratbindung beteiligten Aminosäuren bewirken kann. Solche Oxidasen sind daher in die vorliegende Erfindung mit eingeschlossen. Erfindungsgemäß wird unter Sequenznachbarschaft eine Position verstanden, die sich innerhalb eines Fensters von 50 Aminosäurepositionen, zunehmend bevorzugt von 40, 30, 20, 15, 10, 8, 6, 5, 4, 2 und besonders bevozugt von einer Aminosäureposition befindet, ausgehend von der konkret benannten Aminosäure in beide Richtungen, d. h. sowohl in Richtung N-Terminus als auch in Richtung C-Terminus der Aminosäuresequenz.
  • Grundsätzlich sind die mit der vorliegenden Anmeldung vorgeschlagenen Aminosäureaustausche nicht darauf beschränkt, dass sie die einzigen Austausche sind, in denen sich die betreffende Oxidase von dem Ausgangsmolekül unterscheidet. Es ist aus dem Stand der Technik allgemein bekannt, dass sich vorteilhafte Eigenschaften einzelner Punktmutationen ergänzen können. Eine hinsichtlich bestimmter Eigenschaften bereits optimierte Oxidase, zum Beispiel hinsichtlich ihrer Stabilität gegenüber Tensiden oder anderen Komponenten, kann erfindungsgemäß zusätzlich über die hier vorgestellten Substitutionen weiterentwickelt werden. Somit umfassen Ausführungsformen der vorliegenden Erfindung alle Oxidasen, die neben anderen Austauschen auch erfindungsgemäße Austausche aufweisen.
  • Ebenfalls umfasst sind Oxidasen, die ausgehend von den zuvor genannten erfindungsgemäßen Oxidasen durch Derivatisierung, Fragmentierung, Inversionsmutation, Deletionsmutation oder Insertionsmutation erhältlich sind, wobei hierbei natürlich zwingend ist, dass die entsprechende Mutationsposition oder Kombination von Mutationspositionen in den so erhaltenen Ooxidasen erhalten bleibt.
  • Unter Fragmenten werden alle Proteine oder Peptide verstanden, die kleiner sind als natürliche Proteine und beispielsweise auch synthetisch erhalten werden können. Aufgrund ihrer Aminosäuresequenzen können sie den betreffenden vollständigen Proteinen zugeordnet werden. Sie können beispielsweise gleiche Strukturen annehmen oder proteolytische Aktivitäten oder Teilaktivitäten ausüben, wie beispielsweise die Komplexierung eines Substrats. Fragmente und Deletionsvarianten von Ausgangsproteinen sind prinzipiell gleichartig; während Fragmente eher kleinere Bruchstücke darstellen, fehlen den Deletionsmutanten eher nur kurze Bereiche, und damit nur einzelne Teilfunktionen.
  • Unter chimären oder hybriden Proteinen sind im Sinne der vorliegenden Anmeldung solche Proteine zu verstehen, deren Sequenz die Sequenzen oder Teilsequenzen von mindestens zwei Ausgangsproteinen umfasst. Die Ausgangsproteine können diesbezüglich aus verschiedenen oder aus demselben Organismus stammen. Chimäre oder hybride Proteine können beispielsweise durch Rekombinationsmutagenese erhalten werden. Der Sinn einer solchen Rekombination kann beispielsweise darin bestehen, mithilfe des heranfusionierten Proteinteils eine bestimmte enzymatische Funktion herbeizuführen oder zu modifizieren. Es ist dabei im Sinne der vorliegenden Erfindung unwesentlich, ob solch ein chimäres Protein aus einer einzelnen Polypeptidkette oder mehreren Untereinheiten besteht, auf welche sich unterschiedliche Funktionen verteilen können.
  • Unter durch Insertionsmutation erhaltene Proteine sind solche Varianten zu verstehen, die durch Einfügen eines Proteinfragments in die Ausgangssequenzen erhalten worden sind. Sie sind ihrer prinzipiellen Gleichartigkeit wegen den chimären Proteinen zuzuordnen. Sie unterscheiden sich von jenen lediglich im Größenverhältnis des unveränderten Proteinteils zur Größe des gesamten Proteins. In solchen insertionsmutierten Proteinen ist der Anteil an Fremdprotein geringer als in chimären Proteinen.
  • Inversionsmutagenese, also eine partielle Sequenzumkehrung, kann als Sonderform sowohl der Deletion, als auch der Insertion angesehen werden. Dasselbe gilt für eine von der ursprünglichen Aminosäureabfolge abweichende Neugruppierung verschiedener Molekülteile. Sie kann sowohl als Deletionsvariante, als Insertionsvariante, als auch als Shuffling-Variante des ursprünglichen Proteins angesehen werden.
  • Unter Derivaten werden im Sinne der vorliegenden Anmeldung solche Proteine verstanden, deren reine Aminosäurekette chemisch modifiziert worden ist. Solche Derivatisierungen können beispielsweise biologisch im Zusammenhang mit der Proteinbiosynthese durch die Wirtszelle erfolgen. Hierfür können molekularbiologische Methoden eingesetzt werden. Sie können aber auch chemisch durchgeführt werden, etwa durch die chemische Umwandlung einer Seitenkette einer Aminosäure oder durch kovalente Bindung einer anderen Verbindung an das Protein. Bei solch einer Verbindung kann es sich beispielsweise auch um andere Proteine handeln, die beispielsweise über bifunktionelle chemische Verbindungen an erfindungsgemäße Proteine gebunden werden. Derartige Modifizierungen können beispielsweise die Substratspezifität oder die Bindungsstärke an das Substrat beeinflussen oder eine vorübergehende Blockierung der enzymatischen Aktivität herbeiführen, wenn es sich bei der angekoppelten Substanz um einen Inhibitor handelt. Dies kann beispielsweise für den Zeitraum der Lagerung sinnvoll sein. Ebenso ist unter Derivatisierung die kovalente Bindung an einen makromolekularen Träger zu verstehen, genauso wie auch ein nichtkovalenter Einschluss in geeignete makromolekulare Käfigstrukturen.
  • Proteine können auch über die Reaktion mit einem Antiserum oder einem bestimmten Antikörper zu Gruppen immunologisch verwandter Proteine zusammengefaßt werden. Die Angehörigen einer Gruppe zeichnen sich dadurch aus, dass sie dieselbe, von einem Antikörper erkannte antigene Determinante aufweisen.
  • Im Sinne der vorliegenden Erfindung werden alle Enzyme, Proteine, Fragmente und Derivate, sofern sie nicht explizit als solche angesprochen zu werden brauchen, unter dem Oberbegriff Proteine zusammengefaßt.
  • Die erfindungsgemäßen Oxidasen mit veränderter Substratspezifität weisen vorteilhafterweise eine hohe spezifische Wasserstoffperoxid-Bildungsrate auf.
  • Das pH-Profil der erfindungsgemäßen Enzyme ist kompatibel mit dem erforderlichen pH bei technischem Einsatz sowie mit typischen Produkten wie Wasch- und Reinigungsmitteln und Haarfärbungen.
  • Um in den vorstehend beschriebenen Verfahren vorteilhaft eingesetzt werden zu können, sind die erfindungsgemäßen Oxidasen in der Lage, Substrate zu oxidieren, die sich von Cholin unterscheiden. Einen weiteren Gegenstand der Erfindung stellen daher Oxidasen dar, die dadurch gekennzeichnet sind, dass sie zur Oxidation eines Substrates, welches sich von Cholin unterscheidet, besser befähigt sind als zur Oxidation von Cholin. Ebenso sind Oxidasen mit umfasst, die zur Oxidation eines Substrates, welches sich von Cholin unterscheidet, besser befähigt sind als das unveränderte Ausgangsenzym.
  • In einer weiteren Ausführungsform der Erfindung ist die Oxidase dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um eines mit der Struktur R-CH2-OH handelt, wobei R 1–20 Kohlenstoffatome, 0–5 Stickstoffatome, 0–5 Sauerstoffatome, 0–2 Schwefelatome, 0–2 Phosphoratome und 0–10 Halogenatome enthält.
  • In einer bevorzugten Ausführungsform ist die Oxidase dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um eines mit der Struktur R-CH2-OH handelt, wobei R ausgewählt ist aus der Gruppe von -Phenyl, -Benzyl, -CH2-SO2-OH, -CH2-PO(OH)2, -PO(OH)2, -CH2-tertButyl, -CH2-C(Me2, OH). In besonders bevorzugten Ausführungsformen der Erfindung sind die Oxidasen dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um 2-Phenylethanol, 3-Methyl-1,3-butandiol, Isethionsäure oder Benzylalkohol handelt.
  • Die erfindungsgemäßen Oxidasen sind in der Lage, Substrate, deren Volumen kleiner als 2 × 10–8 m3 ist, in ihrer Substratbindungstasche aufzunehmen, da die Bindungstasche der Oxidase, die in dem Verfahren eingesetzt wird, dieses Volumen aufweist. Somit sind weitere Ausführungsformen der erfindungsgemäßen Oxidasen dadurch gekennzeichnet, dass das Substrat ein Volumen aufweist, das kleiner als 2 × 10–8 m3 ist.
  • In einer weiteren Ausführungsform der Erfindung sind die Oxidasen dadurch gekennzeichnet, dass die Aminosäure an Position 306 zunehmend bevorzugt Arginin, Glutamin, Asparagin, Aspartat oder Glycin ist, wobei die Nummerierung der Sequenzpositionen auf SEQ ID NO: 1 bezogen ist.
  • Erfindungsgemäße Oxidasen sind jedoch ausdrücklich nicht auf diese Ausführungsform beschränkt, sondern können an Position 306 die Aminosäure Arginin, Asparagin, Cystein, Glutamin, Glutaminsäure, Glycin, Histidin, Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Prolin, Serie, Threonin, Tryptophan, Tyrosin oder Valin aufweisen sowie an den Positionen Positionen 55, 325, 345, 351, 458, 459 und 460 die Aminosäuren Alanin, Arginin, Asparagin, Asparaginsäure, Cystein, Glutamin, Glutaminsäure, Glycin, Histidin, Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Prolin, Serin, Threonin, Tryptophan, Tyrosin und Valin, wobei die Nummerierung auf SEQ ID NO: 1 bezogen ist. Diese Aminosäuren können an den genannten Positionen in jeder beliebigen Kombination vorliegen. Weiterhin können mehrere der vorstehend genannten Positionen oder auch nur eine der vorstehend genannten Positionen die entsprechende Aminosäure aufweisen. Wie vorstehend bereits erläutert, umfassen Ausführungsformen der vorliegenden Erfindung alle Oxidasen, die neben anderen Austauschen auch erfindungsgemäße Austausche aufweisen.
  • Die erfindungsgemäßen Oxidasen weisen ein pH-Optimum vorzugsweise im fast neutralen bis schwach alkalischen Bereich von etwa pH 6 bis pH 10, besonders bevorzugt pH 7 bis pH 9 auf. Die Aktivität solcher Enzyme wird üblicherweise in U ausgedrückt, wobei die Einheit ("Unit") derjenigen Enzymmenge entspricht, die 1 μmol an Wasserstoffperoxid (H2O2) bei einem festgelegten pH und einer festgelegten Temperatur in 1 Minute generiert. Das Temperatur-Optimum der erfindungsgemäßen Oxidasen liegt etwa im Bereich von 20 bis 60°C, insbesondere bei etwa 40°C.
  • Da die gegenständlichen Oxidasen der vorliegenden Anmeldung zur Oxidation eines Substrates, welches sich von Cholin unterscheidet, besser oder zumindest gleichwertig befähigt sind als zur Oxidation von Cholin, ist deren Aktivität unter Umsetzung eines Substrates, welches sich von Cholin unterscheidet, höher oder zumindest gleichwertig bezogen auf deren Aktivität unter Umsetzung von Cholin als Substrat. Einen weiteren Gegenstand der Erfindung stellen somit Oxidasen dar, für die der Quotient, gebildet aus der spezifischen Aktivität der Oxidase unter Verwendung eines Substrats, welches sich von Cholin unterscheidet, geteilt durch die spezifische Aktivität der Oxidase unter Verwendung eines Substrats, welches Cholin ist, einen Wert zwischen 1 und 100.000, bevorzugt einen Wert zwischen 1 und 1000, weiter bevorzugt einen Wert zwischen 1 und 100 und besonders bevorzugt einen Wert zwischen 1 und 10 aufweist.
  • Weitere Gegenstände der Erfindung bilden Nukleinsäuremoleküle, die für eine erfindungsgemäße Oxidase kodieren sowie Vektoren, enthaltend eine solche Nukleinsäure.
  • Unter Nukleinsäuren sind im Sinne der vorliegenden Anmeldung die natürlicherweise aus Nukleotiden aufgebauten als Informationsträger dienenden Moleküle zu verstehen, die für die lineare Aminosäureabfolge in Proteinen oder Enzymen codieren. Sie können als Einzelstrang, als ein zu diesem Einzelstrang komplementärer Einzelstrang oder als Doppelstrang vorliegen. Als der natürlicherweise dauerhaftere Informationsträger ist die Nukleinsäure DNA für molekularbiologische Arbeiten bevorzugt. Demgegenüber wird für die Realisierung der Erfindung in natürlicher Umgebung, wie beispielsweise in einer exprimierenden Zelle, eine RNA gebildet, weshalb erfindungswesentliche RNA-Moleküle ebenfalls Ausführungsformen der vorliegenden Erfindung darstellen.
  • Bei DNA sind die Sequenzen beider komplementärer Stränge in jeweils allen drei möglichen Leserastern zu berücksichtigen. Ferner ist zu berücksichtigen, dass verschiedene Codon-Triplets für dieselben Aminosäuren codieren können, so dass eine bestimmte Aminosäure-Abfolge von mehreren unterschiedlichen und möglicherweise nur geringe Identität aufweisenden Nukleotidsequenzen abgeleitet werden kann, was als Degeneriertheit des genetischen Codes bezeichnet wird. Außerdem weisen verschiedene Organismen Unterschiede im Gebrauch dieser Codons auf. Aus diesen Gründen müssen sowohl Aminosäuresequenzen als auch Nukleotidsequenzen in die Betrachtung des Schutzbereichs einbezogen werden. Daher sind sämtliche Nukleotidsequenzen in die Erfindung mit eingeschlossen, die eine der vorstehend beschriebenen Oxidasen kodieren können. Der Fachmann ist in der Lage, diese Nukleotidsequenzen zweifelsfrei zu bestimmen, da trotz der Degeneriertheit des genetischen Codes einzelnen Codons definierte Aminosäuren zuzuordnen sind. Daher kann der Fachmann ausgehend von einer sind jeweils nur als eine beispielhafte Codierung für eine bestimmte Aminosäurefolge anzusehen.
  • Die einem Protein entsprechende Informationseinheit wird auch im Sinne der vorliegenden Anmeldung als Gen bezeichnet.
  • Die vorliegende Erfindung umfaßt die Herstellung rekombinanter Proteine. Hierunter sind erfindungsgemäß alle gentechnischen oder mikrobiologischen Verfahren zu verstehen, die darauf beruhen, dass die Gene für die interessierenden Proteine in eine für die Produktion geeignete Wirtszelle eingebracht und von dieser transkribiert und translatiert werden. Geeigneterweise erfolgt die Einschleusung der betreffenden Gene über Vektoren, insbesondere Expressionsvektoren; aber auch über solche, die bewirken, dass das interessierende Gen in der Wirtszelle in ein bereits vorhandenes genetisches Element wie das Chromosom oder andere Vektoren eingefügt werden kann. Die funktionelle Einheit aus Gen und Promotor und eventuellen weiteren genetischen Elementen wird erfindungsgemäß als Expressionskassette bezeichnet. Sie muß dafür jedoch nicht notwendigerweise auch als physische Einheit vorliegen.
  • Einem Fachmann ist es über heutzutage allgemein bekannte Methoden, wie beispielsweise die chemische Synthese oder die Polymerase-Kettenreaktion (PCR) in Verbindung mit molekularbiologischen und/oder proteinchemischen Standardmethoden möglich, anhand bekannter DNA- und/oder Aminosäuresequenzen die entsprechenden Nukleinsäuren bis hin zu vollständigen Genen herzustellen. Derartige Methoden sind beispielsweise aus Sambrook, J., Fritsch, E. F. and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 3. Edition Cold Spring Laboratory Press bekannt.
  • Änderungen der Nukleotidsequenz, wie sie beispielsweise durch an sich bekannte molekularbiologische Methoden herbeigeführt werden können, werden als Mutationen bezeichnet. Je nach Art der Änderung kennt man beispielsweise Deletions-, Insertions- oder Substitutionsmutationen oder solche, bei denen verschiedene Gene oder Teile von Genen miteinander fusioniert oder rekombiniert werden; dies sind Genmutationen. Die zugehörigen Organismen werden als Mutanten bezeichnet. Die von mutierten Nukleinsäuren abgeleiteten Proteine werden als Varianten bezeichnet. So führen beispielsweise Deletions-, Insertions- Substitutionsmutationen oder Fusionen zu deletions-, insertions-substitutionsmutierten oder Fusionsgenen und auf Proteinebene zu entsprechenden Deletions-, Insertions- oder Substitutionsvarianten, beziehungsweise Fusionsproteinen.
  • Unter Vektoren werden im Sinne der vorliegenden Erfindung aus Nukleinsäuren bestehende Elemente verstanden, die als kennzeichnenden Nukleinsäurebereich ein interessierendes Gen enthalten. Sie vermögen dieses in einer Spezies oder einer Zellinie über mehrere Generationen oder Zellteilungen hinweg als stabiles genetisches Element zu etablieren. Vektoren sind insbesondere bei der Verwendung in Bakterien spezielle Plasmide, also zirkulare genetische Elemente. Man unterscheidet in der Gentechnik einerseits zwischen solchen Vektoren, die der Lagerung und somit gewissermaßen auch der gentechnischen Arbeit dienen, den sogenannten Klonierungsvektoren, und andererseits denen, die die Funktion erfüllen, das interessierende Gen in der Wirtszelle zu realisieren, das heißt, die Expression des betreffenden Proteins zu ermöglichen. Diese Vektoren werden als Expressionsvektoren bezeichnet.
  • Im Rahmen der vorliegenden Erfindung wird die Nukleinsäure geeigneterweise in einen Vektor kloniert. Die molekularbiologische Dimension der Erfindung besteht somit in Vektoren mit den Genen für die entsprechenden Proteine. Dazu können beispielsweise solche gehören, die sich von bakteriellen Plasmiden, von Viren oder von Bacteriophagen ableiten, oder überwiegend synthetische Vektoren oder Plasmide mit Elementen verschiedenster Herkunft. Mit den weiteren jeweils vorhandenen genetischen Elementen vermögen Vektoren, sich in den betreffenden Wirtszellen über mehrere Generationen hinweg als stabile Einheiten zu etablieren. Es ist dabei im Sinne der Erfindung unerheblich, ob sie sich extrachomosomal als eigene Einheiten etablieren oder in ein Chromosom integrieren. Welches der zahlreichen aus dem Stand der Technik bekannten Systeme gewählt wird, hängt vom Einzelfall ab. Ausschlaggebend können beispielsweise die erreichbare Kopienzahl, die zur Verfügung stehenden Selektionssysteme, darunter vor allem Antibiotikaresistenzen, oder die Kultivierbarkeit der zur Aufnahme der Vektoren befähigten Wirtszellen sein.
  • Die Vektoren bilden geeignete Ausgangspunkte für molekularbiologische und biochemische Untersuchungen des betreffenden Gens oder zugehörigen Proteins und für erfindungsgemäße Weiterentwicklungen und letztlich für die Amplifikation und Produktion erfindungsgemäßer Proteine. Sie stellen insofern Ausführungsformen der vorliegenden Erfindung dar, als die Sequenzen der enthaltenen erfindungsgemäßen Nukleinsäurebereiche jeweils innerhalb der oben näher bezeichneten Homologiebereiche liegen.
  • Einen weiteren Gegenstand der Erfindung stellen somit Vektoren dar, die mindestens ein Nukleinsäuremolekül beinhalten, welches für eine erfindungsgemäße Oxidase kodiert, die dadurch gekennzeichnet sind, dass der Vektor ein Klonierungsvektor ist. Diese eignen sich neben der Lagerung, der biologischen Amplifikation oder der Selektion des interessierenden Gens für die Charakterisierung des betreffenden Gens, etwa über das Erstellen einer Restriktionskarte oder die Sequenzierung. Klonierungsvektoren sind auch deshalb bevorzugte Ausführungsformen der vorliegenden Erfindung, weil sie eine transportierbare und lagerfähige Form der beanspruchten DNA darstellen. Sie sind auch bevorzugte Ausgangspunkte für molekularbiologische Techniken, die nicht an Zellen gebunden sind, wie beispielsweise die Polymerasekettenreaktion.
  • Einen weiteren Gegenstand der Erfindung stellen weiterhin Vektoren da, die mindestens ein Nukleinsäuremolekül beinhalten, welches für eine erfindungsgemäße Oxidase kodiert, die dadurch gekennzeichnet sind, dass der Vektor ein Expressionsvektor ist. Expressionsvektoren sind chemisch den Klonierungsvektoren ähnlich, unterscheiden sich aber in jenen Teilsequenzen, die sie dazu befähigen, in den für die Produktion von Proteinen optimierten Wirtszellen oder Wirtsorganismen zu replizieren und dort das enthaltene Gen zur Expression zu bringen. Bevorzugte Ausführungsformen sind Expressionsvektoren, die selbst die zur Expression notwendigen genetischen Elemente tragen. Die Expression wird beispielsweise von Promotoren beeinflußt, welche die Transkription des Gens regulieren. So kann die Expression durch den natürlichen, ursprünglich vor diesem Gen lokalisierten Promotor erfolgen, aber auch nach gentechnischer Fusion sowohl durch einen auf dem Expressionsvektor bereitgestellten Promotor der Wirtszelle als auch durch einen modifizierten oder einen völlig anderen Promotor eines anderen Organismus oder einer anderen Wirtszelle.
  • Bevorzugte Ausführungsformen sind solche Expressionsvektoren, die über Änderungen der Kulturbedingungen oder Zugabe von bestimmten Verbindungen, wie beispielsweise die Zelldichte oder spezielle Faktoren, regulierbar sind. Expressionsvektoren ermöglichen, dass das zugehörige Protein heterolog, also in einer anderen Zelle bzw. Wirtszelle als derjenigen, aus der es natürlicherweise gewonnen werden kann, produziert wird. Die Zellen können dabei durchaus zu verschiedenen Organismen zugehörig sein oder von verschiedenen Organismen stammen. Auch eine homologe Proteingewinnung aus einer das Gen natürlicherweise exprimierenden Wirtszelle über einen passenden Vektor liegt innerhalb des Schutzbereichs der vorliegenden Erfindung. Diese kann den Vorteil aufweisen, dass natürliche, mit der Translation in einem Zusammenhang stehende Modifikationsreaktionen an dem entstehenden Protein genauso durchgeführt werden, wie sie auch natürlicherweise ablaufen würden.
  • Eine weitere Ausführungsform stellen Expressionssysteme dar, bei denen zusätzliche Gene, beispielsweise solche, die auf anderen Vektoren zur Verfügung gestellt werden, die Produktion erfindungsgemäßer Proteine beeinflussen. Hierbei kann es sich um modifizierende Genprodukte handeln oder um solche, die mit dem erfindungsgemäßen Protein gemeinsam aufgereinigt werden sollen, etwa um dessen enzymatische Funktion zu beeinflussen. Dabei kann es sich beispielsweise um andere Proteine oder Enzyme, um Inhibitoren oder um solche Elemente handeln, die die Wechselwirkung mit verschiedenen Substraten beinflussen.
  • Alternative Ausführungsformen der vorliegenden Erfindung können auch zellfreie Expressionssysteme sein, bei denen die Proteinbiosynthese in vitro nachvollzogen wird. Derartige Expressionssysteme sind im Stand der Technik ebenfalls etabliert.
  • Ein weiterer Gegenstand der Erfindung ist eine Wirtszelle, die eine erfindungsgemäße Oxidase oder ein Fragment derselben beinhaltet oder die zu deren Herstellung angeregt werden kann, vorzugsweise unter Einsatz eines Expressionsvektors. Die In-vivo-Synthese eines erfindungsgemäßen Enzyms, also die durch lebende Zellen, erfordert den Transfer des zugehörigen Gens in eine Wirtszelle, deren sogenannte Transformation. Als Wirtszellen eignen sich prinzipiell alle Zellen, das heißt prokaryotische oder eukaryotische Zellen. Bevorzugt sind solche Wirtszellen, die sich genetisch vorteilhaft handhaben lassen, was beispielsweise die Transformation mit dem Expressionsvektor und dessen stabile Etablierung angeht, beispielsweise einzellige Pilze oder Bakterien. Zudem zeichnen sich bevorzugte Wirtszellen durch eine gute mikrobiologische und biotechnologische Handhabbarkeit aus. Das betrifft beispielsweise leichte Kultivierbarkeit, hohe Wachstumsraten, geringe Anforderungen an Fermentationsmedien und gute Produktions- und Sekretionsraten für Fremdproteine. Häufig müssen aus der Fülle an verschiedenen nach dem Stand der Technik zur Verfügung stehenden Systeme die optimalen Expressionssysteme für den Einzelfall experimentell ermitteln werden. Jedes erfindungsgemäße Protein kann auf diese Weise aus einer Vielzahl von Wirtszellen gewonnen werden. Auch solche Wirtszellen sind bevorzugt, die dadurch gekennzeichnet sind, dass sie nach Transformation mit einem der oben beschriebenen Vektoren erhalten worden sind. Dabei kann es sich beispielsweise um Klonierungsvektoren handeln, die zur Lagerung und/oder Modifikation beispielsweise in einen beliebigen Bakterienstamm oder eine andere erfindungsgemäße Wirtszelle eingebracht worden sind. Solche Schritte sind in der Lagerung und in der Weiterentwicklung betreffender genetischer Elemente allgemein verbreitet. Da aus diesen Wirtszellen die betreffenden genetischen Elemente in nachfolgende, zur Expression geeignete Wirtszellen unmittelbar übertragen werden können, handelt es sich auch bei den vorangegenagenen Transformationsprodukten um Verwirklichungen des betreffenden Erfindungsgegenstands.
  • Bevorzugte Ausführungsformen stellen solche Wirtszellen dar, die aufgrund genetischer Regulationselemente, die beispielsweise auf dem Expressionsvektor zur Verfügung gestellt werden, aber auch von vornherein in diesen Zellen vorhanden sein können, in ihrer Aktivität regulierbar sind. Beispielsweise durch kontrollierte Zugabe von chemischen Verbindungen, die als Aktivatoren dienen, durch Änderung der Kultivierungsbedingungen oder bei Erreichen einer bestimmten Zelldichte können diese zur Expression angeregt werden. Dies ermöglicht eine sehr wirtschaftliche Produktion der interessierenden Proteine.
  • Bevorzugte Wirtszellen sind prokaryontische oder bakterielle Zellen. Bakterien zeichnen sich gegenüber Eukaryonten in der Regel durch kürzere Generationszeiten und geringere Ansprüche an die Kultivierungsbedingungen aus. Dadurch können kostengünstige Verfahren zur Gewinnung erfindungsgemäßer Proteine etabliert werden. Bei gram-negativen Bakterien, wie beispielsweise Escherichia coli (E. coli), werden eine Vielzahl von Proteinen in den periplasmatischen Raum sekretiert, also in das Kompartiment zwischen den beiden die Zellen einschließenden Membranen. Dies kann für spezielle Anwendungen vorteilhaft sein. Grampositive Bakterien, wie beispielsweise Bacilli oder Actinomyceten oder andere Vertreter der Actinomycetales, besitzen demgegenüber keine äußere Membran, so dass sekretierte Proteine sogleich in das die Zellen umgebende Nährmedium abgegeben werden, aus welchem sich nach einer weiteren bevorzugten Ausführungsform die exprimierten erfindungsgemäßen Proteine direkt aufreinigen lassen.
  • Bevorzugtermaßen ist die Wirtszelle daher dadurch gekennzeichnet, dass sie das erfindungsgemäße Protein oder ein Fragment oder Derivat hiervon ins umgebende Medium sezerniert.
  • In einer weiteren bevorzugten Ausführungsform ist die erfindungsgemäße Wirtszelle dadurch gekennzeichnet, dass sie ein Bakterium, insbesondere ausgewählt aus der Gruppe der Gattungen von Escherichia, Bacillus und Arthrobacter, Streptomyces und Pseudomonas, ist. Besonders bevorzugt handelt es sich bei der Wirtszelle um ein Bakterium, welches ausgewählt ist aus der Gruppe von Escherichia coli, Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus alcalophilus und Arthrobacter oxidans, Streptomyces lividans und Streptomyces coelicolor.
  • Die Wirtszellen können hinsichtlich ihrer Anforderungen an die Kulturbedingungen verändert sein, andere oder zusätzliche Selektionsmarker aufweisen oder andere oder zusätzliche Proteine exprimieren. Es kann sich insbesondere um solche Wirtszellen handeln, die zusätzlich zu dem erfindungsgemäß hergestellten Protein noch weitere, insbesondere wirtschaftlich interessante Proteine exprimieren.
  • Die Wirtszelle kann aber auch eine eukaryontische Zelle sein, die dadurch gekennzeichnet ist, dass sie einen Zellkern besitzt. Im Gegensatz zu prokaryontischen Zellen sind eukaryontische Zellen in der Lage, das gebildete Protein posttranslational zu modifizieren. Beispiele dafür sind Pilze wie Actinomyceten oder Hefen wie Saccharomyces oder Kluyveromyces. Dies kann beispielsweise dann besonders vorteilhaft sein, wenn die Proteine im Zusammenhang mit ihrer Synthese spezifische Modifikationen erfahren sollen, die derartige Systeme ermöglichen. Dazu gehören beispielsweise die Bindung niedermolekularer Verbindungen wie Membrananker oder Oligosaccaride.
  • Die Wirtszellen des erfindungsgemäßen Verfahrens werden in an sich bekannter Weise kultiviert und fermentiert, beispielsweise in diskontinuierlichen oder kontinuierlichen Systemen. Im ersten Fall wird ein geeignetes Nährmedium mit den Wirtszellen beimpft und das Produkt nach einem experimentell zu ermittelnden Zeitraum aus dem Medium geerntet. Kontinuierliche Fermentationen zeichnen sich durch Erreichen eines Fließgleichgewichts aus, in dem über einen vergleichsweise langen Zeitraum Zellen teilweise absterben aber auch nachwachsen und gleichzeitig Produkt aus dem Medium entnommen werden kann.
  • Fermentationsverfahren sind an sich aus dem Stand der Technik bekannt und stellen den eigentlichen großtechnischen Produktionsschritt dar, in der Regel gefolgt von einer geeigneten Aufreinigungsmethode des hergestellten Produktes, beispielsweise des rekombinanten Proteins. Alle Fermentationsverfahren, die auf einem der oben ausgeführten Verfahren zur Herstellung der rekombinanten Proteine beruhen, stellen entsprechend bevorzugte Ausführungsformen dieses Erfindungsgegenstandes dar.
  • Hierbei müssen die für die eingesetzten Herstellungsverfahren, für die Wirtszellen und/oder die herzustellenden Proteine jeweils optimalen Bedingungen anhand der zuvor optimierten Kulturbedingungen der betreffenden Stämme nach dem Wissen des Fachmanns, beispielsweise hinsichlich Fermentationsvolumen, Medienzusammensetzung, Sauerstoffversorgung oder Rührergeschwindigkeit experimentell ermittelt werden.
  • Fermentationsverfahren, die dadurch gekennzeichnet sind, dass die Fermentation über eine Zulaufstrategie durchgeführt wird, kommen ebenfalls in Betracht. Hierbei werden die Medienbestandteile, die durch die fortlaufende Kultivierung verbraucht werden, zugefüttert; man spricht auch von einer Zufütterungsstrategie. Hierdurch können beträchtliche Steigerungen sowohl in der Zelldichte, als auch in der Biotrockenmasse und/oder vor allem der Aktivität des interessierenden Proteins erreicht werden.
  • Analog dazu kann die Fermentation auch so gestaltet werden, dass unerwünschte Stoffwechselprodukte herausgefiltert oder durch Zugabe von Puffer oder jeweils passende Gegenionen neutralisiert werden.
  • Das hergestellte Protein kann nachträglich aus dem Fermentationsmedium geerntet werden. Dieses Fermentationsverfahren ist gegenüber der Produktaufbereitung aus der Trockenmasse bevorzugt, erfodert jedoch die Zurverfügungstellung geeigneter Sekretionsmarker und Transportsysteme. Ohne Sekretion ist u. U. die Aufreinigung des Proteins aus der Zellmasse erforderlich, auch dazu sind verschiedene Verfahren bekannt, wie Fällung z. B durch Ammoniumsulfat oder Ethanol, oder die chromatographische Reinigung, wenn erforderlich bis zur Homogenität. Die Mehrzahl der beschriebenen technischen Verfahren dürfte jedoch mit einer angereicherten, stabilisierten Präparation auskommen.
  • Alle bereits oben ausgeführten Elemente können zu Verfahren kombiniert werden, um erfindungsgemäße Proteine herzustellen. Es ist dabei für jedes erfindungsgemäße Protein eine Vielzahl von Kombinationsmöglichkeiten an Verfahrensschritten denkbar. Das optimale Verfahren muß für jeden konkreten Einzelfall experimentell ermittelt werden.
  • Durch Expression oder Klonierung können die erfindungsgemäßen Oxidasen in der für den technischen Einsatz erforderlichen Menge zur Verfügung gestellt werden.
  • Einen weiteren Erfindungsgegenstand stellt die Verwendung einer erfindungsgemäßen Oxidase als Wasserstoffperoxid erzeugendes Agens dar. Eine bevorzugte Ausführungsform stellt die Verwendung der Oxidase als Wasserstoffperoxid in situ, d. h. vor Ort, erzeugendes Agens dar. Dadurch, dass die Bildung von Wasserstoffperoxid an demjenigen Ort erfolgt, an dem sich die Oxidase befindet, kann sie in den erfindungsgemäßen Verfahren und Mitteln vorteilhaft eingesetzt werden. Eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Verwendung ist die Verwendung zur Bleiche, zur Farbübertragungsinhibierung und zur Desinfektion.
  • Ein weiteren Gegenstand der Erfindung stellen Mittel, enthaltend eine erfindungsgemäße Oxidase, dar. Die erfindungsgemäßen Oxidasen bzw. die erfindungsgemäß verwendbaren Oxidasen können vorteilhaft in Körperpflegemittel, Haarwaschmittel, Haarpflegemittel, Oxidationsfärbemittel, Mund-, Zahn- oder Zahnprothesenpflegemittel, Kosmetikum, Waschmittel, Reinigungsmittel, Nachspülmittel, Handwaschmittel, Handgeschirrspülmittel, Maschinengeschirrspülmittel, Desinfektionsmittel, Signalreagenzien oder Mittel zur bleichenden oder desinfizierenden Behandlung von Filtermedien, Textilien, Pelzen, Papier, Fellen oder Leder eingebracht werden.
  • Erfindungsgemäß bevorzugt ist ein Mittel, das ein Bleichsystem enthält, welches in der Lage ist, unter Anwendungsbedingungen des Mittels Wasserstoffperoxid zu erzeugen. Das Bleichsystem besteht vorzugsweise aus einer erfindungsgemäßen Oxidase und einem Substrat für die Oxidase. Das Substrat unterscheidet sich vorzugsweise von Cholin, wie vorstehend ausführlich beschrieben.
  • Eine erfindungsgemäße Oxidase kann sowohl in Mitteln für Großverbraucher oder technische Anwender als auch in Produkten für den Privatverbraucher Anwendung finden, wobei alle im Stand der Technik etablierten Wasch- und Reinigungsmittelarten auch Ausführungsformen der vorliegenden Erfindung darstellen. Dazu gehören beispielsweise Konzentrate und unverdünnt anzuwendende Mittel zum Einsatz im kommerziellen Maßstab, in der Waschmaschine oder bei der Handwäsche beziehungsweise -reinigung. Ebenso gehören dazu beispielsweise Waschmittel für Textilien, Teppiche, oder Naturfasern, für die nach der vorliegenden Erfindung die Bezeichnung Waschmittel verwendet wird. Weiterhin gehören dazu beispielsweise auch Geschirrspülmittel für Geschirrspülmaschinen oder manuelle Geschirrspülmittel oder Reiniger für harte Oberflächen wie Metall, Glas, Porzellan, Keramik, Kacheln, Stein, lackierte Oberflächen, Kunststoffe, Holz oder Leder; für solche wird nach der vorliegenden Erfindung die Bezeichnung Reinigungsmittel verwendet.
  • Ausführungsformen der vorliegenden Erfindung umfassen alle etablierten und/oder alle zweckmäßigen Darreichungsformen. Dazu zählen beispielsweise feste, pulverförmige, flüssige, gelförmige oder pastöse Mittel, die gegebenenfalls auch aus mehreren Phasen bestehen können sowie in komprimierter oder nicht komprimierter Form vorliegen können. Einen weiteren Erfindungsgegenstand stellen daher Mittel dar, die dadurch gekennzeichnet sind, dass es als Einkomponentensystem vorliegt. Einen weiteren Erfindungsgegenstand bilden Mittel, die dadurch gekennzeichnet, dass es in mehrere Komponenten aufgeteilt ist. Zu den erfindungsgemäßen Darreichungsformen zählen ferner Extrudate, Granulate, Tabletten oder Pouches, die sowohl in Großgebinden als auch portionsweise abgepackt vorliegen können.
  • In einer bevorzugten Ausführungsform der Erfindung ist das Mittel dadurch gekennzeichnet, dass es als rieselfähiges Pulver mit einem Schüttgewicht von 300 g/l bis 1200 g/l, insbesondere 500 g/l bis 900 g/l, vorliegt.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung ist das Mittel dadurch gekennzeichnet, dass es in pastöser oder flüssiger Form vorliegt, insbesondere in Form eines nicht-wäßrigen Flüssigwaschmittels oder einer nicht-wäßrigen Paste oder in Form eines wäßrigen Flüssigwaschmittels oder einer wasserhaltigen Paste.
  • Das erfindungsgemäße Mittel, insbesondere Wasch- oder Bleichmittel, kann in einem luftundurchlässigen Behältnis verpackt sein, aus dem es kurz vor Gebrauch oder während des Waschvorgangs freigesetzt wird, insbesondere kann die Oxidase und/oder das Substrat für dieses Enzym mit einer bei Raumtemperatur oder bei Abwesenheit von Wasser für das Enzym und/oder dessen Substrat undurchlässigen Substanz umhüllt sein, welche unter Anwendungsbedingungen des Mittels durchlässig für das Enzym und/oder dessen Substrat wird. Das Mittel ist somit dadurch gekennzeichnet, dass die Oxidase und/oder deren Substrat mit einer bei Raumtemperatur oder bei Abwesenheit von Wasser für die Oxidase und/oder deren Substrat undurchlässigen Substanz umhüllt ist.
  • Die erfindungsgemäßen Oxidasen werden in erfindungsgemäßen Mitteln beispielsweise mit einzelnen oder mehreren der folgenden Inhaltsstoffe kombiniert: nichtionische, anionische und/oder kationische Tenside, (gegebenenfalls weitere) Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, Builder und/oder Cobuilder, Lösungsmittel, Verdicker, Sequestrierungsmittel, Elektrolyte, optische Aufheller, Vergrauungsinhibitoren, Korrosionsinhibitoren, insbesondere Silberschutzmittel, Soil-Release-Wirkstoffe, Farbtransfer(oder -Übertragungs)-Inhibitoren, Schauminhibitoren, Abrasivstoffe, Farbstoffe, Duftstoffe, antimikrobielle Wirkstoffe, UV-Schutzmittel, Enzyme wie beispielsweise Proteasen, Amylasen, Lipasen, Cellulasen, Hemicellulasen oder Oxidasen, Stabilisatoren, insbesondere Enzymstabilisatoren, und andere Komponenten, die aus dem Stand der Technik bekannt sind.
  • Die zu wählenden Inhaltsstoffe wie auch die Bedingungen, unter denen das Mittel eingesetzt wird, wie beispielsweise Temperatur, pH-Wert, Ionenstärke, Redox-Verhältnisse oder mechanische Einflüsse, sollten für das jeweilige Reinigungsproblem optimiert sein. So liegen übliche Temperaturen für Wasch- und Reinigungsmittel in Bereichen von 10°C bei manuellen Mitteln über 40°C und 60°C bis hin zu 95° bei maschinellen Mitteln oder bei technischen Anwendungen. Da bei modernen Wasch- und Spülmaschinen die Temperatur meist stufenlos einstellbar ist, sind auch alle Zwischenstufen der Temperatur eingeschlossen. Vorzugsweise werden die Inhaltsstoffe der betreffenden Mittel aufeinander abgestimmt. Bevorzugt sind Synergien hinsichtlich der Reinigungsleistung.
  • Das erfindungsgemäße Mittel, insbesondere Wasch- oder Bleichmittel, enthält vorzugsweise zusätzlich zum Bleichsystem
    • • 5 Gew.-% bis 70 Gew.-%, insbesondere 5 Gew.-% bis 30 Gew.-% Tenside,
    • • 10 Gew.-% bis 65 Gew.-%, insbesondere 12 Gew.-% bis 60 Gew.-% wasserlösliches oder wasserdispergierbares anorganisches Buildermaterial,
    • • 0,5 Gew.-% bis 10 Gew.-%, insbesondere 1 Gew.-% bis 8 Gew.-%, wasserlösliche organische Buildersubstanzen,
    • • 0,01 bis 15 Gew.-% feste anorganische und/oder organische Säuren beziehungsweise saure Salze,
    • • 0,01 bis 5 Gew.-% Komplexbildner für Schwermetalle,
    • • 0,01 bis 5 Gew.-% Vergrauungsinhibitor,
    • • 0,01 bis 5 Gew.-% Farbübertragungsinhibitor und
    • • 0,01 bis 5 Gew.-% Schauminhibitor
  • Optional kann das Mittel ferner optische Aufheller umfassen sowie ein oder mehrere weitere Enzyme umfassen. Die optischen Aufheller werden bevorzugt von 0,01 bis 5 Gew.-% eingesetzt, die weiteren Enzyme werden bevorzugt von 0,01 bis 5 Gew.-% eingesetzt.
  • Das erfindungsgemäße Mittel, insbesondere Wasch- oder Bleichmittel, weist vorzugsweise eine Oxidase-Aktivität von 0,01 Einheiten/g bis 20 000 Einheiten/g auf. Bevorzugt ist eine Oxidase-Aktivität von mindestens 5000 Einheiten pro 75 g Wasch- oder Bleichmittel.
  • Die zuvor beschriebenen erfindungsgemäßen Mittel bzw. die nach dem zuvor beschriebenen erfindungsgemäßen Verfahren hergestellten Mittel enthalten wasch- oder reinigungsaktive Substanzen, aus der Gruppe der Gerüststoffe, Tenside, Polymere, Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, Enzyme, Glaskorrosionsinhibitoren, Korrosionsinhibitoren, Desintegrationshilfsmittel, Duftstoffe und Parfümträger. Diese bevorzugten Inhaltsstoffe werden in der Folge näher beschrieben.
  • Gerüststoffe
  • Zu den Gerüststoffe zählen insbesondere die Zeolithe, Silikate, Carbonate, organische Cobuilder und – wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen – auch die Phosphate.
  • Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das durch die Formel n Na2O·(1 – n)K2O·Al2O3·(2 – 2,5)SiO2·(3,5 – 5,5)H2O beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art „Abpuderung" einer granularen Mischung, vorzugsweise einer zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
  • Mit Vorzug werden kristalline schichtförmige Silikate der allgemeinen Formel NaMSi3O2x+1·y H2O eingesetzt, worin M Natrium oder Wasserstoff darstellt, x eine Zahl von 1,9 bis 22, vorzugsweise von 1,9 bis 4, wobei besonders bevorzugte Werte für x 2, 3 oder 4 sind, und y für eine Zahl von 0 bis 33, vorzugsweise von 0 bis 20 steht. Die kristallinen schichtförmigen Silikate der Formel NaMSixO2x+1·y H2O werden beispielsweise von der Firma Clariant GmbH (Deutschland) unter dem Handelsnamen Na-SKS vertrieben. Beispiele für diese Silikate sind Na-SKS-1 (Na2Si22O45·x H2O, Kenyait), Na-SKS-2 (Na2Si14O29·x H2O, Magadiit), Na-SKS-3 (Na2Si8O17·x H2O) oder Na-SKS-4 (Na2Si4O9·x H2O, Makatit).
  • Für die Zwecke der vorliegenden Erfindung besonders geeignet sind kristalline Schichtsilikate der Formel NaMSixO2x+1·y H2O, in denen x für 2 steht. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5·y H2O sowie weiterhin vor allem Na-SKS-5 (α-Na2Si2O5), Na-SKS-7 (β-Na2Si2O5, Natrosilit), Na-SKS-9 (NaHSi2O5·H2O), Na-SKS-10 (NaHSi2O5·3 H2O, Kanemit), Na-SKS-11 (t-Na2Si2O5) und Na-SKS-13 (NaHSi2O5), insbesondere aber Na-SKS-6 (δ-Na2Si2O5) bevorzugt.
  • Wasch- oder Reinigungsmittel enthalten vorzugsweise einen Gewichtsanteil des kristallinen schichtförmigen Silikats der Formel NaMSixO2x+1·y H2O von 0,1 bis 20 Gew.-%, bevorzugt von 0,2 bis 15 Gew.-% und insbesondere von 0,4 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht dieser Mittel.
  • Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O:SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche vorzugsweise löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" verstanden, dass die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen, hervorrufen.
  • Alternativ oder in Kombination mit den vorgenannten amorphen Natriumsilikaten werden röntgenamorphe Silikate eingesetzt, deren Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, dass die Produkte mikrokristalline Bereiche der Größe zehn bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige röntgenamorphe Silikate, weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
  • Im Rahmen der vorliegenden Erfindung ist es bevorzugt, dass diese(s) Silikat(e), vorzugsweise Alkalisilikate, besonders bevorzugt kristalline oder amorphe Alkalidisilikate, in Wasch- oder Reinigungsmitteln in Mengen von 3 bis 60 Gew.-%, vorzugsweise von 8 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels, enthalten sind.
  • Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
  • Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall-(insbesondere Natrium- und Kalium-)Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
  • Technisch besonders wichtige Phosphate sind das Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat) sowie das entsprechende Kaliumsalz Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat). Erfindungsgemäß bevorzugt eingesetzt werden weiterhin die Natriumkaliumtripolyphosphate.
  • Werden im Rahmen der vorliegenden Anmeldung Phosphate als wasch- oder reinigungsaktive Substanzen in Wasch- oder Reinigungsmitteln eingesetzt, so enthalten bevorzugte Mittel diese(s) Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 5 bis 80 Gew.-%, vorzugsweise von 15 bis 75 Gew.-% uns insbesondere von 20 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels.
  • Weitere Gerüststoffe sind die Alkaliträger. Als Alkaliträger gelten beispielsweise Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetallsesquicarbonate, die genannten Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Aufgrund ihrer im Vergleich mit anderen Buildersubstanzen geringen chemischen Kompatibilität mit den übrigen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, werden die Alkalimetallhydroxide bevorzugt nur in geringen Mengen, vorzugsweise in Mengen unterhalb 10 Gew.-%, bevorzugt unterhalb 6 Gew.-%, besonders bevorzugt unterhalb 4 Gew.-% und insbesondere unterhalb 2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels, eingesetzt. Besonders bevorzugt werden Mittel, welche bezogen auf ihr Gesamtgewicht weniger als 0,5 Gew.-% und insbesondere keine Alkalimetallhydroxide enthalten.
  • Besonders bevorzugt ist der Einsatz von Carbonat(en) und/oder Hydrogencarbonat(en), vorzugsweise Alkalicarbonat(en), besonders bevorzugt Natriumcarbonat, in Mengen von 2 bis 50 Gew.-%, vorzugsweise von 5 bis 40 Gew.-% und insbesondere von 7,5 bis 30 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels. Besonders bevorzugt werden Mittel, welche bezogen auf das Gewicht des Wasch- oder Reinigungsmittels weniger als 20 Gew.-%, vorzugsweise weniger als 17 Gew.-%, bevorzugt weniger als 13 Gew.-% und insbesondere weniger als 9 Gew.-% Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Alkalicarbonat(e), besonders bevorzugt Natriumcarbonat enthalten.
  • Als organische Cobuilder sind insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate zu nennen. Diese Stoffklassen werden nachfolgend beschrieben.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form der freien Säure und/oder ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Apfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Die freien Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
  • Als Gerüststoffe sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
  • Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
  • Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt von Wasch- oder Reinigungsmitteln an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
  • Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
  • Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
  • Weitere bevorzugte Copolymere sind solche, die als Monomere Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
  • Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze.
  • Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
  • Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren.
  • Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
  • Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
  • Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Gerüststoffe eingesetzt werden.
  • Zur Gruppe der Tenside werden die nichtionischen, die anionischen, die kationischen und die amphoteren Tenside gezählt.
  • Als nichtionische Tenside können alle dem Fachmann bekannten nichtionischen Tenside eingesetzt werden. Als nichtionische Tenside eignen sich beispielsweise Alkylglykoside der allgemeinen Formel RO(G)x, in der R einem primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen entspricht und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel,
    Figure 00270001
    in der R für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
  • Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel
    Figure 00280001
    in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.
  • [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Als bevorzugte Tenside werden schwachschäumende nichtionische Tenside eingesetzt. Mit besonderem Vorzug enthalten Wasch- oder Reinigungsmittel, insbesondere Reinigungsmittel für das maschinelle Geschirrspülen, nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 Mol EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt einer ganzen oder einer gebrochenen Zahl entsprechen können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Mit besonderem Vorzug werden daher ethoxylierte Niotenside, die aus C6-20-Monohydroxyalkanolen oder C6-20-Alkylphenolen oder C16-20-Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurden, eingesetzt. Ein besonders bevorzugtes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-20-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten „narrow range ethoxylates" besonders bevorzugt.
  • Mit besonderem Vorzug werden weiterhin Kombinationen aus einem oder mehreren Talgfettalkoholen mit 20 bis 30 EO und Silikonentschäumern eingesetzt.
  • Insbesondere bevorzugt sind nichtionische Tenside, die einen Schmelzpunkt oberhalb Raumtemperatur aufweisen. Nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, ist/sind besonders bevorzugt.
  • Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden Niotenside eingesetzt, die bei Raumtemperatur hochviskos sind, so ist bevorzugt, dass diese eine Viskosität oberhalb von 20 Pa·s, vorzugsweise oberhalb von 35 Pa·s und insbesondere oberhalb 40 Pa·s aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind, je nach ihrem Anwendungszweck bevorzugt.
  • Niotenside aus der Gruppe der alkoxylierten Alkohole, besonders bevorzugt aus der Gruppe der gemischt alkoxylierten Alkohole und insbesondere aus der Gruppe der EO-AO-EO-Niotenside, werden ebenfalls mit besonderem Vorzug eingesetzt.
  • Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolanteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus. Bevorzugte Mittel sind dadurch gekennzeichnet, dass sie ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen.
  • Bevorzugt einzusetzende Tenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen ((PO/EO/PO)-Tenside). Solche (PO/EO/PO)-Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.
  • Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen-Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan, enthält.
  • Als besonders bevorzugte Niotenside haben sich im Rahmen der vorliegenden Erfindung schwachschäumende Niotenside erwiesen, welche alternierende Ethylenoxid- und Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den jeweils anderen Gruppen folgt. Hier sind nichionische Tenside der allgemeinen Formel
    Figure 00300001
    bevorzugt, in der R1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6-24-Alkyl- oder -Alkenylrest steht; jede Gruppe R2 bzw. R3 unabhängig voneinander ausgewählt ist aus -CH3, -CH2CH3, -CH2CH2-CH3, CH(CH3)2 und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.
  • Die bevorzugten Niotenside der vorstehenden Formel lassen sich durch bekannte Methoden aus den entsprechenden Alkoholen R1-OH und Ethylen- bzw. Alkylenoxid herstellen. Der Rest R1 in der vorstehenden Formel kann je nach Herkunft des Alkohols variieren. Werden native Quellen genutzt, weist der Rest R1 eine gerade Anzahl von Kohlenstoffatomen auf und ist in der Regel unverzweigt, wobei die linearen Reste aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, bevorzugt sind. Aus synthetischen Quellen zugängliche Alkohole sind beispielsweise die Guerbetalkohole oder in 2-Stellung methylverzweigte bzw. lineare und methylverzweigte Reste im Gemisch, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Unabhängig von der Art des zur Herstellung der in den Mitteln enthaltenen Niotenside eingesetzten Alkohols sind Niotenside bevorzugt, bei denen R1 in der vorstehenden Formel für einen Alkylrest mit 6 bis 24, vorzugsweise 8 bis 20, besonders bevorzugt 9 bis 15 und insbesondere 9 bis 11 Kohlenstoffatomen steht.
  • Als Alkylenoxideinheit, die alternierend zur Ethylenoxideinheit in den bevorzugten Niotensiden enthalten ist, kommt neben Propylenoxid insbesondere Butylenoxid in Betracht. Aber auch weitere Alkylenoxide, bei denen R2 bzw. R3 unabhängig voneinander ausgewählt sind aus -CH2CH2-CH3 bzw. CH(CH3)2 sind geeignet. Bevorzugt werden Niotenside der vorstehenden Formel eingesetzt, bei denen R2 bzw. R3 für einen Rest -CH3, w und x unabhängig voneinander für Werte von 3 oder 4 und y und z unabhängig voneinander für Werte von 1 oder 2 stehen.
  • Zusammenfassend sind insbesondere nichtionische Tenside bevorzugt, die einen C9-15-Alkylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt von 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten aufweisen. Diese Tenside weisen in wässriger Lösung die erforderliche niedrige Viskosität auf und sind erfindungsgemäß mit besonderem Vorzug einsetzbar.
  • Tenside der allgemeinen Formel R1-CH(OH)CH2O-(AO)w-(A'O)x-(A''O)y-(A'''O)z-R2, in der R1 und R2 unabhängig voneinander für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C2-40-Alkyl- oder -Alkenylrest steht; A, A', A'' und A''' unabhängig voneinander für einen Rest aus der Gruppe -CH2CH2, -CH2CH2-CH2, -CH2-CH(CH3), -CH2-CH2-CH2-CH2, -CH2-CH(CH3)-CH2-, -CH2-CH(CH2-CH3) steht; und w, x, y und z für Werte zwischen 0,5 und 90 stehen, wobei x, y und/oder z auch 0 sein können sind erfindungsgemäß bevorzugt.
  • Bevorzugt werden insbesondere solche endgruppenverschlossene poly(oxyalkylierten) Niotenside, die gemäß der Formel R1O[CH2CH2O]xCH2CH(OH)R2 neben einem Rest R1, welcher für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 2 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, weiterhin einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest R2 mit 1 bis 30 Kohlenstoffatomen aufweisen, wobei x für Werte zwischen 1 und 90, vorzugsweise für Werte zwischen 40 und 80 und insbesondere für Werte zwischen 40 und 60 steht.
  • Besonders bevorzugt sind Tenside der Formel R1O[CH2CH(CH3)O]x[CH2CH2O]yCH2CH(OH)R2, in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 sowie y für einen Wert von mindestens 15 steht.
  • Besonders bevorzugt werden weiterhin solche endgruppenverschlossene poly(oxyalkylierten) Niotenside der Formel R1O[CH2CH2O]x[CH2CH(R3)O]yCH2CH(OH)R2, in der R1 und R2 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht, R3 unabhängig voneinander ausgewählt ist aus -CH3, -CH2CH3, -CH2CH2-CH3, CH(CH3)2, vorzugsweise jedoch für -CH3 steht, und x und y unabhängig voneinander für Werte zwischen 1 und 32 stehen, wobei Niotenside mit R3 = -CH3 und Werten für x von 15 bis 32 und y von 0,5 und 1,5 ganz besonders bevorzugt sind.
  • Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen poly(oxyalkylierten) Niotenside der Formel R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2, in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der obenstehenden Formel R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2 unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
  • Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid-(R3 = H) oder Propylenoxid-(R3 = CH3)Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.
  • Besonders bevorzugte endgruppenverschlossene poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so dass sich die vorstehende Formel zu R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2 vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
  • Die angegebenen C-Kettenlängen sowie Ethoxylierungsgrade bzw. Alkoxylierungsgrade der vorgenannten Niotenside stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Aufgrund der Herstellverfahren bestehen Handelsprodukte der genannten Formeln zumeist nicht aus einem individuellen Vertreter, sondern aus Gemischen, wodurch sich sowohl für die C-Kettenlängen als auch für die Ethoxylierungsgrade bzw. Alkoxylierungsgrade Mittelwerte und daraus folgend gebrochene Zahlen ergeben können.
  • Selbstverständlich können die vorgenannten nichtionischen Tenside nicht nur als Einzelsubstanzen, sondern auch als Tensidgemische aus zwei, drei, vier oder mehr Tensiden eingesetzt werden. Als Tensidgemische werden dabei nicht Mischungen nichtionischer Tenside bezeichnet, die in ihrer Gesamtheit unter eine der oben genannten allgemeinen Formeln fallen, sondern vielmehr solche Mischungen, die zwei, drei, vier oder mehr nichtionische Tenside enthalten, die durch unterschiedliche der vorgenannten allgemeinen Formeln beschrieben werden können.
  • Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsulfonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
  • Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
  • Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
  • Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
  • Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen, darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtioni sche Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
  • Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
  • Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
  • An Stelle der genannten Tenside oder in Verbindung mit ihnen können auch kationische und/oder amphotere Tenside eingesetzt werden.
  • Als kationische Aktivsubstanzen können beispielsweise kationische Verbindungen der nachfolgenden Formeln eingesetzt werden:
    Figure 00350001
    worin jede Gruppe R1 unabhängig voneinander ausgewählt ist aus C1-6-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R2 unabhängig voneinander ausgewählt ist aus C8-28-Alkyl- oder -Alkenylgruppen; R3 = R1 oder (CH2)n-T-R2; R4 = R1 oder R2 oder (CH2)n-T-R2; T = -CH2-, -O-CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist.
  • In maschinellen Geschirrspülmitteln, beträgt der Gehalt an kationischen und/oder amphoteren Tensiden vorzugsweise weniger als 6 Gew.-%, bevorzugt weniger als 4 Gew.-%, ganz besonders bevorzugt weniger als 2 Gew.-% und insbesondere weniger als 1 Gew.-%. Maschinelle Geschirrspülmittel, welche keine kationischen oder amphoteren Tenside enthalten, werden besonders bevorzugt.
  • Polymere
  • Zur Gruppe der Polymere zählen insbesondere die wasch- oder reinigungsaktiven Poylmere, beispielsweise die Klarspülpolymere und/oder als Enthärter wirksame Polymere. Generell sind in Wasch- oder Reinigungsmitteln neben nichtionischen Polymeren auch kationische, anionische und amphotere Polymere einsetzbar.
  • „Kationische Polymere" im Sinne der vorliegenden Erfindung sind Polymere, welche eine positive Ladung im Polymermolekül tragen. Diese kann beispielsweise durch in der Polymerkette vorliegende (Alkyl-)Ammoniumgruppierungen oder andere positiv geladene Gruppen realisiert werden. Besonders bevorzugte kationische Polymere stammen aus den Gruppen der quaternierten Cellulose-Derivate, der Polysiloxane mit quaternären Gruppen, der kationischen Guar-Derivate, der polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure, der Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats, der Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere, der quaternierter Polyvinylalkohole oder der unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegeben Polymere.
  • „Amphotere Poylmere" im Sinne der vorliegenden Erfindung weisen neben einer positiv geladenen Gruppe in der Polymerkette weiterhin auch negativ geladenen Gruppen bzw. Monomereinheiten auf. Bei diesen Gruppen kann es sich beispielsweise um Carbonsäuren, Sulfonsäuren oder Phosphonsäuren handeln.
  • Bevorzugte Wasch- oder Reinigungsmittel, insbesondere bevorzugte maschinelle Geschirrspülmittel, sind dadurch gekennzeichnet, dass sie ein Polymer a) enthalten, welches Monomereinheiten der Formel R1R2C=CR3R4 aufweist, in der jeder Rest R1, R2, R3, R4 unabhängig voneinander ausgewählt ist aus Wasserstoff, derivatisierter Hydroxygruppe, C1-30 linearen oder verzweigten Alkylgruppen, Aryl, Aryl substitutierten C1-30 linearen oder verzweigten Alkylgruppen, polyalkoyxylierte Alkylgruppen, heteroatomaren organischen Gruppen mit mindestens einer positiven Ladung ohne geladenen Stickstoff, mindestens ein quaterniertes N-Atom oder mindestens eine Aminogruppe mit einer positiven Ladung im Teilbereich des pH-Bereichs von 2 bis 11, oder Salze hiervon, mit der Maßgabe, dass mindestens ein Rest R1, R2, R3, R4 eine heteroatomare organische Gruppe mit mindestens einer positiven Ladung ohne geladenen Stickstoff, mindestens ein quaterniertes N-Atom oder mindestens eine Aminogruppe mit einer positiven Ladung ist.
  • Im Rahmen der vorliegenden Anmeldung besonders bevorzugte kationische oder amphotere Polymere enthalten als Monomereinheit eine Verbindung der allgemeinen Formel
    Figure 00370001
    bei der R1 und R4 unabhängig voneinander für H oder einen linearen oder verzweigten Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatomen steht; R2 und R3 unabhängig voneinander für eine Alkyl-, Hydroxyalkyl-, oder Aminoalkylgruppe stehen, in denen der Alkylrest linear oder verzweigt ist und zwischen 1 und 6 Kohlenstoffatomen aufweist, wobei es sich vorzugsweise um eine Methylgruppe handelt; x und y unabhängig voneinander für ganze Zahlen zwischen 1 und 3 stehen. X repräsentiert ein Gegenion, vorzugsweise ein Gegenion aus der Gruppe Chlorid, Bromid, Iodid, Sulfat, Hydrogensulfat, Methosulfat, Laurylsulfat, Dodecylbenzolsulfonat, p-Toluolsulfonat (Tosylat), Cumolsulfonat, Xylolsulfonat, Phosphat, Citrat, Formiat, Acetat oder deren Mischungen.
  • Bevorzugte Reste R1 und R4 in der vorstehenden Formel sind ausgewählt aus -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, und -(CH2CH2-O)nH.
  • Ganz besonders bevorzugt werden Polymere, welche eine kationische Monomereinheit der vorstehenden allgemeinen Formel aufweisen, bei der R1 und R4 für H stehen, R2 und R3 für Methyl stehen und x und y jeweils 1 sind. Die entsprechenden Monomereinheit der Formel
    Figure 00370002
    werden im Falle von X = Chlorid auch als DADMAC (Diallyldimethylammonium-Chlorid) bezeichnet.
  • Weitere besonders bevorzugte kationische oder amphotere Polymere enthalten eine Monomereinheit der allgemeinen Formel
    Figure 00380001
    in der R1, R2, R3, R4 und R5 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ungesättigen Alkyl-, oder Hydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen, vorzugsweise für einen linearen oder verzweigten Alkylrest ausgewählt aus -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, und -(CH2CH2-O)nH steht und x für eine ganze Zahl zwischen 1 und 6 steht.
  • Ganz besonders bevorzugt werden im Rahmen der vorliegenden Anmeldung Polymere, welche eine kationsche Monomereinheit der vorstehenden allgemeinen Formel aufweisen, bei der R1 für H und R2, R3, R4 und R5 für Methyl stehen und x für 3 steht. Die entsprechenden Monomereinheiten der Formel
    Figure 00380002
    werden im Falle von X = Chlorid auch als MAPTAC (Methyacrylamidopropyl-trimethylammonium-Chlorid) bezeichnet.
  • Erfindungsgemäß bevorzugt werden Polymere eingesetzt, die als Monomereinheiten Diallyldimethylammoniumsalze und/oder Acrylamidopropyltrimethylammoniumsalze enthalten.
  • Die zuvor erwähnten amphoteren Polymere weisen nicht nur kationische Gruppen, sondern auch anionische Gruppen bzw. Monomereinheiten auf. Derartige anionische Monomereinheiten stammen beispielsweise aus der Gruppe der linearen oder verzweigten, gesättigten oder ungesättigten Carboxylate, der linearen oder verzweigten, gesättigten oder ungesättigten Phosphonate, der linearen oder verzweigten, gesättigten oder ungesättigten Sulfate oder der linearen oder verzweigten, gesättigten oder ungesättigten Sulfonate. Bevorzugte Monomereinheiten sind die Acrylsäure, die (Meth)acrylsäure, die (Dimethyl)acrylsäure, die (Ethyl)acrylsäure, die Cyanoacrylsäure, die Vinylessingsäure, die Allylessigsäure, die Crotonsäure, die Maleinsäure, die Fumarsäure, die Zimtsäure und ihre Derivate, die Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure oder die Allylphosphonsäuren.
  • Bevorzugte einsetzbare amphotere Polymere stammen aus der Gruppe der Alkylacrylamid/Acrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure-Copolymere, der Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)-acrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere, der Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat-Copolymere sowie der Copolymere aus ungesättigten Carbonsäuren, kationisch derivatisierten ungesättigten Carbonsäuren und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
  • Bevorzugt einsetzbare zwitterionische Polymere stammen aus der Gruppe der Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze, der Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze und der Methacroylethylbetain/Methacrylat-Copolymere.
  • Bevorzugt werden weiterhin amphotere Polymere, welche neben einem oder mehreren anionischen Monomeren als kationische Monomere Methacrylamidoalkyl-trialkylammoniumchlorid und Dimethyl(diallyl)ammoniumchlorid umfassen.
  • Besonders bevorzugte amphotere Polymere stammen aus der Gruppe der Methacrylamidoalkyltrialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Acrylsäure-Copolymere, der Methacrylamidoalkyltrialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Methacrylsäure-Copolymere und der Methacrylamidoalkyltrialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Alkyl(meth)acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze. Insbesondere bevorzugt werden amphotere Polymere aus der Gruppe der Methacrylamidopropyltrimethylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Acrylsäure-Copolymere, der Methacrylamidopropyltrimethylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Acrylsäure-Copolymere und der Methacrylamidopropyltrimethylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Alkyl(meth)acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze.
  • In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung liegen die Polymere in vorkonfektionierter Form vor. Zur Konfektionierung der Polymere eignet sich dabei u. a.
    • – die Verkapselung der Polymere mittels wasserlöslicher oder wasserdispergierbarer Beschichtungsmittel, vorzugsweise mittels wasserlöslicher oder wasserdispergierbarer natürlicher oder synthetischer Polymere;
    • – die Verkapselung der Polymere mittels wasserunlöslicher, schmelzbarer Beschichtungsmittel, vorzugsweise mittels wasserunlöslicher Beschichtungsmittel aus der Gruppe der Wachse oder Paraffine mit einem Schmelzpunkt oberhalb 30°C;
    • – die Cogranulation der Polymere mit inerten Trägermaterialien, vorzugsweise mit Trägermaterialien aus der Gruppe der wasch- oder reinigungsaktiven Substanzen, besonders bevorzugt aus der Gruppe der Builder (Gerüststoffe) oder Cobuilder.
  • Wasch- oder Reinigungsmittel enthalten die vorgenannten kationischen und/oder amphoteren Polymere vorzugsweise in Mengen zwischen 0,01 und 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels. Bevorzugt werden im Rahmen der vorliegenden Anmeldung jedoch solche Wasch- oder Reinigungsmittel, bei denen der Gewichtsanteil der kationischen und/oder amphoteren Polymere zwischen 0,01 und 8 Gew.-%, vorzugsweise zwischen 0,01 und 6 Gew.-%, bevorzugt zwischen 0,01 und 4 Gew.-%, besonders bevorzugt zwischen 0,01 und 2 Gew.-% und insbesondere zwischen 0,01 und 1 Gew.-%, jeweils bezogen auf das Gesamtgewicht des maschinellen Geschirrspülmittels, beträgt.
  • Als Enthärter wirksame Polymere sind beispielsweise die Sulfonsäuregruppen-haltigen Polymere, welche mit besonderem Vorzug eingesetzt werden.
  • Besonders bevorzugt als Sulfonsäuregruppen-haltige Polymere einsetzbar sind Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren und gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.
  • Im Rahmen der vorliegenden Erfindung sind als Monomer ungesättigte Carbonsäuren der Formel R1(R2)C=C(R3)COOH bevorzugt, in der R1 bis R3 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
  • Unter den ungesättigten Carbonsäuren, die sich durch die vorstehende Formel beschreiben lassen, sind insbesondere Acrylsäure (R1 = R2 = R3 = H), Methacrylsäure (R1 = R2 = H; R3 = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt.
  • Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel R5(R6)C=C(R7)-X-SO3H bevorzugt, in der R5 bis R7 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
  • Unter diesen Monomeren bevorzugt sind solche der Formeln H2C=CH-X-SO3H H2C=C(CH3)-X-SO3H HO3S-X-(R6)C=C(R7)-X-SO3H, in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
  • Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1-propansulfonsäure, 2-Acrylamido-2-propansulfonsäure, 2-Acrylamido-2-methyl-1-propansulfonsäure, 2-Methacrylamido-2-methyl-1-propansulfonsäure, 3-Methacrylamido-2-hydroxy-propansulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Allyloxybenzolsulfonsäure, Methallyloxybenzolsulfonsäure, 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2-propen1-sulfonsäure, Styrolsulfonsäure, Vinylsulfonsäure, 3-Sulfopropylacrylat, 3-Sulfopropylmethacrylat, Sulfomethacrylamid, Sulfomethylmethacrylamid sowie wasserlösliche Salze der genannten Säuren.
  • Als weitere ionogene oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der eingesetzten Polymere an diesen weiteren ionogene oder nichtionogenen Monomeren weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Formel R1(R2)C=C(R3)COOH und Monomeren der Formel R5(R6)C=C(R7)-X-SO3H.
  • Weitere besonders bevorzugte Copolymere bestehen aus
    • i) einer oder mehreren ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure
    • ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln: H2C=CH-X-SO3H H2C=C(CH3)-X-SO3H HO3S-X-(R6)C=C(R7)-X-SO3H, in der R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-
    • iii) gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.
  • Die Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
  • So sind beispielsweise Copolymere bevorzugt, die Struktureinheiten der Formel -[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppen-haltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz ebenfalls bevorzugt ist. Die entsprechenden Copolymere enthalten die Struktureinheiten der Formel -[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p-, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppen-haltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind Copolymere, welche Struktureinheiten der Formel -[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, besonders bevorzugt sind, ebenso bevorzugt wie Copolymere, die Struktureinheiten der Formel -[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Copolymeren, die Struktureinheiten der Formel -[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind. Erfindungsgemäß bevorzugt sind weiterhin Copolymere, die Struktureinheiten der Formel -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p- enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht.
  • In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d. h. dass das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Der Einsatz von teil- oder vollneutralisierten sulfonsäuregruppenhaltigen Copolymeren ist erfindungsgemäß bevorzugt.
  • Die Monomerenverteilung der erfindungsgemäß bevorzugt eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.
  • Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
  • Die Molmasse der erfindungsgemäß bevorzugt eingesetzten Sulfo-Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Wasch- oder Reinigungsmittel sind dadurch gekennzeichnet, dass die Copolymere Molmassen von 2000 bis 200.000 gmol–1, vorzugsweise von 4000 bis 25.000 gmol–1 und insbesondere von 5000 bis 15.000 gmol–1 aufweisen.
  • Bleichmittel
  • Die Bleichmittel sind eine mit besonderem Vorzug eingesetzte wasch- oder reinigungsaktive Substanz. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumpercarbonat, das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure.
  • Weiterhin können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z. B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaliminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-Nonenylamidoperadipinsäure und N-Nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue).
  • Als Bleichmittel können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterozyklische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICH) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.
  • Erfindungsgemäß werden Wasch- oder Reinigungsmittel, insbesondere maschinelle Geschirrspülmittel, bevorzugt, die 1 bis 35 Gew.-%, vorzugsweise 2,5 bis 30 Gew.-%, besonders bevorzugt 3,5 bis 20 Gew.-% und insbesondere 5 bis 15 Gew.-% Bleichmittel, vorzugsweise Natriumpercarbonat, enthalten.
  • Der Aktivsauerstoffgehalt der Wasch- oder Reinigungsmittel, insbesondere der maschinellen Geschirrspülmittel, beträgt, jeweils bezogen auf das Gesamtgewicht des Mittels, vorzugsweise zwischen 0,4 und 10 Gew.-%, besonders bevorzugt zwischen 0,5 und 8 Gew.-% und insbesondere zwischen 0,6 und 5 Gew.-%. Besonders bevorzugte Mittel weisen einen Aktivsauerstoffgehalt oberhalb 0,3 Gew.-%, bevorzugt oberhalb 0,7 Gew.-%, besonders bevorzugt oberhalb 0,8 Gew.-% und insbesondere oberhalb 1,0 Gew.-% auf.
  • Bleichaktivatoren
  • Bleichaktivatoren werden in Wasch- oder Reinigungsmitteln beispielsweise eingesetzt, um beim Reinigen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran, n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA) sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.
  • Diese Bleichaktivatoren werden vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht der bleichaktivatorhaltigen Mittel, eingesetzt.
  • Weitere im Rahmen der vorliegenden Anmeldung bevorzugt eingesetzte Bleichaktivatoren sind Verbindungen aus der Gruppe der kationischen Nitrile, insbesondere kationische Nitrile der Formel
    Figure 00460001
    in der R1 für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten C2-24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1, 2, 3, 4, 5 oder 6 und X ein Anion ist.
  • Besonders bevorzugt ist ein kationisches Nitril der Formel
    Figure 00470001
    in der R4, R5 und R6 unabhängig voneinander ausgewählt sind aus -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, wobei R4 zusätzlich auch -H sein kann und X ein Anion ist, wobei vorzugsweise R5 = R6 = -CH3 und insbesondere R4 = R5 = R6 = -CH3 gilt und Verbindungen der Formeln (CH3)3N(+)CH2-CN X, (CH3CH2)3N(+)CH2-CN X, (CH3CH2CH2)3N(+)CH2-CN X, (CH3CH(CH3))3N(+)CH2-CN X, oder (HO-CH2-CH2)3N(+)CH2-CN X besonders bevorzugt sind, wobei aus der Gruppe dieser Substanzen wiederum das kationische Nitril der Formel (CH3)3N(+)CH2-CN X, in welcher X für ein Anion steht, das aus der Gruppe Chlorid, Bromid, Iodid, Hydrogensulfat, Methosulfat, p-Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist, besonders bevorzugt wird.
  • Bleichkatalysatoren
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren eingesetzt werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
  • Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan- und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das Gesamtgewicht der erfinderischen Mittel, eingesetzt. In speziellen Fallen kann jedoch auch mehr Bleichaktivator eingesetzt werden.
  • Mit besonderem Vorzug werden Komplexe des Mangans in der Oxidationsstufe II, III, IV oder IV eingesetzt, die vorzugsweise einen oder mehrere makrocyclische(n) Ligand(en) mit den Donorfunktionen N, NR, PR, O und/oder S enthalten. Vorzugsweise werden Liganden eingesetzt, die Stickstoff-Donorfunktionen aufweisen. Dabei ist es besonders bevorzugt, Bleichkatalysator(en) in den erfindungsgemäßen Mitteln einzusetzen, welche als makromolekularen Liganden 1,4,7-Trimethyl-1,4,7-triazacyclononan (Me-TACN), 1,4,7-Triazacyclononan (TACN), 1,5,9-Trimethyl- 1,5,9-triazacyclododecan (Me-TACD), 2-Methyl-1,4,7-trimethyl-1,4,7-triazacyclononan (Me/Me-TACN) und/oder 2-Methyl-1,4,7-triazacyclononan (Me/TACN) enthalten. Geeignete Mangankomplexe sind beispielsweise [MnIII 2(μ-O)1(μ-OAc)2(TACN)2](ClO4)2, [MnIIIMnIV(μ-O)2(μ-OAc)1(TACN)2](BPh4)2, [MnIV4(μ-O)6(TACN)4](ClO4)4, [MnIII 2(μ-O)1(μ-OAc)2(Me-TACN)2](ClO4)2, [MnIIIMnIV(μ-O)1(μ-OAc)2(Me-TACN)2](ClO4)3, [MnIV 2(μ-O)3(Me-TACN)2](PF6)2 und [MnIV 2(μ-O)3(Me/Me-TACN)2](PF6)2 (OAc = OC(O)CH3).
  • Zur Steigerung der Wasch-, beziehungsweise Reinigungsleistung von Wasch- oder Reinigungsmitteln können die erfindungsgemäßen Wasch- und Reinigungsmittel weitere Enzyme enthalten. Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Wasch- oder Reinigungsmittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 × 10–6 bis 5 Gew.-% bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren oder dem Biuret-Verfahren bestimmt werden.
  • Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg sowie deren weiterentwickelte Formen, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7.
  • Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus B. amyloliquefaciens, aus B. stearothermophilus, aus Aspergillus niger und A. oryzae sowie die für den Einsatz in Wasch- und Reinigungsmitteln verbesserten Weiterentwicklungen der vorgenannten Amylasen. Desweiteren sind für diesen Zweck die α-Amylase aus Bacillus sp. A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus B. agaradherens (DSM 9948) hervorzuheben.
  • Erfindungsgemäß einsetzbar sind weiterhin Lipasen oder Cutinasen, insbesondere wegen ihrer Triglycerid-spaltenden Aktivitäten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Desweiteren sind beispielsweise die Cutinasen einsetzbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Einsetzbar sind weiterhin Lipasen, beziehungsweise Cutinasen, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind.
  • Weiterhin können Enzyme eingesetzt werden, die unter dem Begriff Hemicellulasen zusammengefaßt werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (=Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (=Xylanasen), Pullulanasen und β-Glucanasen.
  • Besonders bevorzugt werden in den erfindungsgemäßen Mitteln Perhydrolasen eingesetzt.
  • Zur Erhöhung der bleichenden Wirkung können erfindungsgemäß weitere Oxidoreduktasen, beispielsweise weitere Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie Halo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) eingesetzt werden. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluss zu gewährleisten (Mediatoren).
  • Die Enzyme können in jeder nach dem Stand der Technik etablierten Form eingesetzt werden. Hierzu gehören beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren versetzt.
  • Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
  • Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so dass ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
  • Ein Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Wasch- oder Reinigungsmittel können zu diesem Zweck Stabilisatoren enthalten; die Bereitstellung derartiger Mittel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar.
  • Glaskorrosionsinhibitoren
  • Glaskorrosionsinhibitoren verhindern das Auftreten von Trübungen, Schlieren und Kratzern aber auch das Irisieren der Glasoberfläche von maschinell gereinigten Gläsern. Bevorzugte Glaskorrosionsinhibitoren stammen aus der Gruppe der Magnesium- und Zinksalze sowie der Magnesium- und Zinkkomplexe.
  • Das Spektrum der erfindungsgemäß bevorzugten Zinksalze, vorzugsweise organischer Säuren, besonders bevorzugt organischer Carbonsäuren, reicht von Salzen, die in Wasser schwer oder nicht löslich sind, also eine Löslichkeit unterhalb 100 mg/l, vorzugsweise unterhalb 10 mg/l, insbesondere unterhalb 0,01 mg/l aufweisen, bis zu solchen Salzen, die in Wasser eine Löslichkeit oberhalb 100 mg/l, vorzugsweise oberhalb 500 mg/l, besonders bevorzugt oberhalb 1 g/l und insbesondere oberhalb 5 g/l aufweisen (alle Löslichkeiten bei 20°C Wassertemperatur). Zu der ersten Gruppe von Zinksalzen gehören beispielsweise das Zinkcitrat, das Zinkoleat und das Zinkstearat, zu der Gruppe der löslichen Zinksalze gehören beispielsweise das Zinkformiat, das Zinkacetat, das Zinklactat und das Zinkgluconat.
  • Mit besonderem Vorzug wird als Glaskorrosionsinhibitor mindestens ein Zinksalz einer organischen Carbonsäure, besonders bevorzugt ein Zinksalz aus der Gruppe Zinkstearat, Zinkoleat, Zinkgluconat, Zinkacetat, Zinklactat und Zinkcitrat eingesetzt. Auch Zinkricinoleat, Zinkabietat und Zinkoxalat sind bevorzugt.
  • Im Rahmen der vorliegenden Erfindung beträgt der Gehalt an Zinksalz in Wasch- oder Reinigungsmittelsn vorzugsweise zwischen 0,1 bis 5 Gew.-%, bevorzugt zwischen 0,2 bis 4 Gew.-% und insbesondere zwischen 0,4 bis 3 Gew.-%, bzw. der Gehalt an Zink in oxidierter Form (berechnet als Zn2+) zwischen 0,01 bis 1 Gew.-%, vorzugsweise zwischen 0,02 bis 0,5 Gew.-% und insbesondere zwischen 0,04 bis 0,2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des glaskorrosionsinhibitorhaltigen Mittels.
  • Korrosionsinhibitoren dienen dem Schutze des Spülgutes oder der Maschine, wobei im Bereich des maschinellen Geschirrspulens besonders Silberschutzmittel eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Erfindungsgemäß bevorzugt werden 3-Amino-5-alkyl-1,2,4-triazole bzw. ihre physiologisch verträglichen Salze eingesetzt, wobei diese Substanzen mit besonderem Vorzug in einer Konzentration von 0,001 bis 10 Gew.-%, vorzugsweise 0,0025 bis 2 Gew.-%, besonders bevorzugt 0,01 bis 0,04 Gew.-% eingesetzt werden. Bevorzugte Säuren für die Salzbildung sind Salzsäure, Schwefelsäure, Phosphorsäure, Kohlensäure, schweflige Säure, organische Carbonsäuren wie Essig-, Glykol-, Citronen-, Bernsteinsäure. Ganz besonders wirksam sind 5-Pentyl-, 5-Heptyl-, 5-Nonyl-, 5-Undecyl-, 5-Isononyl-, 5-Versatic-10-säurealkyl-3-amino-1,2,4-triazole sowie Mischungen dieser Substanzen.
  • Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und Stickstoff-haltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen eingesetzt. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan- und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
  • Anstelle von oder zusätzlich zu den vorstehend beschriebenen Silberschutzmitteln, beispielsweise den Benzotriazolen, können redoxaktive Substanzen eingesetzt werden. Diese Substanzen sind vorzugsweise anorganische redoxaktive Substanzen aus der Gruppe der Mangan-, Titian-, Zirkonium-, Hafnium-, Vanadium-, Cobalt- und Cer-Salze und/oder -Komplexe, wobei die Metalle vorzugsweise in einer der Oxidationsstufen II, III, IV, V oder VI vorliegen.
  • Die verwendeten Metallsalze bzw. Metallkomplexe sollen zumindest teilweise in Wasser löslich sein. Die zur Salzbildung geeigneten Gegenionen umfassen alle üblichen ein-, zwei-, oder dreifach negativ geladenen anorganischen Anionen, z. B. Oxid, Sulfat, Nitrat, Fluorid, aber auch organische Anionen wie z. B. Stearat.
  • Besonders bevorzugte Metallsalze und/oder Metallkomplexe sind ausgewählt aus der Gruppe MnSO4, Mn(II)-citrat, Mn(II)-stearat, Mn(II)-acetylacetonat, Mn(II)-[1-Hydroxyethan-1,1-diphosphonat], V2O5, V2O4, VO2, TiOSO4, K2TiF6, K2ZrF6, CoSO4, Co(NO3)2, Ce(NO3)3, sowie deren Gemische, so dass die Metallsalze und/oder Metallkomplexe ausgewählt aus der Gruppe MnSO4, Mn(II)-citrat, Mn(II)-stearat, Mn(II)-acetylacetonat, Mn(II)-[1-Hydroxyethan-1,1-diphosphonat], V2O5, V2O4, VO2, TiOSO4, K2TiF6, K2ZrF6, CoSO4, Co(NO3)2, Ce(NO3)3 mit besonderem Vorzug eingesetzt werden.
  • Die anorganischen redoxaktiven Substanzen, insbesondere Metallsalze bzw. Metallkomplexe sind vorzugsweise beschichtet, d. h. vollständig mit einem wasserdichten, bei den Reinigungstemperaturen aber leichtlöslichen Material überzogen, um ihre vorzeitige Zersetzung oder Oxidation bei der Lagerung zu verhindern. Bevorzugte Coatingmaterialien, die nach bekannten Verfahren, etwa Schmelzcoatingverfahren nach Sandwik aus der Lebensmittelindustrie, aufgebracht werden, sind Paraffine, Mikrowachse, Wachse natürlichen Ursprungs wie Carnaubawachs, Candellilawachs, Bienenwachs, höherschmelzende Alkohole wie beispielsweise Hexadecanol, Seifen oder Fettsäuren.
  • Die genannten Metallsalze und/oder Metallkomplexe sind in Reinigungsmitteln, vorzugsweise in einer Menge von 0,05 bis 6 Gew.-%, vorzugsweise 0,2 bis 2,5 Gew.-%, jeweils bezogen auf das gesamte Mittel enthalten.
  • Um den Zerfall vorgefertigter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese Mittel einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder anderen Medien und für die Freisetzung der Wirkstoffe sorgen.
  • Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
  • Bevorzugt werden Desintegrationshilfsmittel in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des desintegrationshilfsmittelhaltigen Mittels, eingesetzt.
  • Als bevorzugte Desintegrationsmittel werden Desintegrationsmittel auf Cellulosebasis eingesetzt, so dass bevorzugte Wasch- oder Reinigungsmittel ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
  • Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 μm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 μm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 μm.
  • Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose eingesetzt werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind.
  • Bevorzugte Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, sind in den desintegrationsmittelhaltigen Mitteln in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des desintegrationsmittelhaltigen Mittels, enthalten.
  • Erfindungsgemäß bevorzugt können darüber hinaus weiterhin gasentwickelnde Brausesysteme als Tablettendesintegrationshilfsmittel eingesetzt werden. Das gasentwickelnde Brausesystem kann aus einer einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindungen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauerstoff freisetzt. Üblicherweise besteht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während hier eine Vielzahl von Systemen denk- und ausführbar ist, die beispielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den Wasch- und Reinigungsmittel eingesetzte Sprudelsystem sowohl anhand ökonomischer als auch anhand ökologischer Gesichtspunkte auswählen lassen. Bevorzugte Brausesysteme bestehen aus Alkalimetallcarbonat und/oder -hydrogencarbonat sowie einem Acidifizierungsmittel, das geeignet ist, aus den Alkalimetallsalzen in wäßrige Lösung Kohlendioxid freizusetzen.
  • Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalldihydrogenphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevorzugtes Acidifizierungsmittel ist. Bevorzugt sind Acidifizierungsmittel im Brausesystem aus der Gruppe der organischen Di-, Tri- und Oligocarbonsäuren bzw. Gemische.
  • Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pinie-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl.
  • Um wahrnehmbar zu sein, muss ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Auf Grund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms bzw. Duftstoffs während des Verdampfens, wobei man die Geruchseindrücke in "Kopfnote" (top note), "Herz- bzw. Mittelnote" (middle note bzw. body) sowie "Basisnote" (end note bzw. dry out) unterteilt. Da die Geruchswahrnehmung zu einem großen Teil auch auf der Geruchsintensität beruht, besteht die Kopfnote eines Parfüms bzw. Duftstoffs nicht allein aus leichtflüchtigen Verbindungen, während die Basisnote zum größten Teil aus weniger flüchtigen, d. h. haftfesten Riechstoffen besteht. Bei der Komposition von Parfüms können leichter flüchtige Riechstoffe beispielsweise an bestimmte Fixative gebunden werden, wodurch ihr zu schnelles Verdampfen verhindert wird. Bei der nachfolgenden Einteilung der Riechstoffe in "leichter flüchtige" bzw. "haftfeste" Riechstoffe ist also über den Geruchseindruck und darüber, ob der entsprechende Riechstoff als Kopf- oder Herznote wahrgenommen wird, nichts ausgesagt.
  • Die Duftstoffe können direkt verarbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die durch eine langsamere Duftfreisetzung für langanhaltenden Duft sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
  • Farbstoffe
  • Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den farbstoffhaltigen Mitteln zu behandelnden Substraten wie beispielsweise Textilien, Glas, Keramik oder Kunststoffgeschirr, um diese nicht anzufärben.
  • Bei der Wahl des Färbemittels muss beachtet werden, dass die Färbemittel eine hohe Lagerstabilität und Unempfindlichkeit gegenüber Licht aufweisen. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, dass Färbemittel unterschiedliche Stabilitäten gegenüber Oxidation aufweisen. Im Allgemeinen gilt, dass wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasserlösliche Färbemittel. Abhängig von der Löslichkeit und damit auch von der Oxidationsempfindlichkeit variiert die Konzentration des Färbemittels in den Wasch- oder Reinigungsmitteln. Bei gut wasserlöslichen Färbemitteln werden typischerweise Färbemittel-Konzentrationen im Bereich von einigen 10–2 bis 10–3 Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen Pigmentfarbstoffen liegt die geeignete Konzentration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10–3 bis 10–4 Gew.-%.
  • Es werden Färbemittel bevorzugt, die im Waschprozeß oxidativ zerstört werden können sowie Mischungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönern. Es hat sich als vorteilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z. B. anionische Nitrosofarbstoffe.
  • Zusätzlich zu den bisher ausführlich beschriebenen Komponenten können die Wasch- und Reinigungsmittel weitere Inhaltsstoffe enthalten, welche die anwendungstechnischen und/oder ästhetischen Eigenschaften dieser Mittel weiter verbessern. Bevorzugte Mittel enthalten einen oder mehrere Stoffe aus der Gruppe der Elektrolyte, pH-Stellmittel, Fluoreszenzmittel, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optische Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobiellen Wirkstoffen, Germizide, Fungizide, Antioxidantien, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel sowie UV-Absorber.
  • Als Elektrolyte aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCl oder MgCl2 in den Wasch- oder Reinigungsmitteln bevorzugt.
  • Um den pH-Wert von Wasch- oder Reinigungsmitteln in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 1 Gew.-% der Gesamtformulierung nicht.
  • Als Schauminhibitoren, kommen u. a. Seifen, Öle, Fette, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Als Trägermaterialien eignen sich beispielsweise anorganische Salze wie Carbonate oder Sulfate, Cellulosederivate oder Silikate sowie Mischungen der vorgenannten Materialien. Im Rahmen der vorliegenden Anmeldung bevorzugte Mittel enthalten Paraffine, vorzugsweise unverzweigte Paraffine (n-Paraffine) und/oder Silikone, vorzugsweise linear-polymere Silikone, welche nach dem Schema (R2SiO)x aufgebaut sind und auch als Silikonöle bezeichnet werden. Diese Silikonöle stellen gewöhnlich klare, farblose, neutrale, geruchsfreie, hydrophobe Flüssigkeiten mit einem Molekulargewicht zwischen 1000 und 150.000, und Viskositäten zwischen 10 und 1.000.000 mPa·s dar.
  • Geeignete Antiredepositionsmittel, die auch als soil repellents bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglycolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbesondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.
  • Optische Aufheller (sogenannte „Weißtöner") können den Wasch- oder Reinigungsmitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längenwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyryl-biphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z. B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Als Vergrauungsinhibitoren einsetzbar sind weiterhin Celluloseether wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische.
  • Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasern gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können synthetische Knitterschutzmittel eingesetzt werden. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.
  • Phobier- und Imprägnierverfahren dienen der Ausrüstung von Textilien mit Substanzen, welche die Ablagerung von Schmutz verhindern oder dessen Auswaschbarkeit erleichtern. Bevorzugte Phobier- und Imprägniermittel sind perfluorierte Fettsäuren, auch in Form ihrer Aluminium- u. Zirconiumsalze, organische Silikate, Silikone, Polyacrylsäureester mit perfluorierter Alkohol-Komponente oder mit perfluoriertem Acyl- oder Sulfonyl-Rest gekoppelte, polymerisierbare Verbindungen. Auch Antistatika können enthalten sein. Die schmutzabweisende Ausrüstung mit Phobier- und Imprägniermitteln wird oft als eine Pflegeleicht-Ausrüstung eingestuft. Das Eindringen der Imprägniermittel in Form von Lösungen oder Emulsionen der betreffenden Wirkstoffe kann durch Zugabe von Netzmitteln erleichtert werden, welche die Oberflächenspannung herabsetzen. Ein weiteres Einsatzgebiet von Phobier- und Imprägniermitteln ist die wasserabweisende Ausrüstung von Textilwaren, Zelten, Planen, Leder usw., bei der im Gegensatz zum Wasserdichtmachen die Gewebeporen nicht verschlossen werden, der Stoff also atmungsaktiv bleibt (Hydrophobieren). Die zum Hydrophobieren verwendeten Hydrophobiermittel überziehen Textilien, Leder, Papier, Holz usw. mit einer sehr dünnen Schicht hydrophober Gruppen, wie längere Alkyl-Ketten oder Siloxan-Gruppen. Geeignete Hydrophobiermittel sind z. B. Paraffine, Wachse, Metallseifen usw. mit Zusätzen an Aluminium- oder Zirconium-Salzen, quartäre Ammonium-Verbindungen mit langkettigen Alkyl-Resten, Harnstoff-Derivate, Fettsäure-modifizierte Melaminharze, Chrom-Komplexsalze, Silikone, Zinn-organische Verbindungen und Glutardialdehyd sowie perfluorierte Verbindungen. Die hydrophobierten Materialien fühlen sich nicht fettig an; dennoch perlen – ähnlich wie an gefetteten Stoffen – Wassertropfen an ihnen ab, ohne zu benetzen. So haben z. B. Silikon-imprägnierte Textilien einen weichen Griff und sind Wasser- und schmutzabweisend; Flecke aus Tinte, Wein, Fruchtsäften und dergleichen sind leichter zu entfernen.
  • Zur Bekämpfung von Mikroorganismen können antimikrobielle Wirkstoffe eingesetzt werden. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw.. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei auch gänzlich auf diese Verbindungen verzichtet werden kann.
  • Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Wasch- und Reinigungsmitteln und/oder den behandelten Textilien zu verhindern, können die Mittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.
  • Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Lauryl- (bzw. Stearyl-)dimethylbenzylammoniumchloride eignen sich ebenfalls als Antistatika für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.
  • Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügelns der behandelten Textilien können Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten von Wasch- oder Reinigungsmitteln durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Weitere bevorzugte Silikone sind die Polyalkylenoxid-modifizierten Polysiloxane, also Polysiloxane, welche beispielsweise Polyethylenglykole aufweisen sowie die Polyalkylenoxid-modifizierten Dimethylpolysiloxane.
  • Schließlich können erfindungsgemäß auch UV-Absorber eingesetzt werden, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.
  • Proteinhydrolysate sind auf Grund ihrer faserpflegenden Wirkung weitere im Rahmen der vorliegenden Erfindung bevorzugte Aktivsubstanzen aus dem Gebiet der Wasch- und Reinigungsmittel. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen Ursprungs eingesetzt werden. Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Reis-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische oder einzelne Aminosäuren wie beispielsweise Arginin, Lysin, Histidin oder Pyrroglutaminsäure eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte.
  • Ein weiterer Gegenstand der Erfindung ist ein Mittel zur Erzeugung einer Lichtemission in einem Chemilumineszenz-Test (Signal-Reagenz), umfassend eine erfindungsgemäße Oxidase, ein Oxidase-Substrat und ein Chemilumineszenz-Reagens. Das Oxidase-Substrat unterscheidet sich vorzugsweise von Cholin. Bevorzugterweise ist das Chemilumineszenz-Reagens Luminol.
  • Chemilumineszenz-Tests sind von erheblicher Bedeutung im Bereich der Medizin und der Biowissenschaften. Besonders wichtig sind Immunotests (Immunoassays) und DNA-Sonden-Analysen. Vorteilhafterweise liefern erfindungsgemäße Oxidasen, die Sauerstoff enthaltende freie Radikale (z. B. Superoxid-Anion, Hydroxyl-Radikal) und Peroxide (Hydrogenperoxid) erzeugen, bei der Reaktion mit Chemilumineszenz-Reagentien wie Lucigenin, Luminol und dessen Derivaten langlebige chemilumineszierende nachweisbare Produkte. Diese Oxidase-Systeme sind von besonderem Nutzen als sogenannte Tracer für den Nachweis von Analyten bei Immunoassays, Immunoblotting oder Nucleotid-Sonden-Analysen zur Bereitstellung langlebiger, Licht emittierender Einheiten nach der Reaktion mit einem Chemilumineszenz-Reagens.
  • Eine weitere Ausführungsform der Erfindung umfasst einen Kit, der ein Mittel wie vorstehend beschrieben enthält. Erfindungsgemäße Chemilumineszenz-Tests werden beispielsweise in Vertriebseinheiten, sogenannten Kits, bereitgestellt, die alle für die Durchführung des Tests notwendigen Komponenten sowie beispielsweise weitere Reagenzien für eine Positivkontrolle, usw, sowie eine genaue Anleitung zur Testdurchführung enthalten.
  • Die folgenden Beispiele erläutern die Erfindung, ohne sie jedoch darauf einzuschränken:
  • Beispiel 1:
  • Herstellung erfindungsgemäßer Oxidasen durch Sättigungsmutagenese einer Cholinoxidase als Ausgangsenzym.
  • Die Cholinoxidase aus A. nicotianae liegt im E. coli Expressionsplasmid pET26b(+) des Unternehmens Novagen vor. Das Gen wurde mittels Polymerase-Kettenreaktion (PCR) amplifiziert, nach Protokoll der „Herculase HotStart Polymerase" von Stratagene mit den folgenden Oligonukleotiden als Primern:
    • a) „Forward_NdeI": 5'-TTCCATATGAACATTGAAAAGAAGGACTT-3'
    • b) „Reverse_XhoI": 5'-CCGCTCGAGGGCTTCGCTAACCAGTTCGC-3'
  • Das erhaltene Amplifikationsprodukt wurde über die Restriktionsschnittstellen NdeI und XhoI eingefügt, so dass der C-terminale Histidin-Tag genutzt wird. Die Sättigungsmutagenese der Aminosäure-Position E306 wurde mit Hilfe des „QuikChange Site-Directed Mutagenesis Kit" des Unternehmens Stratagene nach Protokoll durchgeführt. Hierbei wurde gezielt das Glutamat-Codon durch Codons für die 19 weiteren proteinogenen Aminosäuren ersetzt. Nach Kultivierung des Wildtyp-Enzyms und der veränderten Enzyme mittels „Overnight Express Autoinduction System" des Unternehmens Novagen wurden die durch Standardaufschluss mittels Ultraschall erhaltenen Zelllysate über Nickel-NTA-Affinitätschromatographie aufgereinigt und anschließend auf ihre biochemischen Charakteristika hin untersucht. Dazu wurden die Zelllysate mit Ni-NTA Agarose des Unternehmens Qiagen nach dem Prorokoll zur Aufreingung nativer Proteine bis zur apparenten Homogenität auf dem Coomassie-gefärbten SDS-PAGE-Gel aufgereinigt. Anschließend erfolgte unter anderem die Bestimmung der spezifischen Aktivität der Enzyme mit verschiedenen Substraten.
  • Beispiel 2: Bestimmung der Spezifischen Aktivität
  • Berechnung und Definition:
  • Die spezifische Aktivität wird als Quotient aus der Aktivität und dem Proteingehalt erhalten. Die Aktivitätsbestimmung beruht auf dem Nachweis von Wasserstoffperoxid, das während der von der Oxidase katalysierten Reaktion aus dem Substrat und Luftsauerstoff gebildet wird. Hierbei bezeichnet die Angabe eine Einheit (E) (oftmals auch als ein „unit" (U) bezeichnet) diejenige Menge an Enzym, die in einer Minute ein μmol H2O2 produziert. Angegeben wird die katalytische Aktivitätskonzentration in Einheiten E/μl oder mE/μl (entspricht 10–3 E/μl) bzw. als U/μl oder mU/μl als Aktivität pro Probenvolumen. Die Proteinkonzentration wird mit einem kommerziell erhältlichen Test bestimmt und in mg/ml angegeben. Die Standardkurve wird mit Rinderserumalbumin („bovine serum albumin", BSA) erstellt.
  • 1. Lösungen
  • Zur Bestimmung der Oxidase-Aktivität werden folgende Lösungen benötigt:
    Peroxidreagenz: 75 mM K2HPO4, 125 mM NaH2PO4, 12,5 mM Chromotropsäure und 0,6 mM 4-Aminoantipyrin
    200 mM Phosphatpuffer pH = 6,5: 75 mM K2HPO4, 125 mM NaH2PO4
    Peroxidaselösung: 52 U/mL Peroxidase aus Meerrettich in Phosphatpuffer
    Davis-Puffer: 25 mM Citronensäure × 1 H2O, 25 mM NaB4O7 × 1 H2O, 25 mM KCl, 25 mM KH2PO4,
    25 mM Tris-(hydroxymethyl)-aminomethan, pH 9,5
    20 mM NaN3 in Davis-Puffer pH = 9,5
    Substratlösung: 250 mM Substrat in dest. H2O. Verwendete Substrate: Cholinchlorid, 3,3-Dimethylbutanol, 3-Methyl-1,3-butandiol, Benzylalkohol, 2-Phenylethanol, Isetionsäure (Na-Salz).
  • 2. Durchführung:
  • Zu 150 μl Oxidase-haltiger Lösung (ggf. entsprechend mit dest. H2O verdünnt) werden 30 μL 20 mM NaN3-Lösung, 45 μL Davis-Puffer pH = 9,5 und 150 μL Substratlösung gegeben und der Ansatz nach Mischen für 30 min bei 800 rpm und 37°C inkubiert. Anschließend werden 525 μL Peroxidreagenz und 75 μL Peroxidaselösung zugegeben und bei Raumtemperatur für 5 min inkubiert. Schließlich wird die Absorption der Lösung bei einer Wellenlänge von λ = 600 nm bestimmt.
  • Die Bestimmung der Aktivität erfolgt durch den Vergleich mit einer Kalibrationskurve, die mit einer geeigneten Verdünnungsreihe von Wasserstoffperoxid in 20 mM Phosphatpuffer (pH 6,5) unter den oben beschriebenen Bedingungen erstellt wurde. Angegeben wird die katalytische Aktivitätskonzentration in Einheiten (E)/μl als Aktivität pro Probenvolumen.
  • Die Proteinmenge pro Probenvolumen wird mit dem BCA Protein Assay Kit (Pierce Biotechnology, Kat.-Nr. 23227) nach dem von Hersteller vorgeschlagenen Protokoll bestimmt und in mg/ml angegeben. Die spezifische Aktivität bezeichnet die Aktivität pro mg Protein und wird angegeben in E/mg bzw. mE/mg = 10–3 E/mg.
  • Zum Vergleich wird die spezifische Aktivität der erfindungsgemäß veränderten Oxidase unter Umsetzung eines Substrates, welches sich von Cholin unterscheidet, auf die spezifische Aktivität des Enzyms unter Umsetzung von Cholin bezogen. Hierzu werden die relativen spezifischen Aktivitäten als die Quotienten (nachfolgend als Substanzkoeffizient bezeichnet) aus der spezifischen Aktivität der erfindungsgemäßen Oxidase bezüglich eines Nicht-Cholin-Substrats und der spezifischen Aktivität bezüglich Cholin gebildet.
  • Beispiel 3: Bestimmung des Substanzquotienten sowie der Steigerung des Mutantenquotienten
  • Der Substanzquotient ist der Quotient der spezifischen Aktivität einer erfindungsgemäßen Oxidase auf einem betrachteten Substrat und der spezifischen Aktivität eben dieser Oxidase auf dem ursprünglichen Substrat Cholin. Beispielsweise sei die spezifische Aktivität einer erfindungsgemäßen Oxidase, deren Glutaminsäurerest an Position 306 verändert wurde (Glu306Xxx), auf einem neuen Substrat (S) 10 E/mg, auf dem Substrat Cholin jedoch nur 5 E/mg, so ist der entsprechende Substanzquotient 10/5 = 2. Er kann als Maß herangezogen werden, um die Selektivität einer erfindungsgemäßen Oxidase auf ein gewünschtes neues Substrat hin zu überprüfen.
  • In der nachstehenden Tabelle 1 aufgelistet ist in der ersten Zeile die Aminosäure an Pos. 306 der an dieser Position veränderten Cholinoxidase gemäß SEQ ID NO: 1. Tabelle 1: Darstellung der Substanzquotienten
    Figure 00630001
  • Die Veränderung der Position 306 zu Asp oder Gly bewirkt einen sehr starken Rückgang der ungewünschten Aktivität auf Cholin bei gleichzeitig geringerem Rückgang der Aktivität auf gewünschte Substrate wie beispielsweise 3,3-Dimethylbutanol, 3-Methyl-1,3-butandiol, 2-Phenylethanol und Benzylalkohol. Die Substratspezifität der veränderten Oxidasen wird daher weg von Cholin hin zu einem Nicht-Cholin-Substrat verschoben. Die Mutation zu Gly zeichnet sich in weiterhin in der Weise aus, dass sie die Aktivität auf Isethionsäure so steigert, dass diese sogar höher ist als im Ausgangsenzym. Gleichzeitig wird die Aktivität auf Cholin stark gesenkt.
  • Auch die weiteren Veränderungen Glu306 zu Gln, Asn, Cys, Gly, Ala und Arg begünstigen den Wechsel von Cholin auf ein neues Substrat, da hier die Steigerung des Mutantenquotienten um 1 bis 2 Zehnerpotenzen höher liegen als bei den anderen untersuchten Kombinationen. Der Mutantenquotient ist das Verhältnis der spezifischen Aktivität eines veränderten Enzyms zur spezifischen Aktivität des Ausgangsenzyms für ein untersuchtes Substrat. Er zeigt somit das Maß an, in dem eine Mutation zu einer Verbesserung der spezifischen Aktivität bezogen auf ein bestimmtes, betrachtetes Substrat geführt hat, bzw. inwieweit die spezifische Aktivität des Ausgangsenzyms bezogen auf ein betrachtetes Substrat durch eine Veränderung verringert werden konnte. Das nachstehende Rechenbeispiel für ein fiktives Substrat S dient der Erläuterung: Die spezifische Aktivität des Ausgangsenzyms auf S sei 10 E/mg, die eines veränderten Enzyms Glu306Xxx sei dagegen 15 E/mg auf dem Substrat S. Der Mutantenquotient ist 15 E/mg geteilt durch 10 E/mg = 1,5. Definitionsgemäß ist der Mutantenquotient für das Ausgangsenzym auf allen Substraten also = 1.
  • In der nachstehenden Tabelle 2 aufgelistet ist in der ersten Zeile die Aminosäure an Pos. 306 der an dieser Position veränderten Cholinoxidase gemäß SEQ ID NO: 1. Die ursprünglich im Ausgangsenzym vorhandene Aminosäure Glu ist durch "WT" als Wildtyp markiert. Tabelle 2: Steigerung des Mutantenquotienten
    Figure 00640001
  • Als besonders gut anzustrebendes neues Substrat für derartig hergestellte neue Oxidasen stellt sich hier 3-Methyl-1,3-Butandiol dar, da es durch besonders viele verschiedene Mutationen begünstigt wird, des weiteren Benzylalkohol, gefolgt von den anderen untersuchten Substraten. Ganz besonders effektiv ist im betrachteten Beispiel der Wechsel zu Isethionsäure bei Mutation zu Cys oder Gly und der Wechsel zu Benzylalkohol durch Mutation zu Cys. Besonders hohe Selektivitäten für die untersuchten neuen Substrate weist die Mutation Glu306Cys für 3-Methyl-1,3-butandiol, Benzylalkohol und 2-Phenylethanol auf, da hier die Substanzquotienten größer als 1 sind. Die Mutation Gly306Ala bewirkt gute Selektivität für 3-Methyl-1,3-butandiol.
  • Beispiel 4:
  • Erfindungsgemäß lassen sich zudem Oxidase-Enzyme herstellen und in erfindungsgemäßen Verfahren einsetzen, deren Aktivität gegenüber einem Substrat, welches sich von Cholin unterscheidet, höher ist im Vergleich mit der Aktivität des nicht veränderten Ausgangsenzym gegenüner diesem Substrat. So besitzt beispielsweise eine Oxidase, deren Glutaminsäurerest an Position 306, bezogen auf SEQ ID NO: 1, durch einen Glycinrest ersetzt wurde (Glu 306 Gly) eine um den Faktor 1,4 gesteigerte Aktivität (der Quotient der Aktivität des veränderten Enzyms Glu 306 Gly geteilt durch die Aktivität des Ausgangsenzyms Glu 306 weist einen Wert von 1,4 auf) bezüglich des Substrates Isethionsäure im Vergleich mit dem Ausgangsenzym, d. h. der Oxidase mit einem Glutaminsäurerest an Position 306. Gleichzeitig wird die Aktivität auf Cholin stark gesenkt (der Quotient der Aktivität des veränderten Enzyms Glu 306 Gly geteilt durch die Aktivität des Ausgangsenzyms Glu 306 weist einen Wert von 0,01 auf). Somit können erfindungsgemäß auch Enzyme erhalten werden, die nicht nur eine Verschiebung der Substratspezifität hin zu Nicht-Cholin-Substraten aufweisen, sondern deren Aktivität gegenüber diesen Substraten zudem auch gesteigert ist.
  • Beschreibung der Figur:
  • 1: Sequenzvergleich (Alignment) der
    • – N-terminal verkürzten Cholinoxidase aus Arthrobacter nicotianae ("COD A.nicotianae verkürzt"; SEQ ID NO: 1),
    • – der Cholinoxidase aus Arthrobacter nicotianae ("COD A.nicotianae"; DSMZ-ID 96-878, Hinterlegungsnummer DSM 11234; SEQ ID NO: 3) und der
    • – Cholinoxidase aus Arthrobacter globiformis („COD A.globiformis"; SEQ ID NO: 2, Datenbank-Zugriffsnummer AAP68832 der NCBI („National Center for Biotechnology Information")-Proteindatenbank; UniProtKB/TrEMBL Eintrag Q7X2H8) gemäß der Veröffentlichung von Gadda et al. (Arch. Biochem. Biophys. 421 (1), 149–158, 2004. „Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance").
  • Aus dem Sequenzvergleich geht ebenfalls hervor, dass hinsichtlich der Zählweise der jeweiligen Aminosäurepositionen in den verschiedenen Polypeptidketten, beispielsweise in der verkürzten Cholinoxidase aus Arthrobacter nicotianae ("COD A.nicotianae verkürzt"; SEQ ID NO: 1), die fehlenden Aminosäuren entsprechend zu berücksichtigen sind.
  • Es folgt ein Sequenzprotokoll nach WIPO St. 25. Dieses kann von der amtlichen Veröffentlichungsplattform des DPMA heruntergeladen werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - WO 97/21796 [0004]
    • - DE 102609306-41 [0007]
    • - EP 2006/009890 [0011]
    • - DE 102005049908 [0011]
  • Zitierte Nicht-Patentliteratur
    • - Ikuta, S., Imamura, S., Misski, H., and Horiuti, Y. 1977. Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem (Tokyo) 82: 1741–1749. [0002]
    • - Deshnium, P., Los, D. A., Hayashi, H., Mustardy, L., and Murata, N. 1995. Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol 29: 897–907. [0002]
    • - Gadda et al. (Arch. Biochem. Biophys. 421 (1), 149–158, 2004. „Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance") [0003]
    • - Gadda et al. (Arch. Biochem. Biophys. 430(2), 264–73, 2004. "The trimethylammonium headgroup of choline is a major determinant for substrate binding and specificity in choline oxidase") [0009]
    • - Arch. Biochem. Biophys. 451(2), 182–7, 2006. [0009]
    • - Ghanem et al. (Biochemistry 44(3), 893–904, 2005. „On the catalytic role of the conserved active site residue His466 of choline oxidase") [0009]
    • - Lountos, George T. (2005, „Structural and mechanistic insights from high resolution crystal structures of the toluene-4-monooxygenase catalytic effector Protein, NAD(P)H oxidase and choline oxidase", ISBN 0-542-43394-X) [0010]
    • - D. J. Lipman und W. R. Pearson (1985) in Science, Band 227, S. 1435–1441 [0024]
    • - Sambrook, J., Fritsch, E. F. and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 3. Edition Cold Spring Laboratory Press [0055]
    • - Gadda et al. (Arch. Biochem. Biophys. 421 (1), 149–158, 2004. „Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance") [0282]

Claims (44)

  1. Verfahren zur enzymatischen Herstellung von Wasserstoffperoxid mit einer Oxidase, dadurch gekennzeichnet, dass die Aminosäuresequenz der Oxidase eine Aminosäuresequenz beinhaltet, die zu SEQ ID NO: 1 zu mindestens 96% identisch ist, unter Umsetzung eines Substrates, welches sich von Cholin unterscheidet.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um eines mit der Struktur R-CH2-OH handelt, wobei R 1–20 Kohlenstoffatome, 0–5 Stickstoffatome, 0–5 Sauerstoffatome, 0–2 Schwefelatome, 0–2 Phosphoratome und 0–10 Halogenatome enthält.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um eines mit der Struktur R-CH2-OH handelt, wobei R ausgewählt ist aus der Gruppe von -Phenyl, -Benzyl, -CH2-SO2-OH, -CH2-PO(OH)2, -PO(OH)2, -CH2-tertButyl, -CH2-C(Me2, OH).
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um 2-Phenylethanol handelt.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um 3-Methyl-1,3-butandiol handelt.
  6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um Isethionsäure handelt.
  7. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um 3-Benzylalkohol handelt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Substrat ein Volumen aufweist, dass kleiner als 2 × 10–8 m3 ist.
  9. Oxidase, dadurch gekennzeichnet, dass eine oder mehrere Aminosäuren an den Positionen 55, 306, 325, 345, 351, 458, 459 und 460 bezogen auf SEQ ID NO: 1 verändert sind, wobei die Aminosäure an einer der Positionen 55, 325, 345, 351, 458, 459 und 460 ausgewählt ist aus der Gruppe von Alanin, Arginin, Asparagin, Asparaginsäure, Cystein, Glutamin, Glutaminsäure, Glycin, Histidin, Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Prolin, Serin, Threonin, Tryptophan, Tyrosin und Valin und sich von derjenigen unterscheidet, die in SEQ ID NO: 1 an der entsprechenden Position vorhanden ist und die Aminosäure an der Position 306 ausgewählt ist aus der Gruppe von Arginin, Asparagin, Cystein, Glutamin, Glutaminsäure, Glycin, Histidin, Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Prolin, Serin, Threonin, Tryptophan, Tyrosin und Valin.
  10. Oxidase nach Anspruch 9, dadurch gekennzeichnet, dass sie zur Oxidation eines Substrates, welches sich von Cholin unterscheidet, besser befähigt ist als zur Oxidation von Cholin.
  11. Oxidase nach Anspruch 10, dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um eines mit der Struktur R-CH2-OH handelt, wobei R 1–20 Kohlenstoffatome, 0–5 Stickstoffatome, 0–5 Sauerstoffatome, 0–2 Schwefelatome, 0–2 Phosphoratome und 0–10 Halogenatome enthält.
  12. Oxidase nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um eines mit der Struktur R-CH2-OH handelt, wobei R ausgewählt ist aus der Gruppe von -Phenyl, -Benzyl, -CH2-SO2-OH, -CH2-PO(OH)2, -PO(OH)2, -CH2-tertButyl, -CH2-C(Me2, OH).
  13. Oxidase nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um 2-Phenylethanol handelt.
  14. Oxidase nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um 3-Methyl-1,3-butandiol handelt.
  15. Oxidase nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um Isethionsäure handelt.
  16. Oxidase nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass es sich bei dem Substrat, welches sich von Cholin unterscheidet, um 3-Benzylalkohol handelt.
  17. Oxidase nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, dass das Substrat ein Volumen aufweist, dass kleiner als 2 × 10–8 m3 ist.
  18. Oxidase nach einem der Ansprüche 9 bis 17, dadurch gekennzeichnet, dass die Aminosäure an Position 306 zunehmend bevorzugt Arginin, Glutamin, Asparagin, Aspartat oder Glycin ist, wobei die Nummerierung der Sequenzpositionen auf SEQ ID NO: 1 bezogen ist.
  19. Oxidase nach einem der Ansprüche 9 bis 18, für die der Quotient, gebildet aus der spezifischen Aktivität der Oxidase unter Verwendung eines Substrats, welches sich von Cholin unterscheidet, geteilt durch die spezifische Aktivität der Oxidase unter Verwendung eines Substrats, welches Cholin ist, einen Wert zwischen 1 und 100.000, bevorzugt einen Wert zwischen 1 und 1000, weiter bevorzugt einen Wert zwischen 1 und 100 und besonders bevorzugt einen Wert zwischen 1 und 10 aufweist.
  20. Nukleinsäuremolekül, kodierend für eine Oxidase nach einem der Ansprüche 9 bis 18.
  21. Vektor, enthaltend eine Nukleinsäure nach Anspruch 20.
  22. Vektor nach Anspruch 21, der ein Klonierungsvektor ist.
  23. Vektor nach Anspruch 21, der ein Expressionsvektor ist.
  24. Wirtszelle, die eine Oxidase nach einem der Ansprüche 9 bis 18 oder ein Fragment derselben beinhaltet oder die zu deren Herstellung angeregt werden kann, vorzugsweise unter Einsatz eines Expressionsvektors gemäß Anspruch 23.
  25. Wirtszelle nach Anspruch 24, dadurch gekennzeichnet, dass sie die Oxidase oder ein Fragment derselben in das die Wirtszelle umgebende Medium sezerniert.
  26. Wirtszelle nach Anspruch 24 oder 25, dadurch gekennzeichnet, dass sie einen Zellkern besitzt.
  27. Wirtszelle nach Anspruch 24 oder 25, dadurch gekennzeichnet, dass sie ein Bakterium ist.
  28. Wirtszelle nach Anspruch 27, dadurch gekennzeichnet, dass das Bakterium ausgewählt ist aus der Gruppe der Gattungen von Escherichia, Bacillus und Arthrobacter, Streptomyces und Pseudomonas.
  29. Wirtszelle nach Anspruch 27 oder 28, dadurch gekennzeichnet, dass das Bakterium ausgewählt ist aus der Gruppe von Escherichia coli, Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus alcalophilus und Arthrobacter oxidans, Streptomyces lividans und Streptomyces coelicolor.
  30. Verwendung einer Oxidase nach einem der Ansprüche 9 bis 18 als Wasserstoffperoxid erzeugendes Agens.
  31. Verwendung einer Oxidase nach einem der Ansprüche 9 bis 18 zur Bleiche, zur Farbübertragungsinhibierung oder zur Desinfektion.
  32. Mittel enthaltend eine Oxidase nach einem der Ansprüche 9 bis 18.
  33. Mittel nach Anspruch 32, dadurch gekennzeichnet, dass es ein Körperpflegemittel, Haarwaschmittel, Haarpflegemittel, Oxidationsfärbemittel, Mund-, Zahn- oder Zahnprothesenpflegemittel, Kosmetikum, Waschmittel, Reinigungsmittel, Nachspülmittel, Handwaschmittel, Handgeschirrspülmittel, Maschinengeschirrspülmittel, Desinfektionsmittel, Signalreagenz oder ein Mittel zur bleichenden oder desinfizierenden Behandlung von Filtermedien, Textilien, Pelzen, Papier, Feilen oder Leder, ist.
  34. Mittel nach einem der Ansprüche 32 oder 33, dadurch gekennzeichnet, dass es als Einkomponentensystem vorliegt.
  35. Mittel nach einem der Ansprüche 32 oder 33, dadurch gekennzeichnet, dass es in mehrere Komponenten aufgeteilt ist.
  36. Mittel nach einem der Ansprüche 32 bis 35, dadurch gekennzeichnet, dass es als rieselfähiges Pulver mit einem Schüttgewicht von 300 g/l bis 1200 g/l, insbesondere 500 g/l bis 900 g/l, vorliegt.
  37. Mittel nach einem der Ansprüche 32 bis 35, dadurch gekennzeichnet, dass es in pastöser oder flüssiger Form vorliegt.
  38. Mittel nach einem der Ansprüche 32 bis 37, dadurch gekennzeichnet, dass die Oxidase und/oder deren Substrat mit einer bei Raumtemperatur oder bei Abwesenheit von Wasser für die Oxidase und/oder deren Substrat undurchlässigen Substanz umhüllt ist.
  39. Mittel nach einem der Ansprüche 32 bis 38, ferner umfassend • 5 Gew.-% bis 70 Gew.-%, insbesondere 5 Gew.-% bis 30 Gew.-% Tenside, • 10 Gew.-% bis 65 Gew.-%, insbesondere 12 Gew.-% bis 60 Gew.-% wasserlösliches oder wasserdispergierbares anorganisches Buildermaterial, • 0,5 Gew.-% bis 10 Gew.-%, insbesondere 1 Gew.-% bis 8 Gew.-%, wasserlösliche organische Buildersubstanzen, • 0,01 bis 15 Gew.-% feste anorganische und/oder organische Säuren beziehungsweise saure Salze, • 0,01 bis 5 Gew.-% Komplexbildner für Schwermetalle, • 0,01 bis 5 Gew.-% Vergrauungsinhibitor, • 0,01 bis 5 Gew.-% Farbübertragungsinhibitor und • 0,01 bis 5 Gew.-% Schauminhibitor
  40. Mittel nach Anspruch 39, ferner umfassend von 0,01 bis 5 Gew.-% optische Aufheller
  41. Mittel nach Anspruch 39, ferner umfassend von 0,01 bis 5 Gew.-% eines oder mehrerer weiterer Enzyme.
  42. Mittel zur Erzeugung einer Lichtemission in einem Chemilumineszenz-Test enthaltend eine Oxidase nach einem der Ansprüche 9 bis 18, ferner umfassend ein Oxidase-Substrat und ein Chemilumineszenz-Reagenz.
  43. Mittel nach Anspruch 42, worin das Chemilumineszenz-Reagenz Luminol ist.
  44. Kit enthaltend Mittel nach Anspruch 42 oder 43.
DE102007005053A 2007-01-26 2007-01-26 Verfahren zur enzymatischen Herstellung von Wasserstoffperoxid Withdrawn DE102007005053A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102007005053A DE102007005053A1 (de) 2007-01-26 2007-01-26 Verfahren zur enzymatischen Herstellung von Wasserstoffperoxid
PCT/EP2007/062837 WO2008089860A2 (de) 2007-01-26 2007-11-27 Verfahren zur enzymatischen herstellung von wasserstoffperoxid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007005053A DE102007005053A1 (de) 2007-01-26 2007-01-26 Verfahren zur enzymatischen Herstellung von Wasserstoffperoxid

Publications (1)

Publication Number Publication Date
DE102007005053A1 true DE102007005053A1 (de) 2008-07-31

Family

ID=39494369

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102007005053A Withdrawn DE102007005053A1 (de) 2007-01-26 2007-01-26 Verfahren zur enzymatischen Herstellung von Wasserstoffperoxid

Country Status (2)

Country Link
DE (1) DE102007005053A1 (de)
WO (1) WO2008089860A2 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021796A1 (de) 1995-12-08 1997-06-19 Henkel Kommanditgesellschaft Auf Aktien Bleich- und waschmittel mit enzymatischem bleichsystem
WO2007045398A2 (de) 2005-10-17 2007-04-26 Henkel Central Eastern Europe Gesellschaft Mbh Neue cholinoxidasen mit veränderter substratspezifität

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260930A1 (de) * 2002-12-20 2004-07-15 Henkel Kgaa Neue Cholinoxidasen
DE102004029475A1 (de) * 2004-06-18 2006-01-26 Henkel Kgaa Neues enzymatisches Bleichsystem

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021796A1 (de) 1995-12-08 1997-06-19 Henkel Kommanditgesellschaft Auf Aktien Bleich- und waschmittel mit enzymatischem bleichsystem
WO2007045398A2 (de) 2005-10-17 2007-04-26 Henkel Central Eastern Europe Gesellschaft Mbh Neue cholinoxidasen mit veränderter substratspezifität
DE102005049908A1 (de) 2005-10-17 2007-05-16 Henkel Central Eastern Europ G Neue Cholinoxidasen mit veränderter Substratspezifität

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Arch. Biochem. Biophys. 451(2), 182-7, 2006.
D. J. Lipman und W. R. Pearson (1985) in Science, Band 227, S. 1435-1441
Deshnium, P., Los, D. A., Hayashi, H., Mustardy, L., and Murata, N. 1995. Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol 29: 897-907.
Gadda et al. (Arch. Biochem. Biophys. 421 (1), 149-158, 2004. "Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance")
Gadda et al. (Arch. Biochem. Biophys. 430(2), 264-73, 2004. "The trimethylammonium headgroup of choline is a major determinant for substrate binding and specificity in choline oxidase")
Ghanem et al. (Biochemistry 44(3), 893-904, 2005. "On the catalytic role of the conserved active site residue His466 of choline oxidase")
Ikuta, S., Imamura, S., Misski, H., and Horiuti, Y. 1977. Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem (Tokyo) 82: 1741-1749.
Lountos, George T. (2005, "Structural and mechanistic insights from high resolution crystal structures of the toluene-4-monooxygenase catalytic effector Protein, NAD(P)H oxidase and choline oxidase", ISBN 0-542-43394-X)
Sambrook, J., Fritsch, E. F. and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 3. Edition Cold Spring Laboratory Press

Also Published As

Publication number Publication date
WO2008089860A2 (de) 2008-07-31
WO2008089860A3 (de) 2008-10-09

Similar Documents

Publication Publication Date Title
DE102007038031A1 (de) Mittel enthaltend Proteasen
DE102007033104A1 (de) Mittel enthaltend Proteasen aus Stenotrophomonas maltophilia
EP1737952B1 (de) Neue alkalische proteasen und wasch- und reinigungsmittel, enthaltend diese neuen alkalischen proteasen
DE10138753B4 (de) Wasch- und Reinigungsmittel mit Hybrid-Alpha-Amylasen
DE102007036756A1 (de) Neue Proteasen und Wasch- und Reinigungsmittel, enthaltend diese neuen Proteasen
EP2029719B1 (de) Reinigungsverfahren
US20050282261A1 (en) Novel choline oxidases
WO2007131657A2 (de) Neue alkalische protease aus bacillus gibsonii und wasch- und reinigungsmittel enthaltend diese neue alkalische protease
WO2007131656A1 (de) Subtilisin aus bacillus pumilus und wasch- und reinigungsmittel enthaltend dieses neue subtilisin
WO2003054184A9 (de) Neue alkalische protease aus bacillus gibsonii (dsm 14393) und wasch- und reinigungsmittel enthaltend diese neue alkalische protease
EP1697510A1 (de) Neue alkalische protease und wasch-und reinigungsmittel, enthaltend diese neue alkalische protease
WO2007025665A2 (de) Reinigungsmittel
WO2003054185A1 (de) Neue alkalische protease aus bacillus gibsonii (dsm 14391) und wasch- und reinigungsmittel enthaltend diese neue alkalische protease
DE102007003143A1 (de) Neue Alkalische Protease aus Bacillus gibsonii und Wasch- und Reinigungsmittel enthaltend diese neue Alkalische Protease
EP1917343A2 (de) Reinigungsmittel
WO2003038082A2 (de) Alkalische protease-varianten und wash- und reinigungsmittel enthaltend diese alkalischen protease-varianten
DE10064983A1 (de) Neue Alkalische Protease aus Bacillus alcalophilus (DSM 11233)
DE102007039655A1 (de) Reinigungsmittel
WO2007054203A2 (de) Enzym / subtstrat sytem zur generierung von wasserstoffperoxid enthaltend sorbitol oxidase aus streptomyces c0elic0l0r und sorbitol
DE102007032111B4 (de) Neue Proteasen und Wasch- und Reinigungsmittel enthaltend diese Proteasen
DE102007044415A1 (de) Leistungsverbesserte Proteasen und Wasch- und Reinigungsmittel enthaltend diese Proteasen
DE10309803B4 (de) α-Amylase-Varianten mit verbesserter Alkaliaktivität
EP3545067B1 (de) Portionsbeutel mit bleichaktivator/komplexbildner-compound
DE102007010785A1 (de) Verwendung von Superoxid-Dismutasen in Wasch- und Reinigungsmitteln
DE102006042797A1 (de) Hochkonzentriertes Enzym-Granulat und Wasch- oder Reinigungsmittel, enthaltend solch ein hochkonzentriertes Enzym-Granulat

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee