DE102006005874A1 - Vorrichtung und Verfahren zum berührungsfreien Vermessen - Google Patents
Vorrichtung und Verfahren zum berührungsfreien Vermessen Download PDFInfo
- Publication number
- DE102006005874A1 DE102006005874A1 DE102006005874A DE102006005874A DE102006005874A1 DE 102006005874 A1 DE102006005874 A1 DE 102006005874A1 DE 102006005874 A DE102006005874 A DE 102006005874A DE 102006005874 A DE102006005874 A DE 102006005874A DE 102006005874 A1 DE102006005874 A1 DE 102006005874A1
- Authority
- DE
- Germany
- Prior art keywords
- radiation
- radiation source
- lines
- line
- shadows
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
- Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum berührungsfreien Vermessen von Oberflächen und Bolzen auf der Oberfläche.
- In der herkömmlichen Messtechnik mit taktilen Koordinatenmessmaschinen existieren Verfahren zur Positionsbestimmung von Bolzen, die darauf basieren, dass z.B. Halbkugeln auf einen Bolzen gesteckt oder geschraubt werden. Diese Halbkugel werden dann mittels mechanischer Tastspitzen angetastet, das Zentrum berechnet und auf die Befestigungsebene projiziert. Danach wird dieses Ergebnis dem Positionspunkt des Bolzens gleich gesetzt. Dieses Verfahren beschreibt somit eine indirekte Messung mit dem Nachteil, dass es die zeitaufwendige manuelle Bestückung mit Hilfskörpern erfordert, verbunden mit der Gefahr, dass der Hilfskörper durch das mechanische Antast-Kraftmoment verschoben und somit das Gesamtergebnis beeinflusst wird.
- Daneben existieren Techniken, die darauf basieren, die Position von Bolzen mittels Grenzlehren und Schablonen zu erfassen. Diese Verfahren zeichnen sich durch einen hohen manuellen Aufwand aus, der sowohl dazu führt, dass im Allgemeinen Prüfungen nur als Stichproben durchgeführt werden können, als auch in der Tatsache, dass die erzielten Ergebnisse auch maßgeblich vom Geschick des Anwenders abhängen. Damit wird keine hundertprozentige Kontrolle für jedes Bauteil durchgeführt, und wegen der Abhängigkeit vom Geschick des Anwenders unterliegen die Ergebnisse Schwankungen. Im wesentlichen resultiert daraus lediglich eine gut/schlecht- Aussage.
- Neben dem mechanischen Messen existieren berührungslose bildgebende optische Verfahren, die beispielsweise darauf basieren, die Position des Bolzens mittels 1-Linien Laserantastung zu erfassen. Dabei werden unter anderem die Reflexionen der Laserlinien an dem Bolzen verwendet. Dieses Verfahren hat den Nachteil, dass Reflexionen der Laserlinien auf den Bolzen sehr unterschiedlich sein können. Dies begründet sich auf Grund wechselnder Materialeigenschaften, beispielsweise der Oberflächenstruktur, einem Gewinde, des Oberflächenmaterials sowie der Unterschiede zwischen dem Material, auf dem der Bolzen befestigt wird, und durch Verschmutzungen, wie sie typischerweise beim Verbindungsprozess auftreten.
- Neben dem mechanischen Vermessen von Oberflächen mit Hilfe von Tastern ist es bekannt, Oberflächen mit Hilfe von berührungsfreien Verfahren zu vermessen. Hierzu werden unter anderem Sensoren verwendet, die nach dem Prinzip der Mehrlinientriangulation arbeiten. Dabei wird mit Hilfe eines Projektors bzw. einer Strahlungsquelle ein aus mehreren Linien aufgebautes Strahlungsraster auf die zu überprüfende Oberfläche aufgelegt. Die Reflexionen dieser Strahlungslinien werden dann mit Hilfe einer Kamera oder eines Strahlungsempfängers aufgenommen und das Ergebnis ausgewertet. Bei einer ebenen Fläche sind die mehreren Linien parallel zueinander.
- Üblicherweise wird Licht im Infrarotbereich verwendet, aber auch Laserlicht oder Weißlicht.
- Es hat sich herausgestellt, dass diese Methode trotz ihrer Vorteile unter bestimmten Umständen keine vollständig zufriedenstellenden Ergebnisse liefert.
- Der Erfindung liegt die Aufgabe zu Grunde, eine verbesserte Möglichkeit zu schaffen, Oberflächen und Bolzen berührungsfrei zu vermessen.
- Zur Lösung dieser Aufgabe schlägt die Erfindung eine Vorrichtung mit den Merkmalen des Anspruchs 1 und/oder ein Verfahren mit den Merkmalen des Anspruchs 18 vor. Weiterbildungen der Erfindung sind Gegenstand von Unteransprüchen.
- Die Vorrichtung enthält also eine Strahlungsquelle, mit der mindestens eine Linie auf der zu überprüfenden Oberfläche im Bereich des Gegenstandes erzeugt wird. Ein Strahlungsempfänger empfängt die reflektierte Strahlung. Er ist auf die Oberfläche im Bereich des Gegenstandes gerichtet. Das empfangene Signal wird ausgewertet. Zusätzlich wird mindestens ein Schatten des Gegenstands erzeugt, der in der Reflexion ebenfalls gemessen und ausgewertet wird. Durch die Linien erfolgt eine Mehrlinientriangulation der Oberfläche, und durch den Schatten kann die Richtung und die Größe des Gegenstands ermittelt bzw. überprüft werden.
- Erfindungsgemäß kann hierzu vorgesehen sein, dass die Strahlungsquelle zur Erzeugung der mindestens einen Linie mehrere Linien für eine Mehrlinientriangulation der Oberfläche erzeugt.
- In Weiterbildung der Erfindung kann vorgesehen sein, dass die Strahlungsquelle zur Erzeugung des Schattens zwei Schatten dieses Gegenstands in unterschiedliche Richtungen auf der Oberfläche erzeugt.
- Dadurch wird es möglich, auch Abweichungen von der Rundheit dieses Gegenstands zu ermitteln.
- Insbesondere kann vorgesehen sein, dass die beiden Schatten auf der Oberfläche, die im Normalfall eine ebene Oberfläche ist, einen rechten Winkel miteinander einschließen.
- Erfindungsgemäß kann vorgesehen sein, dass die Strahlungsquelle mindestens einen der beiden Schatten über einen Spiegel erzeugt, so dass zur Schattenerzeugung nur eine einzige Strahlungsquelle vorhanden ist.
- Es ist aber ebenfalls möglich und wird von der Erfindung vorgeschlagen, dass zur Erzeugung jedes Schattens eine eigene Strahlungsquelle vorhanden ist.
- Es kann vorgesehen sein, dass die Strahlungsquelle zur Erzeugung der mindestens einen Linie gleichzeitig die Strahlungsquelle für die Schattenbildung darstellt.
- Erfindungsgemäß kann ebenfalls vorgesehen sein, dass die Strahlungsquelle nur eine einzige Linie auf der Oberfläche erzeugt, wobei dann ein Positioniermittel vorgesehen ist, um die Strahlungslinien in mehreren parallel zueinander versetzten Positionen auf der Oberfläche abzubilden.
- An Stelle der Erzeugung mehrerer paralleler Linien wird eine einzelne Linie erzeugt, die von dem Strahlungsempfänger aufgenommen wird. Die einzelne Linie wird, wenn die Kamera sie aufgenommen hat, parallel zu sich verschoben. Dann erfolgt eine weitere Aufnahme durch den Strahlungsempfänger bzw. die Kamera. Auf diese Weise kann die Wir kung einer Mehrlinientriangulation simuliert werden. Der Abstand der einzelnen Linien kann sehr klein gemacht werden.
- Mit Hilfe der mehreren nacheinander erzeugten Linien und der mehreren Aufnahmen der Reflexionen der Linien wird ein Bild erzeugt, das die gleichen Informationen enthält wie bei einer Mehrlinientriangulation.
- Um die Informationen der mehreren Ausbildungen besonders einfach kombinieren zu können, kann erfindungsgemäß vorgesehen sein, dass der Strahlungsempfänger bzw. die Kamera derart angeordnet ist, dass er während des Verschiebens der durch die Strahlungsquelle erzeugten Linie ortsfest bleibt.
- Es ist aber auch möglich, dass der Strahlungsempfänger derart angeordnet ist, dass er bei der Verschiebung der Strahlungslinien ebenfalls mit verschoben wird. Die Überlagerung der mehreren Bilder zu einem Gesamtbild kann dann durch die Auswerteinrichtung erfolgen.
- Die Erfindung schlägt mehrere Methoden vor, wie der Ort der durch die Strahlungsquelle erzeugten Linie verändert werden kann. Beispielsweise kann erfindungsgemäß vorgesehen sein, dass die Positioniereinrichtung zum Bewegen der Strahlungsquelle ausgebildet ist. Dabei kann es sich um eine rein mechanische Verschiebung oder Verdrehung der Strahlungsquelle handeln.
- Es ist ebenfalls möglich und liegt im Rahmen der Erfindung, dass die Positioniereinrichtung zum Bewegen des Strahlungsempfängers ausgebildet ist.
- Eine weitere Möglichkeit liegt darin, die Positioniereinrichtung derart auszubilden, dass sie einen Roboter aufweist, der die Strahlungsquelle und/oder dem Strahlungsempfänger bewegt.
- Ebenfalls möglich ist es, die Positioniereinrichtung zur Änderung des Abstrahlwinkels der Strahlung der Strahlungsquelle auszubilden, beispielsweise dadurch, dass die Positioniereinrichtung einen verdrehbaren oder verkippbaren Spiegel aufweist, dessen Bewegung zu einer Änderung der Abstrahlrichtung unabhängig von der Position der Strahlungsquelle führt.
- Insbesondere schlägt die Erfindung vor, als Strahlungsquelle einen Laser zu verwenden, der eine besonders energiereiche Strahlung aufweist.
- Das von der Erfindung vorgeschlagene Verfahren besteht darin, einerseits durch mehrere Strahlungslinien, deren Reflexionen gemessen und ausgewertet werden, mit Hilfe einer Mehrlinientriangulation die Oberfläche zu bestimmen. Von dem Gegenstand, beispielsweise dem Bolzen, der zu überprüfen ist, wird ein Schattenbild erzeugt, das ebenfalls über seine Reflexion ausgewertet wird.
- Erfindungsgemäß kann vorgesehen sein, dass die mehreren Strahlungslinien, die zur Bestimmung der Oberfläche verwendet werden, gleichzeitig erzeugt werden.
- Zur Verbesserung des Ergebnisses kann erfindungsgemäß vorgesehen sein, dass der Gegenstand aus zwei Richtungen zur Bildung zweier Schatten beleuchtet wird. Diese beiden Schatten können gleichzeitig oder aber auch nach einander gebildet werden.
- Es kann vorgesehen sein, dass die Strahlungslinien und der mindestens eine Schatten durch getrennte Strahlungsquellen erzeugt werden.
- Es liegt im Rahmen der Erfindung, dass die Strahlungslinien und die Schatten durch eine einzige Strahlungsquelle erzeugt werden können.
- In diesem Fall kann erfindungsgemäß vorgesehen sein, dass die Strahlungslinien und die Schatten gleichzeitig erzeugt und ausgewertet werden.
- Es ist aber ebenfalls möglich, dass die mehreren Strahlungslinien nacheinander erzeugt und ausgewertet werden, wobei beispielsweise eine Strahlungslinie erzeugt und dann parallel zu sich selbst verschoben wird. Anschließend werden erneut die Reflexionen gemessen und ausgewertet. Dieser Vorgang wird wiederholt, um dadurch eine genaue Ermittlung der Oberflächeneigenschaft zu erhalten.
- Die Erfindung beruht auf dem Gedanken, dass die Konturpunkte des Schattenwurfes des Messobjektes auf einer Oberfläche erfasst werden und nicht die Reflektionen an der Oberfläche des Messobjekts selbst.
- Aus der Breite des Schatten lässt sich der Bolzenradius ermitteln und aus der Länge des Schatten lässt sich die Bolzenlänge berechnen.
- Aus der Richtung des Schattens lässt sich die räumliche Bolzenlage berechnen.
- Aus dem Anfang des Schattens lässt sich der Fußpunkt berechnen.
- Aus der Verwendung von zwei Beleuchtungen lassen sich zwei Schatten generieren. Dann kann man aus dem Schnittpunkt zweier (oder mehrerer) Schatten den Fußpunkt generieren, wenn beispielsweise aufgrund nur weniger projizierter Laserlinien der Anfang des einzelnen Schattens nicht bestimmbar ist.
- Eine Generierung der Schatten mit verschiedenen Richtungen durch Verwendung mehrerer Lichtquellen, die verschiedene Positionen haben (vgl. Stadionflutlicht), ist möglich.
- Oder Generierung der Schatten mit verschiedenen Richtungen durch Drehen des Sensors idealerweise um die optische Achse Generierung der Schatten vorzugsweise mit einer in Schritten verfahrbaren Laserlichtquelle zum Erhalt einer sehr klaren und gut auswertbaren Schattenkontur
- Durch die verfahrbare Laserlichtquelle erhält man lateral verteile dreidimensionale Informationen der Fläche, auf der der Bolzen befestigt ist. Daraus lässt sich die Fläche mathematisch einfach aber auch komplex vollständig beschreiben (Ebene aus 3-Punkte-Formel, Gitter, etc.).
- Auf die mathematisch beschriebene Fläche lassen sich geometrische Operationen wie Objektschnitte, Projektionen anwenden.
- Das Messgerät wird idealerweise mit einer steuerbaren Verfahreinheit zur Messposition verfahren (mehrachsigen Roboter, ein- oder mehrachsige Lineareinheit, Koordinatenmessmaschine). Da der Sensor sehr genau ist, und auch die Verschiebung der Linien, braucht die Verfahreinheit die Messposition nur reproduzierbar genau zu erreichen (Punkt zu Punkt-Bewegung). Die Bahngenauigkeit ist bei diesem Verfahren nicht von Bedeutung.
- Die Bolzen können unterschiedlichste Ausprägungen aufweisen (mit/ohne Gewinde, versch. Materialien, unterschiedliche Geometrien Länge/Durchmesser, etc.).
- Das Verfahren erlaubt nicht nur eine gutschlecht-Aussage, sondern auch Trenderkennung anhand detaillierter und genauer Messwerte.
- Weitere Merkmale, Einzelheiten und Vorzüge der Erfindung ergeben sich aus den Ansprüchen und der Zusammenfassung, deren beider Wortlaut durch Bezugnahme zum Inhalt der Beschreibung gemacht wird, der folgenden Beschreibung einer bevorzugten Ausführungsform der Erfindung sowie anhand der Zeichnung. Hierbei zeigen:
-
1 schematisch eine Anordnung aus Strahlungsquelle, Strahlungsempfänger und zu vermessender Oberfläche; -
2 eine der1 entsprechende Darstellung bei einer linear verschobenen Strahlungsquelle; -
3 eine der1 entsprechende Darstellung bei einer verkippten Strahlungsquelle; -
4 die gleiche Darstellung bei einer Strahlungsquelle, bei der die Abstrahlrichtung des Stahls geändert ist; -
5 eine Ansicht einer zwei Zapfen aufweisenden Oberfläche in Richtung der Oberfläche; -
6 die Draufsicht auf die Anordnung der5 mit den durch die Strahlungsquelle erzeugten Strahlungslinien. -
7 eine der6 entsprechende Darstellung; -
8 ein Messergebnis bei dem gleichen Bolzen5 wie in7 mit einer Linienerzeugung aus einer anderen Richtung; -
9 die Kombination der Messergebnisse der7 und8 . -
10 die Stirnansicht einer Anordnung nach einer weiteren Ausführungsform der Erfindung; -
11 die Ansicht der Anordnung der10 in einer abgewickelten Darstellung; -
12 die Darstellung zweier durch die Strahlungsquellen erzeugter Schatten eines Bolzens. -
1 zeigt stark schematisch die Anordnung nach der Erfindung. Die Vorrichtung enthält an einer Halterung1 eine Strahlungsquelle2 , die einen Laserstrahl3 abgibt. Dieser Laserstahl ist in der Richtung senkrecht zur Papierebene aufgefächert, also linienförmig. Die Richtung ist so gewählt, dass der Laserstrahl3 schräg auf die zu überprüfende bzw. zu vermessende Oberfläche4 auftrifft. Als Beispiel für eine Singularität, deren Form, Größe und Orientierung gemessen werden soll, enthält die Oberfläche4 einen senkrecht von ihr abragenden Zapfen5 , beispielsweise einen Gewindezapfen, der zum festschrauben eines Bauteils dienen soll. An der Halterung1 ist weiterhin ein Strahlungsempfänger6 angebracht, der so orientiert ist, dass er die zu überprüfende Oberfläche4 in dem zu prüfenden Bereich erfassen kann. Dies ist durch den Öffnungswinkel7 angedeutet. - Der Laserstrahl
3 erzeugt auf der Oberfläche4 eine schmale Linie, deren Längsrichtung senkrecht zur Zeichnungsebene der1 verläuft. Der Strahlungsempfänger6 empfängt die Reflexion dieser Linie und zeichnet sie auf. Um zu einem die Oberfläche darstellenden Bild zu gelangen, sind mehrere Strahlungslinien erforderlich. Diese mehreren Strahlungslinien werden von dem Strahlungsempfänger6 aufgezeichnet und schließlich kombiniert. - Die Vorrichtung enthält eine nicht dargestellte Positioniereinrichtung, die beispielsweise derart ausgebildet ist, dass sie die Strahlungsquelle
2 ohne Änderung ihrer Orientierung linear verschiebt, wie dies in2 dargestellt ist. Dort ist die Strahlungsquelle2 linear in Richtung der Halterung1 verschoben dargestellt, wobei die Verschieberichtung parallel zu der Oberfläche4 verläuft. Man kann aus dem Vergleich der1 und2 erkennen, dass der Laserstrahl jetzt zwar noch unter dem gleichen Winkel gegenüber der Oberfläche4 verläuft, aber die Oberfläche4 an einer anderen Stelle trifft. Wegen der Auffächerung des Laserstrahls3 senkrecht zur Papierebene entsteht hinter dem Zapfen5 ein Schatten, der natürlich dann ebenfalls von dem Strahlungsempfänger6 aufgenommen wird. Durch mehr oder weniger weites Verschieben kann die Strahlungslinie auf der Oberfläche4 so positioniert werden, dass bei der Auswertung die Reflexion einer Schar von Strahlungslinien simuliert wird. - Eine weitere Möglichkeit der Positionierung der erzeugten Strahlungslinien auf der Oberfläche
4 zeigt die3 . Dort enthält die Positioniereinrichtung die Möglichkeit, die Strahlungsquelle2 um eine feste Achse an der Halterung1 zu verschwenken, was durch den Pfeil9 angedeutet ist. Hier trifft der Laserstrahl3 die Oberfläche4 unter einem anderen Winkel als bei der Ausgangsposition der1 und zusätzlich auch an einer anderen Stelle. - Nun zu
5 . Während die1 bis4 den Zapfen5 als Singularität der Oberfläche4 von der einen Seite zeigt, zeigt die5 ein Beispiel für eine Oberfläche4 mit zwei Zapfen5 beispielsweise von links in den1 bis4 . Die von der Strahlungsquelle2 erzeugte Strahlungslinie ist in den verschiedenen Positionen auf der sichtbaren Seite der beiden Zapfen dargestellt, wobei natürlich die einzelnen Strahlungslinien nur nacheinander zu sehen sind, die5 sie aber gleichzeitig zeigt. Die Strahlungslinien11 bis14 werden also nacheinander erzeugt. - Wenn die Strahlungslinie bei der Anordnung der
1 bis4 von links an fortschreitet, so erzeugt sie nacheinander die Linien11 bis14 in5 , das heißt die Strahlungslinie wandert die Zapfen5 hinauf. - Das gleiche Fortschreiten der Strahlungslinie zeigt die
6 , die eine Draufsicht auf die Anordnung der5 darstellt. Vor dem Erreichen der beiden Zapfen5 ist die Strahlungslinie ununterbrochen. Dies entspricht beispielsweise der Darstellung der1 . Sobald die Strahlungslinie weiter bewegt und auf der Vorderseite der Zapfen5 zu sehen ist, entsteht hinter dem Zapfen5 eine unterbrochene Strahlungslinie. Bei dem links in5 zu sehenden rechtwinklig zu Oberfläche verlaufenden Zapfen ist die Lücke in den unterbrochenen Strahlungslinien rechtwinklig zu den Strahlungslinien, während sie bei dem schrägen Zapfen5 rechts in5 ebenfalls schräg zu der Richtung der Strahlungslinien verläuft. Auf diese Weise lässt sich auch das Abweichen des Zapfens5 von seiner Sollposition feststellen. Wenn ein Zapfen5 in der Ansicht der5 nach vorne oder hinten geneigt ist, so kann dies dadurch festgestellt werden, dass eine zweite Reihe von Messungen durchgeführt wird, bei der die Vorrichtung um eine senkrecht zur Oberfläche verlaufende Achse verdreht wird, beispielsweise um 90°. - Man kann den Zeichnungen auch entnehmen, dass auf diese Weise auch die Höhe der Zapfen festgestellt werden kann. Selbstverständlich werden die Strahlungslinien auch dadurch unterbrochen, dass Öffnungen oder Stufen in der Fläche angeordnet sind. Alle diese Singularitäten können auf diese Weise ermittelt und überprüft werden.
- Es wurden mehrere Ausführungsformen dargestellt, bei denen die Strahlungsquelle bewegt oder in ihrer Abstrahlrichtung geändert wird, während der Strahlungsempfänger ortsfest bleibt. Nicht dargestellt ist die Möglichkeit, die aber ebenfalls von der Erfindung umfasst sein soll, dass eine Einheit aus Strahlungsquelle und Strahlungsempfänger zusammen bewegt wird, beispielsweise mit Hilfe eines Roboters.
- Nun zu
7 . In7 ist schematisch das Messergebnis dargestellt, bei dem mehreren Linien11 bis15 nacheinander erzeugt und in einer Auswerteinrichtung miteinander kombiniert werden. Alle Linien11 bis15 sind wieder parallel zueinander. Anschließend wird beispielsweise bei der in1 bis4 dargestellten Anordnung die Strahlungsquelle um eine Achse verdreht, die senkrecht auf der Oberfläche4 steht, beispielsweise um 45 Grad. Dann wird der gleiche Vorgang, wie er zu der7 führte, wiederholt. Das Ergebnis ist in8 dargestellt. - Hier sind nacheinander die Linien
21 bis25 auf der Oberfläche4 , auf der der Bolzen5 steht, abgebildet. Zur Vermessung des Bolzens dienen hier, ebenso wie bei den vorherigen Figuren, die Kontur. Im des Schattenwurfs des Messobjekts auf der Oberfläche4 , auf der der Bolzen5 steht. - Wenn nun die Ergebnisse der
7 und der8 in der Auswerteinrichtung überlagert welchen, siehe die schematische Erklärung in9 , so kann aus der Ermittlung des Verlaufs der Konturen der Fußpunkt des Bolzens5 auch dann ermittelt werden, wenn der Abstand der erzeugten Linien relativ groß ist. - In
10 ist schematisch auf einer gemeinsamen Halterung30 ein Strahlungsempfänger6 , beispielsweise eine Kamera, angeordnet. Unmittelbar benachbart zu der Kamera6 ist eine Strahlungsquelle31 angeordnet, bei der es sich beispielsweise um einen Linienlaser oder einen Infrarotprojektor handelt. Diese Strahlungsquelle31 ist in diesem Ausführungsbeispiel dazu bestimmt, mehrere parallel zueinander verlaufende geradlinige Linien auf der zu der prüfenden Oberfläche zu erzeugen. - Auf der Halterung
30 ist beidseits des Strahlungsempfängers6 je eine einen Projektor bildende LED- Zeile32 angeordnet, bei der es sich um eine nebeneinander angeordnete Reihe von der LEDs handelt. Die beiden Zeilen32 sind auf der Halterung30 unter einem Winkel von 90° zueinander ausgerichtet. -
11 zeigt eine schematische Ansicht der Anordnung der10 von rechts unten, wobei die beiden LED Zeilen32 in eine Ebene aufgeklappt sind, um sie besser sichtbar zu machen. Der Strahlungsempfänger6 ist von oben auf die Stirnfläche des zu überprüfenden Bolzens5 gerichtet. Der Mehrlinienlaser31 ist etwa an der gleichen Stelle angeordnet, da er zur Ermittlung der Oberfläche4 dienen soll. Die beiden LED Zeilen32 sind so ausgerichtet, dass sie den Bolzen5 von der Seite aus beleuchten. Sie sind zwar in11 als in einer Ebene liegend dargestellt, in Wirklichkeit beleuchten sie den Bolzen5 aber nicht aus exakt entgegengesetzten Richtungen, sondern aus Richtungen, die in der Projektion in die Ebene4 beispielsweise einen Winkel von 90° miteinander einschließen. Das Ergebnis der Beleuchtung durch die beiden LED Zeilen32 ist in12 dargestellt. Hier sind zwei Schatten34 gebildet, die unter einem rechten Winkel zueinander verlaufen. - Ähnlich wie bei der Ausführungsform, die unter Bezugnahme auf
7 bis9 beschrieben wurde, lässt sich aus den Schatten sowohl die Größe und als auch die Form des Bolzens5 ermitteln. - Durch die zwei Schatten des Bolzens kann der Fußpunkt und die Ausrichtung des zu messenden Bolzens bestimmt werden. Zwei gerichtete oder ungerichtete Beleuchtungen, die rechtwinklig zueinander stehen, erzeugen nacheinander oder gleichzeitig diese Schatten. Dazu kann man statische Beleuchtungen benutzen, die jeweils einen Schatten auf einmal erzeugen. Die Beleuchtungen können entweder Zeilenbeleuchtungen aus LEDs im sichtbaren oder Infrarotlicht sein, oder Projektoren im sichtbaren oder Infrarotlichtbereich, oder sonstige Strahlungsquellen, die zur Erzeugung eines ausgeprägten Schattens geeignet sind. Die Wellenlänge der Beleuchtungen sind der Wellenlänge der Linienbeleuchtung angepasst.
Claims (33)
- Vorrichtung zum berührungsfreien Vermessen von insbesondere zylindrischen Gegenständen auf Oberflächen (
4 ) mit 1.1 einer Strahlungsquelle (2 ,31 ) zum Erzeugen mindestens einer Linie (11 ,12 ,13 ,14 ) auf der Oberfläche (4 ) im Bereich des Gegenstands (5 ), 1.2 einem auf die Oberfläche (4 ) gerichteten mindestens den Bereich des Gegenstands (5 ) erfassenden Strahlungsempfänger (6 ) zum Empfang der reflektierten Strahlung, 1.3 einer Auswerteinrichtung zum Auswerten des von dem Signalempfänger (6 ) empfangenen Signals, sowie mit 1.4 einer Strahlungsquelle (2 ,32 ) zum Erzeugen eines Schattens des Gegenstands (5 ). - Vorrichtung nach Anspruch 1, bei der die Strahlungsquelle (
31 ) für die Linie mehrere Linien (11 ,12 ,13 ,14 ) für eine Mehrlinientriangulation der Oberfläche (4 ) erzeugt. - Vorrichtung nach Anspruch 1 oder 2, bei der die Strahlungsquelle für den Schatten (
2 ,32 ) zwei Schatten (34 ) in unterschiedlichen Richtungen auf der Oberfläche (4 ) erzeugt. - Vorrichtung nach Anspruch 3, bei der die beiden Schatten (
34 ) in der Oberfläche (4 ) einen Winkel von vorzugsweise etwa 90° miteinander einschließen. - Vorrichtung nach Anspruch 3 oder 4, bei der die Strahlungsquelle mindestens einen der beiden Schatten (
34 ) mit Hilfe eines Spiegels erzeugt. - Vorrichtung nach Anspruch 3 oder 4, bei der zwei Strahlungsquellen (
32 ) zur Erzeugung der beiden Schatten (34 ) vorgesehen sind. - Vorrichtung nach einem der Ansprüche 1 bis 5, bei der die Strahlungsquelle (
2 ) zur Erzeugung der Linien (11 ,12 ,13 ,14 ) gleichzeitig die Strahlungsquelle für den mindestens einen Schatten bildet. - Vorrichtung nach einem der vorhergehenden Ansprüche, mit einem Positioniermittel zum Positionieren der Strahlungslinie (
11 ,12 ,13 ,14 ) in mehreren parallel versetzten Positionen. - Vorrichtung nach Anspruch 8, bei der der Strahlungsempfänger (
6 ) derart angeordnet ist, dass er während des Verschieben ist der Strahlungslinie (11 ,12 ,13 ,14 ) ortsfest bleibt. - Vorrichtung nach Anspruch 8, bei der der Strahlungsempfänger (
6 ) derart angeordnet ist, dass er mit der Strahlungslinie (11 ,12 ,13 ,14 ) mit bewegt wird. - Vorrichtung nach einem der vorhergehenden Ansprüche 9–10, bei der die Positioniereinrichtung zum Bewegen der Strahlungsquelle (
2 ) ausgebildet ist. - Vorrichtung nach einem der vorhergehenden Ansprüche 9–11, bei der die Positioniereinrichtung zum Bewegen des Strahlungsempfängers (
6 ) ausgebildet ist. - Vorrichtung nach einem der vorhergehenden Ansprüche 9–12, bei der die Positioniereinrichtung einen Roboter aufweist, der die Strahlungsquelle (
2 ) und/oder den Strahlungsempfänger (6 ) bewegt. - Vorrichtung nach einem der vorhergehenden Ansprüche 9–13, bei der die Positioniereinrichtung zur Änderung des Abstrahlwinkels der Strahlung der Strahlungsquelle (
2 ) ausgebildet ist. - Vorrichtung nach einem der vorhergehenden Ansprüche 9–14, bei der die Positioniereinrichtung einen verkippbaren Spiegel aufweist.
- Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Strahlungsquelle derart ausgebildet ist, dass sie zu einer scharten Kantenbildung führt, insbesondere ein Laser ist.
- Vorrichtung nach einem der vorhergehenden Ansprüche, mit einer Einrichtung zum Verdrehen der Strahlungsquelle (
2 ) und des dieser zugeordneten Positioniermittels um eine etwa senkrecht auf der Oberfläche (4 ) stehende Achse. - Verfahren zum berührungsfreien Vermessen von insbesondere zylindrischen Gegenständen auf Oberflächen (
4 ), mit folgenden Verfahrensschritten: 18.1 die Oberfläche (4 ) wird zur Bildung mehrerer Strahlungslinien (11 ,12 ,13 ,14 ) auf dieser beleuchtet, 18.2 der Gegenstand (5 ) wird zur Bildung mindestens eines Schattens (34 ) beleuchtet, 18.3 die Reflexionen werden gemessen, und 18.4 zur Mehrlinientriangulation der Oberfläche (4 ) und zur Bestimmung des Gegenstands (5 ) werden die Reflexionen ausgewertet. - Verfahren nach Anspruch 18, bei dem die mehreren Strahlungslinien (
11 ,12 ,13 ,14 ) gleichzeitig erzeugt werden. - Verfahren nach Anspruch 18 oder 19, bei dem der Gegenstand (
5 ) zur Schattenbildung aus zwei Richtungen beleuchtet wird. - Verfahren nach Anspruch 20, bei dem die beiden Schatten (
34 ) gleichzeitig gebildet werden. - Verfahren nach einem der Ansprüche 18 bis 21, bei dem die Strahlungslinien (
11 ,12 ,13 ,14 ) und die Schatten (34 ) durch getrennte Strahlungsquellen (31 ,32 ) erzeugt werden. - Verfahren nach einem der Ansprüche 18 bis 22, bei dem die Strahlungslinien und die Schatten gleichzeitig erzeugt und ausgewertet werden.
- Verfahren nach einem der Ansprüche 18 bis 23, bei dem die Strahlungslinien durch Parallelverschiebung einer Strahlungslinie nacheinander erzeugt und ausgewertet werden.
- Verfahren nach einem der Ansprüche 18 bis 21, bei dem die Strahlungslinie und die Schatten durch eine einzige Strahlungsquelle erzeugt werden.
- Verfahren nach einem der Ansprüche 18 bis 25, bei dem die Strahlung an einer von der Strahlungsquelle (
2 ) entfernten Stelle gemessen wird. - Verfahren nach einem der Ansprüche 24 bis 26, bei dem beim Bewegen der Strahlungslinie (
11 ,12 ,13 ,14 ) die Stelle des Empfangs der Strahlung mit bewegt wird. - Verfahren nach einem der Ansprüche 24 bis 27, bei dem zum Bewegen der Strahlungslinie (
11 ,12 ,13 ,14 ) die Strahlungsquelle (2 ) bewegt wird. - Verfahren nach einem der Ansprüche 24 bis 28, bei dem zum Bewegen der Strahlungslinie (
11 ,12 ,13 ,14 ) die Abstrahlrichtung einer vorzugsweise ortsfest gehaltenen Strahlungsquelle (2 ) geändert wird. - Verfahren nach einem der Ansprüche 24 bis 29, bei dem zum Bewegen der Strahlungslinie (
11 ,12 ,13 ,14 ) ein Spiegel verschwenkt wird. - Verfahren nach einem der Ansprüche 18 bis 30, bei dem als Strahlungsquelle ein Laser verwendet wird.
- Verfahren nach einem der Ansprüche 24 bis 31, bei dem nach der Erzeugung der mehreren Linien (
11 bis15 ) der Vorgang wiederholt wird, wobei alle Strahlungslinien (21 bis25 ) gegenüber den beim ersten Durchgang erzeugten Strahlungslinien (11 bis15 ) einen Winkel einschließen. - Verfahren nach einem der Ansprüche 18 bis 32, zur Messung sonstiger Geometriemerkmale, wie Bohrungen, Kanten, Flächenpunkte, Abstände oder dergleichen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006005874.7A DE102006005874C5 (de) | 2005-05-11 | 2006-02-06 | Verfahren zum berührungsfreien Vermessen |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005022605 | 2005-05-11 | ||
DE102005022605.1 | 2005-05-11 | ||
DE102006005874.7A DE102006005874C5 (de) | 2005-05-11 | 2006-02-06 | Verfahren zum berührungsfreien Vermessen |
Publications (3)
Publication Number | Publication Date |
---|---|
DE102006005874A1 true DE102006005874A1 (de) | 2006-11-16 |
DE102006005874B4 DE102006005874B4 (de) | 2012-02-16 |
DE102006005874C5 DE102006005874C5 (de) | 2017-05-18 |
Family
ID=37295553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102006005874.7A Active DE102006005874C5 (de) | 2005-05-11 | 2006-02-06 | Verfahren zum berührungsfreien Vermessen |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102006005874C5 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2530387A1 (de) * | 2011-06-03 | 2012-12-05 | Electrolux Home Products Corporation N.V. | Kochofen mit einer Vorrichtung zur Detektion der dreidimensionalen Form von Lebensmitteln auf einem Lebensmittelträger |
EP2930433A1 (de) * | 2014-04-07 | 2015-10-14 | Indesit Company S.p.A. | Ofen mit scan-vorrichtung |
WO2015185608A1 (de) | 2014-06-05 | 2015-12-10 | BSH Hausgeräte GmbH | Gargerät mit lichtmusterprojektor und kamera |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4873651A (en) * | 1987-04-21 | 1989-10-10 | Case Western Reserve University | Method and apparatus for reconstructing three-dimensional surfaces from two-dimensional images |
US4978224A (en) * | 1987-07-14 | 1990-12-18 | Sharp Kabushiki Kaisha | Method of and apparatus for inspecting mounting of chip components |
JP2767340B2 (ja) * | 1991-12-26 | 1998-06-18 | ファナック株式会社 | 物体の3次元位置・姿勢計測方式 |
US5818594A (en) * | 1994-12-27 | 1998-10-06 | Lukander; Ronald | Method and apparatus for measuring the dimensions of three-dimensional objects such as chips used in pulp manufacture |
DE19852149C2 (de) * | 1998-11-04 | 2000-12-07 | Fraunhofer Ges Forschung | Vorrichtung zur Bestimmung der räumlichen Koordinaten von Gegenständen |
DE10341042A1 (de) * | 2003-09-03 | 2005-03-31 | Claas Fertigungstechnik Gmbh | Vorrichtung und Verfahren zur Vermessung von Bauteilen |
-
2006
- 2006-02-06 DE DE102006005874.7A patent/DE102006005874C5/de active Active
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2530387A1 (de) * | 2011-06-03 | 2012-12-05 | Electrolux Home Products Corporation N.V. | Kochofen mit einer Vorrichtung zur Detektion der dreidimensionalen Form von Lebensmitteln auf einem Lebensmittelträger |
EP3220058A1 (de) * | 2011-06-03 | 2017-09-20 | Electrolux Home Products Corporation N.V. | Kochofen mit einer vorrichtung zur detektion der dreidimensionalen form von lebensmitteln auf einem lebensmittelträger |
EP2930433A1 (de) * | 2014-04-07 | 2015-10-14 | Indesit Company S.p.A. | Ofen mit scan-vorrichtung |
US9933166B2 (en) | 2014-04-07 | 2018-04-03 | Whirlpool Emea S.P.A. | Oven comprising a scanning system |
US10823427B2 (en) | 2014-04-07 | 2020-11-03 | Whirlpool Corporation | Oven comprising a scanning system |
WO2015185608A1 (de) | 2014-06-05 | 2015-12-10 | BSH Hausgeräte GmbH | Gargerät mit lichtmusterprojektor und kamera |
DE102014210672A1 (de) | 2014-06-05 | 2015-12-17 | BSH Hausgeräte GmbH | Gargerät mit Lichtmusterprojektor und Kamera |
US10228145B2 (en) | 2014-06-05 | 2019-03-12 | BSH Hausgeräte GmbH | Cooking device with light pattern projector and camera |
Also Published As
Publication number | Publication date |
---|---|
DE102006005874C5 (de) | 2017-05-18 |
DE102006005874B4 (de) | 2012-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006018558B4 (de) | Verfahren zum automatischen Aufbringen oder Erzeugen und Überwachen einer auf einem Substrat aufgebrachten Struktur mit Ermittlung von geometrischen Abmessungen | |
DE102006015792A1 (de) | Verfahren und System zur Formmessung einer reflektierenden Oberfläche | |
DE102008048963B4 (de) | 3D-Geometrie-Erfassungsverfahren und -vorrichtung | |
EP3044536B1 (de) | Verfahren und vorrichtung zur vermessung von innengewinden eines werkstücks mit einem optischen sensor | |
DE10122313A1 (de) | Verfahren und Vorrichtung zur berührungsfreien Untersuchung eines Gegenstandes, insbesondere hinsichtlich dessen Oberflächengestalt | |
DE102010007396B4 (de) | Verfahren und Vorrichtung zum optischen Inspizieren eines Prüflings mit einer zumindest teilweise reflektierenden Oberfläche | |
DE102014104338B4 (de) | Verfahren und Vorrichtung zur Detektion von Oberflächendeformationen | |
WO2019120557A1 (de) | Optische vorrichtung zum automatischen aufbringen oder erzeugen und überwachen einer auf einem substrat aufgebrachten struktur mit ermittlung von geometrischen abmessungen sowie ein entsprechendes verfahren | |
WO2009083251A1 (de) | Verfahren und vorrichtung zum optischen inspizieren einer oberfläche an einem gegenstand | |
DE102019201272B4 (de) | Vorrichtung, Vermessungssystem und Verfahren zur Erfassung einer zumindest teilweise spiegelnden Oberfläche unter Verwendung zweier Spiegelungsmuster | |
DE102016007586A1 (de) | Neuartige Vorrichtung/en zum automatischen Aufbringen oder Erzeugen und Überwachen einer auf einem Substrat aufgebrachten Struktur mit Ermittlung von geometrischen Abmessungen sowie ein entsprechendes Verfahren | |
DE102004033526A1 (de) | Verfahren und Vorrichtung zur Analyse zumindest partiell reflektierender Oberflächen | |
WO2009083248A1 (de) | Verfahren und vorrichtung zum optischen inspizieren einer oberfläche an einem gegenstand | |
DE102006005874A1 (de) | Vorrichtung und Verfahren zum berührungsfreien Vermessen | |
DE102013208397B4 (de) | Koordinatenmessgerät mit einem zusätzlichen, berührungslos messenden Oberflächenvermessungsgerät | |
EP2847543B1 (de) | Messeinrichtung und verfahren zum vermessen eines messobjekts | |
DE102017211680A1 (de) | Optischer Sensor und Verfahren zur Positionierung, Fokussierung und Beleuchtung | |
DE4011407A1 (de) | Vorrichtung zur quantitativen absolutvermessung der dreidimensionalen koordinaten eines pruefobjekts | |
DE1548206A1 (de) | Verfahren und Vorrichtung zum Messen der Rauhigkeit von Oberflaechen | |
EP1901030A2 (de) | Messanordnung und Verfahren zum Erfassen der Oberfläche von Objekten | |
DE102009015627B4 (de) | Verfahren und Vorrichtung zu Bestimmung von Innendurchmesser, Außendurchmesser und der Wandstärke von Körpern | |
DE10233372B4 (de) | Messsystem und Verfahren zur Erfassung geometrischer Größen | |
DE102017111819B4 (de) | Bohrungsinspektionsvorrichtung | |
DE102004046752B4 (de) | Verfahren zur dreidimensionalen Erfassung von Messobjekten | |
DE10114961A1 (de) | Verfahren und Vorrichtung zur berührungslosen Bestimmung einer Außenkontur und/oder einer Orientierung eines mindestens eine Kante aufweisenden Objekts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8101 | Request for examination as to novelty | ||
8110 | Request for examination paragraph 44 | ||
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R026 | Opposition filed against patent |
Effective date: 20120515 |
|
R082 | Change of representative |
Representative=s name: WITTE, WELLER & PARTNER, DE |
|
R082 | Change of representative |
Representative=s name: WITTE, WELLER & PARTNER, DE |
|
R082 | Change of representative |
Representative=s name: WITTE, WELLER & PARTNER, DE |
|
R081 | Change of applicant/patentee |
Owner name: CARL ZEISS AUTOMATED INSPECTION GMBH, DE Free format text: FORMER OWNER: HGV VOSSELER GMBH & CO. KG, 74613 OEHRINGEN, DE Effective date: 20130205 Owner name: CARL ZEISS AUTOMATED INSPECTION GMBH & CO. KG, DE Free format text: FORMER OWNER: HGV VOSSELER GMBH & CO. KG, 74613 OEHRINGEN, DE Effective date: 20130205 |
|
R082 | Change of representative |
Representative=s name: WITTE, WELLER & PARTNER PATENTANWAELTE MBB, DE Effective date: 20130205 Representative=s name: WITTE, WELLER & PARTNER PATENTANWAELTE MBB, DE Effective date: 20130204 Representative=s name: WITTE, WELLER & PARTNER PATENTANWAELTE MBB, DE Effective date: 20130129 Representative=s name: WITTE, WELLER & PARTNER, DE Effective date: 20130129 Representative=s name: WITTE, WELLER & PARTNER, DE Effective date: 20130205 Representative=s name: WITTE, WELLER & PARTNER, DE Effective date: 20130204 |
|
R006 | Appeal filed | ||
R008 | Case pending at federal patent court | ||
R081 | Change of applicant/patentee |
Owner name: CARL ZEISS AUTOMATED INSPECTION GMBH, DE Free format text: FORMER OWNER: CARL ZEISS AUTOMATED INSPECTION GMBH & CO. KG, 74613 OEHRINGEN, DE |
|
R082 | Change of representative |
Representative=s name: WITTE, WELLER & PARTNER PATENTANWAELTE MBB, DE |
|
R011 | All appeals rejected, refused or otherwise settled | ||
R034 | Decision of examining division/federal patent court maintaining patent in limited form now final | ||
R206 | Amended patent specification |