DE102005047307A1 - Verfahren zur verbesserten Bestimmung der relativen Geschwindigkeit zwischen einem Sensor und einer dazu beabstandeten Oberfläche - Google Patents

Verfahren zur verbesserten Bestimmung der relativen Geschwindigkeit zwischen einem Sensor und einer dazu beabstandeten Oberfläche Download PDF

Info

Publication number
DE102005047307A1
DE102005047307A1 DE200510047307 DE102005047307A DE102005047307A1 DE 102005047307 A1 DE102005047307 A1 DE 102005047307A1 DE 200510047307 DE200510047307 DE 200510047307 DE 102005047307 A DE102005047307 A DE 102005047307A DE 102005047307 A1 DE102005047307 A1 DE 102005047307A1
Authority
DE
Germany
Prior art keywords
function
signal
spatial frequency
sensor
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE200510047307
Other languages
English (en)
Other versions
DE102005047307B4 (de
Inventor
Ubbo Ricklefs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Hochschule Mittelhessen 35390 Gies De
Technische Hochschule Mittelhessen De
Original Assignee
Fachhochschule Giessen Friedberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fachhochschule Giessen Friedberg filed Critical Fachhochschule Giessen Friedberg
Priority to DE200510047307 priority Critical patent/DE102005047307B4/de
Publication of DE102005047307A1 publication Critical patent/DE102005047307A1/de
Application granted granted Critical
Publication of DE102005047307B4 publication Critical patent/DE102005047307B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/68Devices characterised by the determination of the time taken to traverse a fixed distance using optical means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/80Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • G01P3/806Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means in devices of the type to be classified in G01P3/68

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur verbesserten Bestimmung der relativen Geschwindigkeit zwischen einem Sensor und einem Untergrund mit Strukturelementen unterschiedlicher Oberflächen (z.B. Straßen usw.).

Description

  • Die Erfindung betrifft ein Verfahren zur verbesserten Bestimmung der relativen Geschwindigkeit zwischen einem Sensor und einem Untergrund (z.B. Straßen, technischen Oberflächen usw.).
  • Das beschriebene Verfahren betrifft so genannte Korrelations-Geschwindigkeits-Sensoren. In der einfachsten Ausführung dieser Sensoren wird eine Oberfläche gleichzeitig an zwei Stellen, die einen Abstand d voneinander haben, abgetastet. Wird der Sensor relativ zur Oberfläche in Richtung der Mess-Stellen bewegt, dann erscheint ein zufälliges Muster an der Stelle x auf der Oberfläche zuerst an der ersten Messstelle und nach der Zeitspanne t an der zweiten. Den Zeitversatz t kann man über Korrelationsberechnungen bestimmen. Die Geschwindigkeit bestimmt man dann als v = d/t.
  • Bei einer optischen Abbildung der Oberfläche auf zwei Photodioden im Abstand d entspricht dem Abstand d über den Abbildungsmaßstab des Objektivs eine Strecke D in der Objektebene. Bei der Subtraktion der Diodensignale entspricht das Messsignal der Helligkeitsdifferenz zwischen diesen beiden Oberflächenpunkten.
  • Bei einer Relativgeschwindigkeit zwischen Sensor und Oberfläche wird dieser ortsabhängige Helligkeitsunterschied zu einem zeitlichen Signal. Bei einer festen Geschwindigkeit sind also Messort und Messzeitpunkt gleichwertig.
  • Dieses Messverfahren wird zwar überwiegend für optische Sensoren eingesetzt, ist aber nicht auf diese beschränkt. Es lässt sich ebenso z.B. mit kapazitiven oder induktiven Sensoren realisieren.
  • Die Korrelationsbestimmung reagiert empfindlich auf Störungen und ist rechenaufwendig. Zur Geschwindigkeitsmessung setzt die Korrelationsmessung ein zufälliges Signal voraus. Eigenfrequenzen, zu kleine Eingangssignale und Rauschen würden zu Fehlmessungen führen. Die bekannten Ausführungsformen zielen darauf ab, die Messung sicherer und schneller zu machen. Dies geschieht überwiegend dadurch, dass das Ortsfrequenzspektrum eingeengt wird auf ein möglichst enges Ortsfrequenzband und möglichst einfache Verfahren zur Korrelationsbestimmung gesucht werden. Beschrieben sind diese Verfahren z.B. in Fortschritts-Berichten des VDI (C. Berger, Band 1015: Optische Korrelationssensoren zur Geschwindigkeitsmessung technischer Objekte, 2003, ISBN 3-18-501508-8; R. Zeitler, Band 705: Digitale Korrelationsmeßsysteme zur eindimensionalen Geschwindigkeitsmessung fester Oberflächen, 1998, ISBN 3-18-370508-7; K. Michel, Band 301: Ein Beitrag zur Signalverarbeitung von Ortsfiltersensoren, 2001, ISBN 3-18-330121-0).
  • Die Offenlegungsschrift DE 10321888 A1 beschreibt einen Sensor zur dreidimensionalen Erfassung des Profils von einem mit Lateralkomponente relativ zum Sensor bewegten Objekt, wobei es zum Sensor feststehendes, strukturiertes Lichtfeld mit einer Schärfefläche SEO im Objektraum besteht und im Erfassungsvorgang kontinuierlich Bilder aufgenommen werden. Es wird jedem Objektpunkt ein virtuelles Pixel zugeordnet, welches den bewegten Objektpunkt mitverfolgt.
  • Die Patentschrift DE 4009737 C2 betrifft ein Verfahren und ein Gerät zur Messung der Relativbewegung zwischen einem Objekt und einem die Objekt-Oberfläche bildgebend abtastenden Sensorsystem, aus dessen Ausgangssignal mehrere Auswertesignale erzeugt werden, deren gegenseitige Phasenlage einem elektrischen Drehfeld entspricht.
  • Eine weitere Offenlegungsschrift DE 4234768 A1 betrifft eine Vorrichtung zum optischen Abtasten der Oberfläche eines Prüfobjektes, dessen Oberfläche Licht zu reflektieren, zu streuen oder zu brechen imstande ist, mit einem ringförmigen Umfangsreflektor mit einer Spiegelfläche. Der Umfangsreflektor lenkt das aus einer Lichtquelle herrührende Licht auf das Prüfobjekt rings eines Umfangsbandes und umgekehrt um.
  • Die oben genannten Verfahren weisen das Problem auf, dass Messergebnisse nicht ausreichend genau und sicher sind.
  • Nahezu alle Verfahren aus dem Stand der Technik engen die Ortsfrequenzen, die zur Erzeugung des Korrelations-Mess-Signals beitragen, über einem Ortsfrequenz-Bandpass ein. Im Falle zweier eng beieinander liegender Peaks im Spektrum (Darstellung des Sensorsignals nach entsprechender Transformation als Intensität über der Frequenz), wobei ein Peak durch das Ortsfrequenzfilter in Verbindung mit einer zufälligen Oberflächenstruktur das eigentliche Mess-Signal darstellt und der andere durch eine periodische Struktur der Oberfläche hervorgerufen wird. Die herkömmlichen Verfahren können dann das richtige Messsignal (welches als Maß für die zu messende Relativgeschwindigkeit dient) von dem anderen auftretenden Signal in Form eines Nebenmaxima, nicht unterscheiden.
  • Diese „Fehlmessung" oder Situation tritt immer dann auf, wenn Messungen an Strukturen mit eigenem, ausgeprägtem Ortsfrequenzmuster durchgeführt werden und eine dieser Orts frequenzen in den durch die Sensor-Geometrie oder den Sensor-Aufbau vorgegebenen Ortsfrequenzbereich fällt.
  • Im Falle der Verwendung von Prismen mit mehreren Flanken zur Auftrennung eines Bildes, welches von der dem Sensor gegenüber liegenden Oberfläche herrührt, wird diese Ortsfrequenzbereichsfilterung durch die Anzahl und Geometrie der Prismenflanken erzeugt. Solch ein Sensor ist in 1 i.V.m. den Prismenflanken in 2 dargestellt.
  • Durch Gewichtung der Teilbilder, die in dem vorgestellten Beispiel durch die Prismenflanken erzeugt werden, mit unterschiedlichen Koeffizienten und Vorzeichen und anschließender Summation werden Ortsfrequenzbandpässe gebildet. In dem Sensor nach 1 und 2 werden zur Gewichtung nur die Koeffizienten +1 und –1 zugelassen. Das Minus-Zeichen wird dabei durch die Subtraktion erzeugt. Den gerechneten Frequenzgang eines so erzeugten Ortsfrequenzbandpasses zeigt in logarithmischer Darstellung 4.b.
  • Bei einem rein statistischen Ortsfrequenzmuster der Oberfläche zeigt das Differenzsignal dieses Sensors ein oszillierendes Signal, das durch die Relativgeschwindigkeit zwischen Sensor und Oberfläche bestimmt ist.
  • Neben den Problemen bei Oberflächen mit periodischen Ortsfrequenzmustern (s.o.) tritt bei Flächen mit geringem Ortsfrequenzmuster – wie z.B. betonierte Flächen – das Problem auf, dass dieses Signal nicht fortlaufend ist, d.h. es hat Aussetzer, die dann ebenfalls zu Fehlmessungen führen können.
  • Aufgabe der Erfindung
  • Aufgabe der Erfindung ist es daher, ein Verfahren bereitzustellen, das eine genauere und sicherere Messung der relativen Geschwindigkeit zwischen einem Sensor und einer dazu beabstandeten Oberflächenstruktur insbesondere in solchen Fällen ermöglicht, in denen die Messung bezüglich einer Oberfläche mit ausgeprägtem eigenem periodischem Ortsfrequenzmuster gewünscht wird oder das Ortsfrequenzmuster gering ausgeprägt ist.
  • Die gestellte Aufgabe wird erfindungsgemäß durch ein Verfahren nach Anspruch 1 gelöst.
  • Um die bestehenden Probleme zu lösen, wurde ein neues Verfahren entwickelt, mit dessen Hilfe die Messgenauigkeit und Sicherheit wesentlich verbessert wird. Das erfindungsgemäße Verfahren basiert auf der Verwendung von Testfunktionen, insbesondere auf der Verwendung der so genannten Wavelets zur Analyse der Signale von Oberflächensensoren, die aufgrund ihres Aufbaus und/oder ihrer Auswertung eine Ortsfrequenzfilterung durchführen.
  • Wird eine Oberfläche mit einem einzelnen Strukturelement mit der Geschwindigkeit v am Sensor vorbeigeführt, dann erzeugt es durch die Ortsfrequenzfilterung ein Signal mit einem typischen zeitlichen Verlauf Gt(t). Da das Signal Gt(t) über die Geschwindigkeit v mit der relativen Position x(t) des Sensors zur Oberfläche verknüpft ist, kann man das Signal auch als G(x) auffassen, was für die Beschreibung des Verfahrens vorteilhaft ist. Bei einem Sensor nach dem oben beschriebenen Beispiel würde man – je nach Form des einzelnen Strukturelementes – eine Funktion G(x) erhalten, die einem annähernd sinusförmig bis rechteckförmig modulierten Impuls entspricht.
  • Bei dem vorgeschlagenen Verfahren wird das gemessene und aufbereitete Sensorsignal f(x) mit einer („Wavelet-„) Testfunktion w(a·x + x0) multipliziert, die dem erwarteten Signalverlauf G(x) ähnelt und integriert und zwar gemäß der Formel 1 (siehe unten), Formel 1:
    Figure 00060001
    wobei
  • f(x)
    – das Messsignal,
    w(a·x + x0)
    – die Testfunktion
    ist. Die Funktion w(a·x + x0) wird dabei so gewählt, dass sie für ein speziell gewähltes a = a0 und x0 = x00 der Funktion const·G(x) annähernd entspricht. Insbesondere wird die Funktion w(a x + xo) aus dem Bereich der nicht periodischen, d.h. außerhalb eines gewissen x-Bereiches gleich Null definierten, Funktionen gewählt. Aus mathematischer Sicht kann man den Nullpunkt der Funktion G(x) frei wählen. Da G(x) einen modulierten Impuls darstellt, wird man den Nullpunkt z.B. in der Impulsmitte wählen. 7a.
  • G(x) kann man als Produkt einer einhüllenden Funktion mit einer Summe von Trigonometrischen Funktionen auffassen. Die Breite der einhüllenden Funktion entspricht der Breite des Messfensters, die Summe von Trigonometrischen Funktionen der Ortsfrequenzfilterung. Für die Untersuchungen kann auch eine solche Funktion w(a·x + x0) einsetzen, bei der man die Summe der Trigonometrischen Funktionen beibehält, die einhüllende Funktion aber schmäler wählt.
  • Der Parameter a beschreibt die Spreizung der Testfunktion w(a·x + x0) und x0 seine Position relativ zum Messsignal. Das Integral wird durch Verschieben für alle x0 berechnet. Für ein fest gewähltes a = a0 erhält man so in Abhängigkeit von x0 eine einzelne Funktion W(a0, x0). Variiert man zusätzlich die Spreizung a der Testfunktion, so erhält man eine Abfolge von Funktionen W(a, x0). Wenn an der Stelle x0 für ein a = amax die Amplitude W(a, x0) maximal wird, bedeutet das, dass die dabei vorliegende Spreizung amax zunächst bis auf eine Geometrie abhängige Konstante als die momentane Geschwindigkeit angesehen werden kann (s. 8).
  • Im nächsten Schritt muss getestet werden, ob diese Geschwindigkeit durch eine periodische Oberflächenstruktur vorgetäuscht wurde und damit eine Fehlmessung darstellt. Während ein einzelnes Strukturelement einen Signalzug G(x) erzeugt, der der Breite des Meßfensters entspricht, erzeugt eine periodische Oberflächenstruktur eine fortlaufende Oszillation, die nicht an die Anzahl der Gitterflanken gebunden ist. Um sicherzustellen, dass amax tatsächlich der momentanen Geschwindigkeit entspricht, wird das gemessene Signal mit einer etwas längeren Funktion wl(amax·x + x0), d.h. mit zusätzlichen Wellenzügen, erneut untersucht und liefert die Funktion Wl(a, xo).
  • Formel 2
    Figure 00070001
  • Zur Bestimmung der Funktion wl(a·x + x0) geht man wieder von der Funktion G(x) aus. G(x) kann man als Produkt einer einhüllenden Funktion mit einer Summe von Trigonometrischen Funktionen auffassen. Die Funktion wl(a·x + x0) bildet man, indem man die einhüllende Funktion spreizt und die Summe der Trigonometrischen Funktionen beibehält (7b)
  • Bleibt das Untersuchungsergebnis Wl(amax, x0) gegenüber W(amax, x0) nahezu unverändert bedeutet das, dass das Signal maßgeblich durch eine periodische Oberflächenstruktur erzeugt wurde. Damit muss amax als Messwert für die Geschwindigkeit verworfen werden. Damit der Messwert gültig ist, müssen wl(amax, x0) und W(amax, x0) deutlich verschieden von einander sein, wobei die Höhe des Unterschieds davon abhängig ist, um wie viel breiter die Funktion wl(a·x + x0) gegenüber dem Messfenster gewählt wurde.
  • Als nächstes untersucht man die Funktion W(a, x0) auf Nebenmaxima. Wird für ein a = amax2 ein solches gefunden, dann wird die Gültigkeit dieses amax Wertes als Geschwindigkeitsmesswert gemäß der oben beschriebene Untersuchung wiederholt. Wird das Signal jetzt – wie gefordert – wesentlich durch zufällige Strukturen erzeugt, dann bricht die Amplitude der Funktion Wl(amax2, x0) deutlich gegenüber W(amax2, xo) ein. Damit lässt dieses Ergebnis auf die tatsächliche Geschwindigkeit schließen.
  • Anstelle des hier beschriebenen optischen Verfahrens lässt sich das Verfahren auch z.B. mit einer Abfolge von kapazitiven oder induktiven Sensoren realisieren, die entsprechend verschaltet werden.
  • Um Rechenzeit einzusparen, kann die Geschwindigkeitsmessung nach den bisher üblichen Analyseverfahren ermittelt werden und darauf aufsetzend die erfindungsgemäßen Optimierungsberechnungen durchgeführt werden, aus welcher dann die richtige Relativgeschwindigkeit bestimmt wird.
  • Da G(x) und damit w(a·x + x0) auch durch eine Summe von Wavelets dargestellt werden kann, kann es sinnvoll sein, die entsprechende Untersuchung mit einzelnen bzw. einer Teilsumme dieser Wavelets durchzuführen. Dabei würde man solche Wavelets auswählen, die den wesentlichen Teil der Funktion G(x) beschreiben.
  • Eine Rechteckfolge mit alternierenden Vorzeichen kann man als Summe trigonometrischer Funktionen darstellen. Deshalb kann man auch darüber die Testfunktion w(a·x + x0) bilden (6). Diese Funktion hat den Vorteil, dass sie sehr einfach auf einem Rechner umgesetzt werden kann. Die Einhüllende der Testfunktion ist in diesem Fall ein Rechteckpuls mit der Breite der Rechteckfolge.
  • Dem Fachmann ist auch unmittelbar ersichtlich, dass statt der unter Formel 2 dargestellten Integration auch eine vergleichbare Korrelation mit einer Integration über weitere Grenzen X mit entsprechend höherer Normierung l/X erfolgen kann, um das oben genannte Problem der Identifikation des „falschen" Maximums zu lösen.
  • Natürlich könnten aber auch die bekannten Verfahren der Waveletanalyse eingesetzt werden, die aber in der Regel einen erhöhten Rechenaufwand bedeuten.
  • Der Gegenstand der Erfindung wird in den nachfolgenden 1 bis 8, sowie in der Formel 1 bis 2 dargestellt:
  • 1 stellt eine Vorrichtung nach dem Stand der Technik dar.
  • 2 zeigt den Ablenkmechanismus des durchlaufenden Signals durch das Optiksystem.
  • 3 zeigt ein Ortsfrequenz gefiltertes Signal (integrales Differenzsignal).
  • 4a zeigt ein ungefiltertes Powerspektrum einer Oberfläche.
  • 4b zeigt die Übertragungsfunktion des Systems in der logarithmischen Darstellung.
  • 4c zeigt ein Powerspektrum des Sensorsignals an einer Oberfläche.
  • 5 bildet ein typisches Messsignal einer Oberflächenstruktur ab.
  • 6 stellt einfache Testfunktion w(a·x + x0) und wl(a·x + x0) dar.
  • 7a zeigt eine typische Testfunktion w(a·x + x0) 7b zeigt eine typische Testfunktion wl(a·x + x0)
  • 8 zeigt eine typische Verlauf der Funktionen W(a, x0) und Wl(a, x0)
  • Die Abbildungen werden im Folgenden näher beschrieben.
  • In 1 ist die Vorrichtung aus dem Stand der Technik abgebildet, mit deren Hilfe die Messungen der relativen Geschwindigkeit durchgeführt werden.
  • Die Vorrichtung besteht aus einer Lampe, einer Blende, einem Gitter mit Optik, einem Sensor, zwei Objektiven, einem Spiegel sowie Vorverstärker mit Photodioden.
  • In 2 ist das Signalverlaufen durch das Optiksystem dargestellt. Die Oberflächenstruktur wird über das erste (telezentrisches) Objektiv auf ein Prismengitter abgebildet. Das Prismengitter bewirkt eine Feldteilung. Über ein weiteres Objektiv werden die Prismen auf zwei Photodioden abgebildet. Jede zweite Prismenflanke lenkt den zugehörigen Teil-Abbildungsstrahlengang auf die obere Photodiode, jede dazwischen liegende Prismenflanke lenkt den zugehörigen Teil-Abbildungsstrahlengang auf die untere Photodiode. Das verstärkte Differenzsignal dieser Dioden ist das Messsignal dieses Sensors, das anschließend noch zusätzlich gefiltert und aufbereitet wird. Jede Diode summiert alle ihr zugeordneten Bildanteile.
  • Ein typisches integrales Differenzsignal, welches aus dem Stand der Technik bekannt ist, ist in 3 dargestellt. Das Signal zeigt beim Verschieben des Sensors den typischen oszillierenden Verlauf. Bei gegebener Verschiebegeschwindigkeit v erhält man ein oszillierendes Signal der Frequenz f, das der Ortsfrequenz-Bandpass gefilterten Oberflächenstruktur entspricht. Die ausgezeichnete Frequenz des oszillierenden Signals entspricht dem maximalen Korrelationswert. Für das Beispiel kann man in einer einfachen Auswertung aus der Anzahl der gezählten Gitterflanken, Nulldurchgänge oder Pulse (N) des Signals bei gegebener Gitterkonstante g des Prismengitters und bei bekannter Vergrößerung M des abbildenden Objektivs auf die Verschiebung Δx bzw. Geschwindigkeit v schließen.
  • Dies erfolgt gemäß des Zusammenhangs:
    Pulszahl N → Weg: Δx = (g ΔN)/M und
    Frequenz f → Geschwindigkeit: v = (g ΔN/Δt)/M
  • Bei dem im 2 dargestellten Gitter mit 5 rechten und 5 linken Flanken, der Addition der 5 Teilbilder der linken und der rechten Flanken und anschließender Differenz dieser Teilsummen, erzeugt ein einzelnes Strukturelement der Oberfläche einen Wellenzug mit 5 Sinusperioden. Die Abfolge dieser Additionen und Subtraktionen entspricht einer Ortsfrequenzfilterung.
  • In 4a (oben) ist ein typisches Powerspektrum einer Oberfläche dargestellt.
  • 4b zeigt die Übertragungsfunktion des Ortsfrequenzfilters des Sensors. Wird das Powerspektrum nach 4a mit gefaltet mit der Übertragungsfunktion des Sensors, erhält man das Powerspektrum nach 4c.
  • Man erkennt in der 4c in der Mitte bei 400 rel. Einheiten ein Maximum. Dieses (d.h. dessen Lage bzgl. der Frequenzachse) ist begründet in der gewählten Anzahl und Geometrie der Prismen. Bei einer höheren Prismenzahl würde der Peak höher und schmaler. Ein periodisches Ortsfrequenzmuster der Oberfläche führt hier im Powerspektrum zu einem zweiten Peak bei 500 rel. Einheiten. Liegen beide Peaks eng beieinander, so kann die Elektronik nicht zwischen dem richtigen und dem falschen unterscheiden. Auch kommt es vor, dass der Peak der periodischen Struktur höher ist als der des eigentlichen Geschwindigkeitssignals.
  • In dieser Situation greift das neuartige Verfahren ein.
  • In 5 ist die Funktion W(a, x0) als Funktion von x0 für verschiedene a gemäß Formel 1 dargestellt. Verwendet wurde ein typisches gemessenes Signal f(x) mit einer Testfunktion w(a·x + x0) gemäß 6.
  • In 6 ist eine an die Sensorgeometrie angepasste vereinfachte Testfunktion w(a·x + x0) mit dem Spreizfaktor a und als Funktion von x dargestellt.
  • 1
    Spiegel
    2
    Blende
    3
    Gitter mit Optik
    4
    Photodioden mit Vorverstärker
    5
    Lampe
    6
    Straßenoberfläche
    7
    Objektiv

Claims (12)

  1. Verfahren zur Bestimmung der relativen Geschwindigkeit zwischen einem Sensor an der Stelle x(t) relativ zu einer dazu beabstandeten Struktur, vorzugsweise Oberfläche mit unterschiedlichen Strukturelementen, unter Einsatz eines geeigneten Sensors, welcher eine Aufteilung (Prismenflanken, Teilempfänger, strukturierte Empfänger, etc) des von der Struktur der Oberfläche erzeugten Signals in Teilsignale fix vorsieht, welcher die Teilsignale gewichtet und summiert und dabei die Teilsignale in ein Ortsfrequenz gefiltertes Signal f(x) überführt, dadurch gekennzeichnet, dass dieses so erzeugte Signal mit einer Testfunktion w(a·x + x0) gemäß Formel 1 integriert wird, dass die Testfunktion über einen Parameter a gespreizt und über einen zweiten Parameter x0 verschoben werden kann.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Funktion W(a, x0) nach Formel 1, die sich durch die Multiplikation des Messsignals und der Testfunktion und anschließender Integration ergibt, gebildet wird.
  3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass sich an einer Stelle x0 ein Schätzwert für die Relativgeschwindigkeit aus der Maximierung der Funktion W(a, xo) durch Variation des Spreizfaktors a in der Testfunktion w(a·x + x0) unmittel- oder mittelbar ergibt.
  4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die Testfunktion die Antwort des Sensors auf eine singuläre Oberflächenstruktur darstellt.
  5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die Testfunktion durch eine Überlagerung der Testfunktionen nach Anspruch 4 entsteht.
  6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass die Testfunktion durch das Produkt aus einer einhüllenden Funktion und einer Summe von trigonometrischen Funktionen gebildet wird, wobei die Einhüllende dem Messfenster des Sensors entspricht und die Summe der trigonometrischen Funktionen der Ortsfrequenzfilterung.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die einhüllende Funktion schmaler als das Messfenster gehalten wird.
  8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Testfunktion w eine Wavelet-Funktionfolge mit einem Spreizfaktor a und einer Verschiebung x0 ist.
  9. Verfahren nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass die Gültigkeit des Schätzwertes der Geschwindigkeit, mit einer zweiten Testfunktion wl(a·x + x0) durch Bildung der Funktion Wl(a, x0) nach Formel 2 überprüft wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass sich die zweite Testfunktion aus dem Produkt einer einhüllenden Funktion mit einer Funktion, die die Ortsfrequenzfilterung beschreibt, zusammensetzt und die einhüllende Funktion so bestimmt wird, dass die Breite dieser Funktion größer als die Breite ist, die dem Meßfenster des Sensors entspricht.
  11. Verfahren nach Anspruch 8 und 9, dadurch gekennzeichnet, dass W(a, x0) mit Wl(a, x0) verglichen wird und dass für den Fall, dass die beiden Werte nahezu übereinstimmen, der vorher bestimmte Geschwindigkeitswert verworfen wird, weil dies bedeutet, dass das Signal maßgeblich durch eine periodische Oberflächenstruktur erzeugt wurde.
  12. Verfahren nach Anspruch 1 bis 11, dadurch gekennzeichnet, dass die Funktion W(a, x0) an der Stelle x0 in Abhängigkeit von a auf Nebenmaxima untersucht wird. Wird für ein a ein solches Nebenmaximum gefunden und wird das Signal jetzt – wie gefordert – wesentlich durch zufällige Strukturen erzeugt, dann bricht die Amplitude der Funktion Wl(a, x0) deutlich gegenüber W(a, x0) ein. Dieses Ergebnis lässt damit auf die tatsächliche Geschwindigkeit schließen.
DE200510047307 2005-09-30 2005-09-30 Verfahren zur verbesserten Bestimmung der relativen Geschwindigkeit zwischen einem Sensor und einer dazu beabstandeten Oberfläche Expired - Fee Related DE102005047307B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200510047307 DE102005047307B4 (de) 2005-09-30 2005-09-30 Verfahren zur verbesserten Bestimmung der relativen Geschwindigkeit zwischen einem Sensor und einer dazu beabstandeten Oberfläche

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510047307 DE102005047307B4 (de) 2005-09-30 2005-09-30 Verfahren zur verbesserten Bestimmung der relativen Geschwindigkeit zwischen einem Sensor und einer dazu beabstandeten Oberfläche

Publications (2)

Publication Number Publication Date
DE102005047307A1 true DE102005047307A1 (de) 2007-04-05
DE102005047307B4 DE102005047307B4 (de) 2014-10-30

Family

ID=37852759

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200510047307 Expired - Fee Related DE102005047307B4 (de) 2005-09-30 2005-09-30 Verfahren zur verbesserten Bestimmung der relativen Geschwindigkeit zwischen einem Sensor und einer dazu beabstandeten Oberfläche

Country Status (1)

Country Link
DE (1) DE102005047307B4 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4009737A1 (de) * 1990-03-26 1991-10-02 Brand Bernhard Dipl Ing Fh Verfahren und messaufnehmer zum beruehrungslosen erfassen von bewegungen und/oder geschwindigkeiten eines messobjektes
US5101112A (en) * 1989-04-04 1992-03-31 Secom Co., Ltd. Method of and apparatus for measuring a velocity vector by use of a spatial filter
DE4244521A1 (de) * 1992-12-30 1994-07-07 H J Mueller Maschinenfabrik Gm Verfahren und Vorrichtung zum berührungslosen Bestimmen des Bewegungszustandes eines länglichen Objektes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4234768A1 (de) * 1992-10-15 1994-04-21 Birkle Sensor Gmbh & Co Kg Vorrichtung zum optischen Abtasten der Oberfläche eines Prüfobjektes
DE10321888A1 (de) * 2003-05-07 2004-12-02 Universität Stuttgart Messverfahren und Sensor, insbesondere zur optischen Abtastung bewegter Objekte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101112A (en) * 1989-04-04 1992-03-31 Secom Co., Ltd. Method of and apparatus for measuring a velocity vector by use of a spatial filter
DE4009737A1 (de) * 1990-03-26 1991-10-02 Brand Bernhard Dipl Ing Fh Verfahren und messaufnehmer zum beruehrungslosen erfassen von bewegungen und/oder geschwindigkeiten eines messobjektes
DE4244521A1 (de) * 1992-12-30 1994-07-07 H J Mueller Maschinenfabrik Gm Verfahren und Vorrichtung zum berührungslosen Bestimmen des Bewegungszustandes eines länglichen Objektes

Also Published As

Publication number Publication date
DE102005047307B4 (de) 2014-10-30

Similar Documents

Publication Publication Date Title
EP3324203B1 (de) Laserdistanzmessmodul mit polarisationsanalyse
DE69029723T2 (de) Verfahren zur bestimmung von grösse und geschwindigkeit kugelförmiger teilchen unter benutzung der phase und intensität gestreuten lichtes
DE112010004023B4 (de) Filmdickenmessvorrichtung und Filmdickenmessverfahren
DE112005001873B4 (de) Stroboskoplicht- und Laserstrahlerfassung für einen Laserempfänger
EP2411787B1 (de) Vorrichtung zum bestimmen von partikelngrössen
WO2013024167A1 (de) Verfahren und vorrichtung zur bestimmung von charakteristischen eigenschaften eines transparenten teilchens
DE68908094T2 (de) Teilchenmessvorrichtung.
DE2210681C3 (de) Einrichtung zur berührungslosen Messung
DE102014011480B3 (de) Verfahren zum Kalibrieren eines Teilchenbild-Velozimeters und Teilchenbild-Velozimeter
DE69927367T2 (de) Optoelektronische Formerfassung durch chromatische Kodierung mit Beleuchtungsebenen
DE102007038013B4 (de) Verfahren zur optischen Messung von Geschwindigkeiten und Sensor zur optischen Messung von Geschwindigkeiten
DE602005002348T2 (de) Verfahren zur messung von teilcheneigenschaften mittels interferenzstreifenanalyse und entsprechende vorrichtung
DE69002085T2 (de) Verfahren und Vorrichtung zur Messung der Geschwindigkeit einer Flüssigkeit.
DE60036467T2 (de) Verfahren und vorrichtung zur dopplergeschwindigkeitsmessung
DE102005042954A1 (de) Vorrichtung und Verfahren zur Bestimmung von Geschwindigkeitsprofilen in beliebig gerichteten Strömungen
DE3645132C2 (de)
EP0491749B1 (de) Vorrichtung zur absoluten zweidimensionalen positionsmessung
WO2014026999A1 (de) VERFAHREN ZUR BESTIMMUNG DER GRÖßENSPEKTREN UND DER KONZENTRATION VON PARTIKELN IN EINER MEHRPHASIGEN FLÜSSIGKEITSSTRÖMUNG UND KAVITATIONSKANAL
WO2017037248A1 (de) Ortsfiltermessverfahren und vorrichtung zur ortsfiltermessung
DE102006041279A1 (de) Verfahren zur Bestimmung der Geschwindigkeit und der Größe eines Teilchens mittels einer für die Laser-Doppler-Velocimetrie geeigneten Anordnung
DE4408226A1 (de) Meßeinrichtung zur prozeßgekoppelten Bestimmung der Rauheit technischer Oberflächen durch Auswertung di- oder polychromatischer Specklemuster
DE102005047307B4 (de) Verfahren zur verbesserten Bestimmung der relativen Geschwindigkeit zwischen einem Sensor und einer dazu beabstandeten Oberfläche
DE60202435T2 (de) Optische Methode und Vorrichtung zur Messung geometrischer Grössen
DE10256725B3 (de) Sensor, Vorrichtung und Verfahren zur Geschwindigkeitsmessung
DE102007063355B4 (de) Verfahren zur optischen Messung von Geschwindigkeiten nach dem Ortsfrequenzfilterverfahren und Sensor zur optischen Messung von Geschwindigkeiten

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8122 Nonbinding interest in granting licences declared
8127 New person/name/address of the applicant

Owner name: TECHNISCHE HOCHSCHULE MITTELHESSEN, 35390 GIES, DE

R081 Change of applicant/patentee

Owner name: TECHNISCHE HOCHSCHULE MITTELHESSEN, DE

Free format text: FORMER OWNER: FACHHOCHSCHULE GIESSEN-FRIEDBERG, 35390 GIESSEN, DE

Effective date: 20110407

R082 Change of representative

Representative=s name: PATENTANWAELTE OLBRICHT, BUCHHOLD, KEULERTZ PA, DE

R012 Request for examination validly filed
R012 Request for examination validly filed

Effective date: 20120928

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee