DE102005020510A1 - Verbundelement, insbesondere Fensterscheibe - Google Patents

Verbundelement, insbesondere Fensterscheibe Download PDF

Info

Publication number
DE102005020510A1
DE102005020510A1 DE200510020510 DE102005020510A DE102005020510A1 DE 102005020510 A1 DE102005020510 A1 DE 102005020510A1 DE 200510020510 DE200510020510 DE 200510020510 DE 102005020510 A DE102005020510 A DE 102005020510A DE 102005020510 A1 DE102005020510 A1 DE 102005020510A1
Authority
DE
Germany
Prior art keywords
glass
thermoplastic polyurethane
plasma
din
und
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200510020510
Other languages
English (en)
Inventor
Klaus Hilmer
Joachim Schuessler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE200510020510 priority Critical patent/DE102005020510A1/de
Priority to PCT/EP2006/061886 priority patent/WO2006117325A1/de
Priority to JP2008508228A priority patent/JP2008539153A/ja
Priority to EP06754895A priority patent/EP1877349A1/de
Priority to CNA2006800147029A priority patent/CN101166698A/zh
Priority to KR1020077027605A priority patent/KR20080003007A/ko
Priority to US11/912,775 priority patent/US7771829B2/en
Publication of DE102005020510A1 publication Critical patent/DE102005020510A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/326Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6293Plasma or corona discharge
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31598Next to silicon-containing [silicone, cement, etc.] layer
    • Y10T428/31601Quartz or glass

Abstract

Artikel, enthaltend Glas, dadurch gekennzeichnet, dass zumindest ein Teil der Oberfläche des Glases ohne chemischen Haftvermittler haftend mit thermoplastischem Polyurethan verbunden ist.

Description

  • Die Erfindung betrifft Artikel enthaltend bevorzugt transparentes, d.h. zumindest teilweise für optische Strahlung durchlässiges Glas, bevorzugt anorganisches Glas, wobei zumindest ein Teil der Oberfläche des Glas ohne chemischen Haftvermittler haftend mit thermoplastischem Polyurethan verbunden ist. Des weiteren bezieht sich die Erfindung auf Verfahren zur Herstellung eines Artikels enthaltend bevorzugt anorganisches Glas sowie daran ohne chemischen Haftvermittler haftend verbunden thermoplastisches Polyurethan, dadurch gekennzeichnet, dass die Oberfläche des Glas zumindest abschnittsweise plasmabehandelt wird und dass anschließend das thermoplastische Polyurethan mit der plasmabehandelten Oberfläche des Glas in Kontakt gebracht wird, bevorzugt in geschmolzenem Zustand mit der plasmabehandelten Oberfläche in Kontakt gebracht wird, bevorzugt mittels Spritzguss angespritzt wird.
  • Artikel auf der Basis von Glas sind allgemein bekannt und vielfältig beschrieben. Bei vielen Anwendungen, z.B. Fensterscheiden, Blinkergehäsen oder sonstigen transparenten Abdeckungen, ist es wünschenswert, einen haftenden Verbund von z.B. Dichtungsmaterial auf dem Glas sicher zu gewährleisten.
  • Aufgabe der vorliegenden Erfindung war es somit, eine haftende Materialkombination, bevorzugt eine Fensterscheibe, beispielsweise für Automobile, Flugzeuge oder Bauwerke, insbesondere Automobil Heck- oder Seitenscheibe, oder Abdeckung einer Lichtquelle, bevorzugt Scheinwerfer und/oder Blinkergehäuse besonders bevorzugt Automobilscheinwerfer- und/oder Blinkergehäuse, auf der Basis von Glas zu entwickeln, bei denen eine ausreichende, bevorzugt sehr gute Haftung zwischen dem Glas und einer weiteren, mit dem Glas in Kontakt stehenden Komponenten erreicht wird.
  • Diese Aufgaben konnten durch die eingangs dargestellten Artikel gelöst werden.
  • „Ohne chemischen Haftvermittler" bedeutet erfindungsgemäß, dass zwischen dem Glas und dem thermoplastischen Polyurethan, in dieser Schrift auch als TPU bezeichnet keine weitere Komponente (Haftvermittler), d.h. keine Komponente, die sich von dem Glas oder dem thermoplastischen Polyurethan unterscheidet, insbesondere kein Klebstoff vorliegt.
  • Die erfindungsgemäßen Artikel zeichnen sich dadurch aus, dass eine direkte Haftung zwischen dem Glas und dem thermoplastischen Polyurethan vorliegt. Ein solcher Verbund war bislang nicht zugänglich und entsprechend nicht bekannt. Dadurch sind erstmalig direkte Verbunde möglich, die den Einsatz in den eingangs dargestellten Anwendungen mit breiten Variations- und insbesondere auch Konstruktions- und Designmöglichkeiten erlauben. Die direkte Materialkombination eröffnet gerade durch ihren direkten haftenden Verbund, d.h. ohne Verwendung von chemischen Haftvermittlern, Lösungsmitteln, insbesondere Klebstoffen für viele Anwendungen neue, bislang nicht bekannte qualitative Veredelungsmöglichkeiten.
  • Bevorzugt handelt es sich bei den Artikeln somit um Fensterscheiben, beispielsweise für Möbel, Automobile, Flugzeuge oder Bauwerke, insbesondere Automobil Front-, Heck- oder Seitenscheiben, insbesondere bevorzugt Automobil Heck- oder Seitenscheiben, oder Abdeckungen von Lichtquellen, bevorzugt Scheinwerfer- und/oder Blinkergehäuse besonders bevorzugt Automobilscheinwerfer- und/oder Blinkergehäuse. Bevorzugt handelt es sich bei dem Glas um einen flächigen Formkörper. Bevorzugt bedeckt das thermoplastische Polyurethan nur einen Teil der Oberfläche des Glas. Bevorzugt ist das thermoplastische Polyurethan am Rand des Glas angeordnet. Bevorzugt stellt das thermoplastische Polyurethan die Dichtung der Fensterscheibe, insbesondere den oben genannten Fensterscheiben, oder der Abdeckung von Lichtquellen, insbesondere den oben genannten Gehäusen dar.
  • Die erfindungsgemäße Materialkombination bietet den Vorteil einer edlen Haptik, wobei zudem eine optisch aufwändige Oberfläche darstellbar ist, weil TPU eine sehr gute Abbildungsleistung von Werkzeugoberflächen hat. TPU zeichnet sich weiterhin durch eine sehr geringe Oberflächenverschmutzung aus und kann farblich über Farbkonzentrate in weiten Bereichen variiert werden. Dabei kann das thermoplastische Polyurethan bevorzugt UV-Stabilisatoren enthalten. Bevorzugt ist außerdem thermoplastisches Polyurethan, das auf aliphatischen Isocyanaten basiert. Bevorzugt weist das thermoplastische Polyurethan eine Shore-A Härte kleiner 95 auf, wobei das thermoplastische Polyurethan bevorzugt keine Weichmacher enthält. Besonders bevorzugt ist thermoplastisches Polyurethan, das eine Shore-Härte von 45 A bis 80 A, eine Zugfestigkeit nach DIN 53504 von größer 15 MPa, eine Weiterreißfestigkeit nach DIN 53515 von größer 30 N/mm und einen Abrieb nach DIN 53516 von kleiner 250 mm3 aufweist.
  • Der Schälwiderstand bezüglich der Haftung des thermoplastischen Polyurethans an dem Glas nach DIN EN 1464 beträgt bevorzugt mindestens 1 N/mm, besonders bevorzugt mindestens 2 N/mm.
  • Weiteren Ausführungen zu dem Glas und dem thermoplastischen Polyurethan befinden sich an späterer Stelle dieser Schrift.
  • Eine weitere Aufgabe bestand darin, ein möglichst effizientes und effektives Verfahren zu entwickeln, mit dem die eingangs dargestellten Artikel hergestellt werden können, mit dem insbesondere hohe Variations- und insbesondere auch Konstruktions- und Designmöglichkeiten bei Fensterscheiben, beispielsweise für Möbel, Automobile, Flugzeuge oder Bauwerke, insbesondere Automobil Front-, Heck- oder Seitenscheiben, insbesondere bevorzugt Automobil Heck- oder Seitenscheiben, oder Abdeckungen von Lichtquellen, bevorzugt Scheinwerfer- und/oder Blinkergehäuse besonders bevorzugt Automobilscheinwerfer- und/oder Blinkergehäuse ermöglicht werden.
  • Diese Aufgaben konnten durch das eingangs dargestellte Verfahren gelöst werden. Das erfindungsgemäße Verfahren ermöglicht durch den Einsatz der Plasmabehandlung der Oberfläche des Glas erstmals den direkten haftenden Verbund zwischen dem Glas und dem TPU. Gerade durch diesen direkten Auftrag des TPU auf das Glas ergeben sich neue Möglichkeiten in Design und Konstruktion der bevorzugten Artikel.
  • Als TPU können allgemein bekannte TPU-Typen eingesetzt werden. Bevorzugt werden die TPU mittels Spritzguss auf das Glas aufgetragen. Bevorzugt wird somit das TPU mittels Spritzguss auf die plasmabehandelte Oberfläche des Glas aufgetragen. Besonders bevorzugt wird das thermoplastische Polyurethan mittels Spritzguss auf die plasmabehandelte Oberfläche bevorzugt des Randes des Glas aufgetragen.
  • Bevorzugt wird in dem eingangs dargestellten erfindungsgemäßen Verfahren als TPU thermoplastisches Polyurethan mit einer Shore-A Härte kleiner 95 eingesetzt, wobei das thermoplastische Polyurethan bevorzugt keine Weichmacher enthält. Besonders bevorzugt wird als TPU thermoplastisches Polyurethan eingesetzt, das eine Shore-Härte von 45 A bis 80 A, eine Zugfestigkeit nach DIN 53504 von größer 15 MPa, eine Weiterreißfestigkeit nach DIN 53515 von größer 30 N/mm und einen Abrieb nach DIN 53516 von kleiner 250 mm3 aufweist.
  • Unter Plasmabehandlung wird vorliegend jegliche Form der Plasmabehandlung verstanden. Dazu zählen atmosphärische Plasmabehandlungen und Niederdruckplasmabehandlungen. Bei den atmosphärischen Plasmabehandlungen wird unterschieden nach der Art der Erzeugung eines Plasmastrahls mittels einer Hochfrequenzbogenentladung, einer Koronaentladung oder einer Hochfrequenzanregung. Atmosphärische Plasmabehandlung bedeutet dabei, dass die Behandlung der Oberfläche an atmosphärischen Umgebungsbedingungen stattfindet, also keine besonderen Vorkehrungen an eine Niederdruckumgebung getroffen werden müssen.
  • Die atmosphärische Plasmabehandlung mittels Hochfrequenzbogenentladung ist vorliegend bevorzugt. Diese wird in den Schriften EP 0 761 415 , EP 0 986 939 , EP 1 067 829 , EP 1 236 380 und EP 1 335 641 dargestellt. Apparaturen zur Plasmabehandlung sind beispielsweise bei Plasmatreat GmbH, Bisamweg 10, 33803 Steinhagen erhältlich.
  • Bevorzugt wird ein Plasma in einer Plasmaquelle mittels Hochspannungsentladung erzeugt. Dieses Plasma wird durch eine Plasmadüse hindurch geleitet und mit der Oberfläche des Glas in Kontakt gebracht, wobei die Plasmaquelle in einem Abstand zwischen 2 mm und 25 mm mit einer Geschwindigkeit zwischen 0,1 m/min und 400 m/min, bevorzugt zwischen 0,1 m/min und 200 m/min, besonders bevorzugt zwischen 0,2 m/min und 50 m/min relativ zur Oberfläche des Glas bewegt wird, die dadurch plasmabehandelt wird. Die Plasmabehandlung dauert bevorzugt zwischen 1 ms und 100 s. Der Gasfluss kann bis zu 20 m3/h pro Düse betragen. Es kommen stehende oder rotierende Plasmadüsen in Betracht. Oberflächentemperatur des Bauteils kann zwischen 5°C und 250°C, bevorzugt zwischen 5°C und 200°C betragen.
  • In der beigefügten einzigen Figur wird der Aufbau und die Funktionsweise einer beispielhaften und bevorzugten Plasmadüse dargestellt.
  • Die in der Figur gezeigte Plasmadüse 10 weist ein Düsenrohr 12 mit einer am vorderen Ende angeordneten Düsenöffnung 14 auf. Die Düsenöffnung 14 besteht zumindest an der Innenseite aus einem elektrisch leitenden Material, insbesondere aus einem Metall. Das Düsenrohr 12 besteht ebenfalls bevorzugt aus Metall, jedoch können auch nicht elektrisch leitende Materialien verwendet werden. Am der Düsenöffnung 14 entgegengesetzten Ende weist das Düsenrohr 12 einen Gaseinlass 16 für ein Arbeitsgas auf, beispielsweise für Druckluft.
  • Als Arbeitsgase kommen auch andere Gase oder Gasmischungen als Luft oder Formiergas in Frage. Bevorzugt ist dabei, dass ein Anteil eines im angeregten Zustand reaktiven Gases vorhanden ist. So kann beispielsweise ein reines Sauerstoffgas, ein Gemisch aus einem Edelgas wie Argon und aus Sauerstoff oder ein Gemisch aus Wasserstoff und Stickstoff (Formiergas) verwendet werden. Nicht zuletzt aus verfahrenstechnischen Gründen ist jedoch Luft bevorzugt, da dieses Arbeitsgas sehr einfach verfügbar ist und oftmals keine zusätzlichen Installationen erfordert.
  • Für die Betriebsweise der Vorrichtung 10 hat es sich als sehr vorteilhaft herausgestellt, dass das Arbeitsgas in Form eines Wirbels durch das Düsenrohr strömt. Dennoch ist die vorliegende Erfindung nicht darauf beschränkt, dass ein solcher Wirbel während des Betriebes der Vorrichtung erzeugt wird.
  • Im in der Figur dargestellten Ausführungsbeispiel ist in der Vorrichtung 10 eine bevorzugt aus einem elektrisch leitenden Material bestehende Zwischenwand 18 vorgesehen, die den Gaseinlass 16 vom Innenraum des Düsenrohres 12 abtrennt. Für ein gezieltes Einlassen des Arbeitsgases weist die Zwischenwand 18 einen Kranz von schräg in Umfangsrichtung angestellten Bohrungen 20 auf und bildet so eine Dralleinrichtung für das Arbeitsgas. Der strömungsabwärts gelegene Teil des Düsenrohres 12 wird deshalb vom Arbeitsgas in der Form eines Wirbels 22 durchströmt, dessen Kern auf der Längsachse des Düsenrohres 12 verläuft.
  • An der Unterseite der Zwischenwand 18 ist mittig eine Innenelektrode 24 angeordnet, die koaxial in das Düsenrohr 12 hineinragt. Die Innenelektrode 24 wird im vorliegenden Ausführungsbeispiel durch einen rotationssymmetrischen, an der Spitze abgerundeten Stift gebildet, beispielsweise bestehend aus Kupfer, der durch einen Isolator 26 elektrisch gegenüber der Zwischenwand 18 und den übrigen Teilen des Düsenrohres 12 isoliert ist. Andere Ausführungsformen der Innenelektrode 24 mit von der dargestellten Form abweichenden Dimensionen und sogar auch asymmetrisch angeordnete Innenelektroden sind ebenso möglich.
  • Bevorzugt ist, dass die Innenelektrode 24 gegenüber der als Gegenelektrode fungierenden Düsenöffnungen 14 elektrisch isoliert ist. Somit können die Zwischenwand 18 und/oder das Düsenrohr 12 auch selbst aus einem elektrisch isolierenden Material bestehen.
  • Über einen isolierten Schaft 28 ist die Innenelektrode 24 mit einem Hochfrequenztransformator 30 verbunden, der eine hochfrequente Wechselspannung erzeugen kann. Die hochfrequente Wechselspannung ist bevorzugt variabel regelbar und beträgt – gemessen Spitze-zu-Spitze, U55 – beispielsweise 500 V oder mehr, vorzugsweise 1–5 kV, insbesondere auch größer als 5 kV.
  • Die Frequenz liegt beispielsweise in der Größenordnung von 50 Hz bis 100 kHz, vorzugsweise 1 bis 30 kHz und ist vorzugsweise ebenfalls regelbar. Der Schaft 28 ist mit dem Hochfrequenztransformator 30 über ein vorzugsweise flexibles Hochspannungskabel 32 verbunden.
  • Die angegebenen Werte für die Größe und die Frequenz der Wechselspannung weisen deshalb so große Bereiche auf, da diese Werte erheblich von der gewählten Geometrie der Vorrichtung 10 abhängen. Auch die Form des Spannungsverlaufes ist nicht wesentlich. Die Wechselspannung kann also eine sinusförmige Spannung oder auch eine gepulste Spannung sein.
  • Durch die angelegte hochfrequente Spannung wird die Entladung in Form eines Lichtbogens 34 zwischen der Innenelektrode 24 und der Düsenöffnung 14 gezündet, wobei das Plasma durch die hohe Frequenz der Spannung bei gleichzeitig niedrigen Strömen stabilisiert wird. Die hohe Frequenz der Spannung führt zu einer im Takt der Frequenz erfolgenden Unterbrechung der Entladung, die somit in der gleichen Frequenz immer wieder gezündet wird. Man kann den Vorgang, bspw. bei einer sinusförmigen Wechselspannung, auch als ein Dauerzünden der Entladung in jeder Halbwelle beschreiben.
  • Liegt zudem eine drallförmige Strömung des Arbeitsgases innerhalb des Düsenrohres 12 vor, so wird der Lichtbogen 34 im Wirbelkern auf der Achse des Düsenrohres 12 bedingt durch den leichten Unterdruck und die isolierende Wirkung der Gasströmung kanalisiert. Dadurch verzweigt sich der Lichtbogen 34 erst im Bereich der Düsenöffnung 14 und trifft dort auf dessen elektrisch leitende Innenwand.
  • Der Einlass 16 ist über einen nicht gezeigten Schlauch mit einer Druckluftquelle mit variablem Durchsatz verbunden, die vorzugsweise mit dem Hochfrequenzgenerator 30 zu einer Versorgungseinheit kombiniert ist. Die Plasmadüse 10 lässt sich somit leicht mit der Hand oder mit Hilfe eines Roboterarms bewegen. Das Düsenrohr 12 und die Zwischenwand 18 sind vorzugsweise geerdet, sofern sie selbst aus einem elektrische leitenden Material bestehen.
  • Das Arbeitsgas, das im Bereich des Wirbelkerns und damit in unmittelbarer Nähe der Bogenentladung 34 rotiert, kommt mit diesem in eine intensive Berührung und wird dadurch zumindest teilweise in den Plasmazustand überführt. In der Folge tritt ein in der Figur mit gestrichelten Linien dargestellten Plasmastrahl 36 eines atmosphärischen Plasmas aus der Düsenöffnung 14 aus. Der Plasmastrahl 36 hat dabei in etwa in die Gestalt einer Kerzenflamme.
  • Die Ionentemperatur des Plasmastrahls ist im Vergleich zu thermischen Plasmen gering. So wurde bspw. eine Temperatur im Plasmastrahl mit einem Thermoelement PT100 im Abstand von 10 mm von der Düsenöffnung eine Temperatur von kleiner als 300°C gemessen. Dieser Messwert hat dabei lediglich erläuternden Charakter und schränkt die Erfindung nicht ein.
  • Der aus der Düsenöffnung 14 austretende Plasmastrahl wird vor dem Austreten hauptsächlich durch den in der Entladung auftretenden Pincheffekt beschleunigt. Ebenso kann der Gasdruck und der Düseneffekt beim Austreten des Plasmastrahls aus der Düsenöffnung zu einer Beschleunigung beitragen. Insgesamt wird eine hohe Austrittsgeschwindigkeit erreicht, die wiederum viele Wechselwirkungen mit der zu bearbeitenden Oberfläche und zugleich eine größere Reichweite des Plasmastrahls bewirkt. Denn die Stoßverluste im Plasmastrahl sind bei hohen Austrittsgeschwindigkeiten geringer.
  • Wie bereits dargestellt, wird das TPU bevorzugt mittels Spritzguss auf das Glas aufgetragen. Das Spritzgießen von thermoplastischen Kunststoffen ist allgemein bekannt und insbesondere auch für thermoplastisches Polyurethan vielfältig beschrieben.
  • Die Temperatur beim Spritzgießen von thermoplastischem Polyurethan beträgt dabei bevorzugt zwischen 140 und 250°C, besonders bevorzugt zwischen 160 und 230°C. TPU werden bevorzugt möglichst schonend verarbeitet. Die Temperaturen können je nach Härte angepasst werden. Die Umfangsgeschwindigkeit beim Plastifiziern liegt bevorzugt kleiner oder gleich 0,2 m/s, der Staudruck beträgt bevorzugt zwischen 30 bis 200 bar. Die Einspritzgeschwindigkeit ist bevorzugt möglichst gering um Scherbeanspruchung gering zu halten. Die Kühlzeit ist bevorzugt ausreichend lang zu wählen, wobei der Nachdruck bevorzugt 30 zwischen 80 % des Einspritzdruckes beträgt. Die Formen werden bevorzugt auf zwischen 30 und 70°C temperiert.
  • Als Glas können allgemein bekannte bevorzugt anorganischen Gläser eingesetzt werden, die üblicherweise Siliziumdioxid und gegebenenfalls Calciumoxid, Natriumoxid, Bortrioxid, Aluminiumoxid, Bleioxid, Magnesiumoxid, Bariumoxid und/oder Kaliumoxid enthalten können. In Frage kommen z.B. Flachglas, Behälterglas, Wirtschaftsglas, Glühlampenglas, Fernsehkolbenglas, Laborgeräteglas, Bleikristallglas und Faserglas. Entsprechende Gläser und Formkörper enthalten diese Gläser sind vielfältig kommerziell erhältlich.
  • Thermoplastische Polyurethane, in dieser Schrift auch als TPU bezeichnet, und Verfahren zu ihrer Herstellung sind allgemein bekannt. Im allgemeinen werden TPUs durch Umsetzung von (a) Isocyanaten mit (b) gegenüber Isocyanaten reaktiven Verbindungen, üblicherweise mit einem Molekulargewicht (Mw) von 500 bis 10000, bevorzugt 500 bis 5000, besonders bevorzugt 800 bis 3000 und (c) Kettenverlängerungsmitteln mit einem Molekulargewicht von 50 bis 499 gegebenenfalls in Gegenwart von (d) Katalysatoren und/oder (e) üblichen Zusatzstoffen hergestellt.
  • Im Folgenden sollen beispielhaft die Ausgangskomponenten und Verfahren zur Herstellung der bevorzugten Polyurethane dargestellt werden. Die bei der Herstellung der Polyurethane üblicherweise verwendeten Komponenten (a), (b), (c) sowie gegebenenfalls (d) und/oder (e) sollen im Folgenden beispielhaft beschrieben werden:
    • a) Als organische Isocyanate (a) können allgemein bekannte aliphatische, cycloaliphatische, araliphatische und/oder aromatische Isocyanate eingesetzt werden, beispielsweise Tri-, Tetra-, Penta-, Hexa-, Hepta- und/oder Oktamethylendiisocyanat, 2-Methyl-pentamethylen-diisocyanat-1,5, 2-Ethyl-butylen-diisocyanat-1,4, Pentamethylen-diisocyanat-1,5, Butylen-diisocyanat-1,4, 1-Isocyanato-3,3,5-trimethyl-5-isocyanato-methyl-cyclohexan (Isophoron-diisocyanat, IPDI), 1,4- und/oder 1,3-Bis(isocyanatomethyl)cyclohexan (HXDI), 1,4-Cyclohexan-diisocyanat, 1-Methyl-2,4- und/oder -2,6-cyclohexan-di-isocyanat und/oder 4,4'-, 2,4'- und 2,2'-Dicyclohexylmethan-diisocyanat, 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (MDI), 1,5-Naphthylendiisocyanat (NDI), 2,4- und/oder 2,6-Toluylendiisocyanat (TDI), Diphenylmethandiisocyanat, 3,3'-Dimethyl-diphenyl-diisocyanat, 1,2-Diphenylethandiisocyanat und/oder Phenylendiisocyanat. Bevorzugt wird 4,4'-MDI verwendet. Für powder-slush-Anwendungen sind, wie eingangs dargestellt auch aliphatische Isocyanate bevorzugt, besonders bevorzugt 1-Isocyanato-3,3,5-trimethyl-5-isocyanato-methylcyclohexan (Isophoron-diisocyanat, IPDI) und/oder Hexamethylendiisocyanat (HDI), insbesondere Hexamethylendiisocyanat. Wie bereits eingangs dargestellt können als Isocyanat (a) auch Prepolymer eingesetzt werden, die frei Isocya natgruppen aufweisen. Der NCO-Gehalt dieser Prepolymere beträgt bevorzugt zwischen 10 und 25 %. Die Prepolymere können den Vorteil bieten, dass aufgrund der Vorreaktion bei der Herstellung der Prepolymere eine geringere Reaktionszeit bei der Herstellung der TPU benötigt wird.
    • b) Als gegenüber Isocyanaten reaktive Verbindungen (b) können die allgemein bekannten gegenüber Isocyanaten reaktiven Verbindungen eingesetzt werden, beispielsweise Polyesterole, Polyetherole und/oder Polycarbonatdiole, die üblicherweise auch unter dem Begriff "Polyole" zusammengefasst werden, mit Molekulargewichten zwischen 500 und 8000, bevorzugt 600 bis 6000, insbesondere 800 bis weniger als 3000, und bevorzugt einer mittleren Funktionalität gegenüber Isocyanaten von 1,8 bis 2,3, bevorzugt 1,9 bis 2,2, insbesondere 2. Bevorzugt setzt man Polyetherpolyole ein, beispielsweise solche auf der Basis von allgemein bekannten Startersubstanzen und üblichen Alkylenoxiden, beispielsweise Ethylenoxid, Propylenoxid und/oder Butylenoxid, bevorzugt Polyetherole basierend auf Propylenoxid-1,2 und Ethylenoxid und insbesondere Polyoxytetramethylen-glykole. Die Polyetherole weisen den Vorteil auf, dass sie eine höhere Hydrolysestabilität als Polyesterole besitzen.
  • Weiterhin können als Polyetherole sogenannte niedrig ungesättigte Polyetherole verwendet werden. Unter niedrig ungesättigten Polyolen werden im Rahmen dieser Erfindung insbesondere Polyetheralkohole mit einem Gehalt an ungesättigten Verbindungen von kleiner als 0,02 meg/g, bevorzugt kleiner als 0,01 meg/g, verstanden.
  • Derartige Polyetheralkohole werden zumeist durch Anlagerung von Alkylenoxiden, insbesondere Ethylenoxid, Propylenoxid und Mischungen daraus, an die oben beschriebenen Diole oder Triole in Gegenwart von hochaktiven Katalysatoren hergestellt. Derartige hochaktive Katalysatoren sind beispielsweise Cäsiumhydroxid und Multimetallcyanidkatalysatoren, auch als DMC-Katalysatoren bezeichnet. Ein häufig eingesetzter DMC-Katalysator ist das Zinkhexacyanocobaltat. Der DMC-Katalysator kann nach der Umsetzung im Polyetheralkohol belassen werden, üblicherweise wird er entfernt, beispielsweise durch Sedimentation oder Filtration.
  • Weiterhin können Polybutadiendiole mit einer Molmasse von 500–10000 g/mol bevorzugt 1000–5000 g/mol, insbesondere 2000–3000 g/mol verwendet werden. TPU's welche unter der Verwendung dieser Polyole hergestellt wurden, können nach thermoplastischer Verarbeitung strahlenvernetzt werden. Dies führt z.B. zu einem besseren Abbrennverhalten.
  • Statt eines Polyols können auch Mischungen verschiedener Polyole eingesetzt werden.
    • c) Als Kettenverlängerungsmittel (c) können allgemein bekannte aliphatische, araliphatische, aromatische und/oder cycloaliphatische Verbindungen mit einem Molekulargewicht von 50 bis 499, bevorzugt 2-funktionelle Verbindungen, eingesetzt werden, beispielsweise Diamine und/oder Alkandiole mit 2 bis 10 C-Atomen im Alkylenrest, insbesondere 1,3-Propandiol, Butandiol-1,4, Hexandiol-1,6 und/oder Di-, Tri-, Tetra-, Penta-, Hexa-, Hepta-, Okta-, Nona- und/oder Dekaalkylenglykole mit 3 bis 8 Kohlenstoffatomen, bevorzugt entsprechende Oligo- und/oder Polypropylenglykole, wobei auch Mischungen der Kettenverlängerer eingesetzt werden können. Besonders bevorzugt handelt es sich bei den Komponenten a) bis c) um difunktionelle Verbindungen, d.h. Diisocyanate (a), difunktionelle Polyole, bevorzugt Polyetherole (b) und difunktionelle Kettenverlängerungsmittel, bevorzugt Diole.
    • d) Geeignete Katalysatoren, welche insbesondere die Reaktion zwischen den NCO-Gruppen der Diisocyanate (a) und den Hydroxylgruppen der Aufbaukomponenten (b) und (c) beschleunigen, sind die nach dem Stand der Technik bekannten und üblichen tertiären Amine, wie z.B. Triethylamin, Dimethylcyclohexylamin, N-Methylmorpholin, N,N'-Dimethylpiperazin, 2-(Dimethylaminoethoxy)-ethanol, Diazabicyclo-(2,2,2)-octan und ähnliche sowie insbesondere organische Metallverbindungen wie Titansäureester, Eisenverbindungen wie z.B. Eisen-(III)-acetylacetonat, Zinnverbindungen, z.B. Zinndiacetat, Zinndioctoat, Zinndilaurat oder die Zinndialkylsalze aliphatischer Carbonsäuren wie Dibutylzinndiacetat, Dibutylzinndilaurat oder ähnliche. Die Katalysatoren werden üblicherweise in Mengen von 0,0001 bis 0,1 Gew.-Teilen pro 100 Gew.-Teile Polyhydroxylverbindung (b) eingesetzt.
    • e) Neben Katalysatoren (d) können den Aufbaukomponenten (a) bis (c) auch übliche Hilfsmittel und/oder Zusatzstoffe (e) hinzugefügt werden. Genannt seien beispielsweise Treibmittel, oberflächenaktive Substanzen, Füllstoffe, Keimbildungsmittel, Gleit- und Entformungshilfen, Farbstoffe und Pigmente, Antioxidantien, z.B. gegen Hydrolyse, Licht, Hitze oder Verfärbung, anorganische und/oder organische Füllstoffe, Flammschutzmittel, Verstärkungsmittel und Weichmacher, Metalldeaktivatoren. In einer bevorzugten Ausführungsform fallen unter die Komponente (e) auch Hydrolyseschutzmittel wie beispielsweise polymere und niedermolekulare Carbodiimide. Besonders bevorzugt enthält das thermoplastische Polyurethan in den erfindungsgemäßen Materialien Melamincyanurat, das als Flammschutzmittel wirkt. Bevorzugt wird Melamincyanurat in einer Menge zwischen 0,1 und 60 Gew.-%, besonders bevorzugt zwischen 5 und 40 Gew.-%, insbesondere zwischen 15 und 25 Gew.-% eingesetzt, jeweils bezogen auf das Gesamtgewicht des TPU. Bevorzugt enthält das thermoplastische Polyurethan Triazol und/oder Triazolderivat und Antioxidantien in einer Menge von 0,1 bis 5 Gew.-% bezogen auf das Gesamtgewicht des thermoplastischen Polyurethans. Als Antioxidantien sind im allgemeinen Stoffe geeignet, welche unerwünschte oxidative Prozesse im zu schützenden Kunststoff hemmen oder verhindern. Im allgemeinen sind Antioxidantien kommerziell erhältlich. Beispiele für Antioxidantien sind sterisch gehinderte Phenole, aromatische Amine, Thiosynergisten, Organophosphorverbindungen des trivalenten Phosphors, und Hindered Amine Light Stabilizers. Beispiele für Sterisch gehinderte Phenole finden sich in Plastics Additive Handbook, 5th edition, H. Zweifel, ed, Hanser Publishers, München, 2001 ([1]), S.98-107 und S.116-121. Beispiele für Aromatische Amine finden sich in [1] S.107-108. Beispiele für Thiosynergisten sind gegeben in [1], S.104-105 und S.112-113. Beispiele für Phosphite finden sich in [1], S.109-112. Beispiele für Hindered Amine Light Stabilizer sind gegeben in [1], S.123-136. Zur Verwendung eignen sich bevorzugt phenolische Antioxidantien. In einer bevorzugten Ausführungsform weisen die Antioxidantien, insbesondere die phenolischen Antioxidantien, eine Molmasse von größer 350 g/mol, besonders bevorzugt von größer 700g/mol und einer maximalen Molmasse < 10000 g/mol bevorzugt < 3000 g/mol auf. Ferner besitzen sie bevorzugt einen Schmelzpunkt von kleiner 180°C. Weiterhin werden bevorzugt Antioxidantien verwendet, die amorph oder flüssig sind.
  • Neben den genannten Komponenten a), b) und c) und gegebenenfalls d) und e) können auch Kettenregler, üblicherweise mit einem Molekulargewicht von 31 bis 3000, eingesetzt werden. Solche Kettenregler sind Verbindungen, die lediglich eine gegenüber Isocyanaten reaktive funktionelle Gruppe aufweisen, wie z. B. monofunktionelle Alkohole, monofunktionelle Amine und/oder monofunktionelle Polyole. Durch solche Kettenregler kann ein Fließverhalten, insbesondere bei TPUs, gezielt eingestellt werden. Kettenregler können im allgemeinen in einer Menge von 0 bis 5, bevorzugt 0,1 bis 1 Gew.-Teile, bezogen auf 100 Gew.-Teile der Komponente b) eingesetzt werden und fallen definitionsgemäß unter die Komponente (c).
  • Zur Einstellung der Härte der TPUs können die Aufbaukomponenten (b) und (c) in relativ breiten molaren Verhältnissen variiert werden. Bewährt haben sich molare Verhältnisse von Komponente (b) zu insgesamt einzusetzenden Kettenverlängerungsmitteln (c) von 10 : 1 bis 1 : 10, insbesondere von 1 : 1 bis 1 : 4, wobei die Härte der TPU mit zunehmendem Gehalt an (c) ansteigt.
  • Bevorzugt wird als thermoplastisches Polyurethan weiches weichmacherfreies thermoplastisches Polyurethan bevorzugt mit einer Härte bis 90 Shore A insbesondere für Anwendungen im haptischen und optischen Bereich eingesetzt. In Verschleiß- und Stoßschutzanwendungen kommen alle TPU bis 80 Shore D in Frage. In hydrolyseempflindlichen Anwendungen sind Ether-TPU zu bevorzugen. In besonders lichtexponierten Anwendungen sind aliphatische TPU zu bevorzugen. Das thermoplastische Polyurethan weist bevorzugt ein zahlenmittleres Molekulargewicht von mindestens 40000 g/mol, besonders bevorzugt mindestens 80000 g/mol, insbesondere mindestens 120000 g/mol auf.
  • Aufgrund ihrer besonders guten Haftung sind TPU gemäß der WO 03/014179 bevorzugt. Die nachfolgenden Ausführungen bis zu den Beispielen beziehen sich auf diese besonders bevorzugten TPU. Diese TPU haften besonders gut, da die Verarbeitungstemperaturen höher sind als bei anderen „klassischen" TPU mit vergleichbaren Härten und sich bei diesen Bedingungen die besten Haftfestigkeiten erzielen lassen. Diese besonders bevorzugten TPU sind bevorzugt erhältlich durch Umsetzung von (a) Isocyanaten mit (b1) Polyesterdiolen mit einem Schmelzpunkt größer 150°C, (b2) Polyetherdiolen und/oder Polyesterdiolen jeweils mit einem Schmelzpunkt kleiner 150°C und einem Molekulargewicht von 501 bis 8000 g/mol sowie gegebenenfalls (c) Diolen mit einem Molekulargewicht von 62 g/mol bis 500 g/mol. Besonders bevorzugt sind dabei thermoplastische Polyurethane, bei denen das Molverhältnis von den Diolen (c) mit einem Molekulargewicht von 62 g/mol bis 500 g/mol zur Komponente (b2) kleiner 0,2, besonders bevorzugt 0,1 bis 0,01, beträgt. Besonders bevorzugt sind thermoplastische Polyurethane, bei denen die Polyesterdiole (b1), die bevorzugt ein Molekulargewicht von 1000 g/mol bis 5000 g/mol besitzen, die folgende Struktureinheit (I) aufweisen:
    Figure 00110001
    mit den folgenden Bedeutungen für R1, R2, R3 und X:
    R1: Kohlenstoffgerüst mit 2 bis 15 Kohlenstoffatomen, bevorzugt eine Alkylengruppe mit 2 bis 15 Kohlenstoffatomen und/oder ein bivalenter aromatischer Rest mit 6 bis 15 Kohlenstoffatomen, besonders bevorzugt mit 6 bis 12 Kohlenstoffatomen
    R2: gegebenenfalls verzweigtkettige Alkylengruppe mit 2 bis 8 Kohlenstoffatomen, bevorzugt 2 bis 6, besondere bevorzugt 2 bis 4 Kohlenstoffatomen, insbesondere -CH2-CH2- und/oder -CH2-CH2-CH2-CH2-,
    R3: gegebenenfalls verzweigtkettige Alkylengruppe mit 2 bis 8 Kohlenstoffatomen, bevorzugt 2 bis 6, besonders bevorzugt 2 bis 4 Kohlenstoffatomen, insbesondere -CH2-CH2- und/oder -CH2-CH2-CH2-CH2-,
    X: eine ganze Zahl aus dem Bereich 5 bis 30. Der eingangs dargestellte bevorzugte Schmelzpunkt und/oder das bevorzugte Molekulargewicht beziehen sich bei dieser bevorzugten Ausführungsform auf die dargestellte Struktureinheit (I).
  • Unter dem Ausdruck "Schmelzpunkt" ist in dieser Schrift das Maximum des Schmelzpeaks einer Aufheizkurve zu verstehen, die mit einem handelsüblichen DSC-Gerät (z.B. DSC 7/Fa. Perkin-Elmer) gemessen wurde.
  • Die in dieser Schrift angegebenen Molekulargewichte stellen die zahlenmittleren Molekulargewichte dar in [g/mol].
  • Diese besonders bevorzugten thermoplastischen Polyurethane können bevorzugt dadurch hergestellt werden, dass man in einem ersten Schritt (i) einen, bevorzugt hochmolekularen, bevorzugt teilkristallinen, thermoplastischen Polyester mit einem Diol (c) umsetzt und anschließend in einer weiteren Umsetzung (ii) das Umsetzungsprodukt aus (i) enthaltend (b1) Polyesterdiol mit einem Schmelzpunkt größer 150°C sowie gegebenenfalls (c) Diol zusammen mit (b2) Polyetherdiolen und/oder Polyesterdiolen jeweils mit einem Schmelzpunkt kleiner 150°C und einem Molekulargewicht von 501 bis 8000 g/mol sowie gegebenenfalls weiteren (c) Diolen mit einem Molekulargewicht von 62 bis 500 g/mol mit (a) Isocyanat gegebenenfalls in Gegenwart von (d) Katalysatoren und/oder (e) Hilfsmitteln umsetzt.
  • Bevorzugt ist bei der Umsetzung (ii) das Molverhältnis von den Diolen (c) mit einem Molekulargewicht von 62 g/mol bis 500 g/mol zu der Komponente (b2) kleiner 0,2, bevorzugt 0,1 bis 0,01.
  • Während durch den Schritt (i) die Hartphasen durch den im Schritt (i) eingesetzten Polyester für das Endprodukt zur Verfügung gestellt werden, erfolgt durch den Einsatz der Komponente (b2) im Schritt (ii) der Aufbau der Weichphasen. Die bevorzugte technische Lehre besteht darin, dass Polyester mit einer ausgeprägten, gut kristallisierenden Hartphasenstruktur bevorzugt in einem Reaktionsextruder aufgeschmolzen und mit einem niedermolekularen Diol zunächst abgebaut werden zu kürzeren Polyestern mit freien Hydroxylendgruppen. Hierbei bleibt die ursprüngliche hohe Kristallisationstendenz des Polyesters erhalten und kann anschließend genutzt werden, um bei rasch verlaufender Umsetzung TPU mit den vorteilhaften Eigenschaften zu erhalten, als da sind hohe Zugfestigkeitswerte, niedrige Abriebswerte und wegen des hohen und engen Schmelzbereichs hohe Wärmeformbeständigkeiten und niedrige Druckverformungsreste. Somit werden nach dem bevorzugten Verfahren bevorzugt hochmolekulare, teilkristalline, thermoplastische Polyester mit niedermolekularen Diolen (c) unter geeigneten Bedingungen in kurzer Reaktionszeit abgebaut zu schnell kristallisierenden Poly-Esterdiolen (b1), die ihrerseits dann mit anderen Polyesterdiolen und/oder Polyetherdiolen und Diisocyanaten in hochmolekulare Polymerketten eingebunden werden.
  • Dabei weist der eingesetzte thermoplastische Polyester, d.h. vor der Umsetzung (i) mit dem Diol (c), bevorzugt ein Molekulargewicht von 15000 g/mol bis 40000 g/mol sowie bevorzugt einen Schmelzpunkt von größer 160°C, besonders bevorzugt von 170°C bis 260°C auf.
  • Als Ausgangsprodukt, d.h. als Polyester, der in dem Schritt (i) bevorzugt in geschmolzenem Zustand besonders bevorzugt bei einer Temperatur von 230°C bis 280°C bevorzugt für eine Dauer von 0,1 min bis 4 min, besonders bevorzugt 0,3 min bis 1 min mit dem oder den Diol(en) (c) umgesetzt wird, können allgemein bekannte, bevorzugt hochmolekulare, bevorzugt teilkristalline, thermoplastische Polyester, beispielsweise in granulierter Form, eingesetzt werden. Geeignete Polyester basieren beispielsweise auf aliphatischen, cycloaliphatischen, araliphatischen und/oder aromatischen Dicarbonsäuren, beispielsweise Milchsäure und/oder Terephthalsäure sowie aliphatischen, cycloaliphatischen, araliphatischen und/oder aromatischen Dialkoholen, beispielsweise Ethandiol-1,2, Butandiol-1,4 und/oder Hexandiol-1,6.
  • Besonders bevorzugt werden als Polyester eingesetzt: Poly-L-Milchsäure und/oder Polyalkylenterephthalat, beispielsweise Polyethylenterephthalat, Polypropylenterephthalat, Polybutylenterephthalat, insbesondere Polybutylenterephthalat.
  • Die Herstellung dieser Ester aus den genannten Ausgangsstoffen ist dem Fachmann allgemein bekannt und vielfach beschrieben. Geeignete Polyester sind zudem kommerziell erhältlich
  • Den thermoplastischen Polyester schmilzt man bevorzugt bei einer Temperatur von 180°C bis 270°C auf. Die Umsetzung (i) mit dem Diol (c) führt man bevorzugt bei einer Temperatur von 230°C bis 280°C, bevorzugt 240°C bis 280°C durch.
  • Als Diol (c) können in dem Schritt (i) zur Umsetzung mit dem thermoplastischen Polyester und gegebenenfalls im Schritt (ii) allgemein bekannte Diole mit einem Molekulargewicht von 62 bis 500 g/mol eingesetzt werden, beispielsweise die an späterer Stelle genannten, z.B. Ethylenglykol, 1,3-Propandiol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, Heptandiol, Oktandiol, bevorzugt Butan-1,4-diol und/oder Ethan-1,2-diol.
  • Das Gewichtsverhältnis vom thermoplastischen Polyester zum Diol (c) in dem Schritt (i) beträgt üblicherweise 100 : 1,0 bis 100 : 10, bevorzugt 100 : 1,5 bis 100 : 8,0.
  • Die Umsetzung des thermoplastischen Polyesters mit dem Diol (c) in dem Umsetzungsschritt (i) wird bevorzugt in Gegenwart von üblichen Katalysatoren, beispielsweise solchen, die an späterer Stelle beschrieben werden, durchgeführt. Bevorzugt werden für diese Umsetzung Katalysatoren auf der Basis von Metallen eingesetzt. Bevorzugt führt man die Umsetzung im Schritt (i) in Gegenwart von 0,1 bis 2 Gew.-% Katalysatoren, bezogen auf das Gewicht des Diols (c), durch. Die Umsetzung in Gegenwart derartiger Katalysatoren ist vorteilhaft, um die Reaktion in der zur Verfügung stehenden kurzen Verweilzeit in dem Reaktor, beispielsweise einem Reaktionsextruder durchführen zu können.
  • Als Katalysatoren kommen beispielsweise für diesen Umsetzungsschritt (i) in Frage: Tetrabutylorthotitanat und/oder Zinn-(II)-Dioctoat, bevorzugt Zinn-dioctoat.
  • Das Polyesterdiol (b1) als Umsetzungsprodukt aus (i) weist bevorzugt ein Molekulargewicht von 1000 g/mol bis 5000 g/mol auf. Der Schmelzpunkt des Polyesterdiols als Umsetzungsprodukt aus (i) beträgt bevorzugt 150°C bis 260°C, insbesondere 165 bis 245°C, d.h. dass das Umsetzungsprodukt des thermoplastischen Polyesters mit dem Diol (c) im Schritt (i) Verbindungen mit dem genannten Schmelzpunkt enthält, die in dem anschließenden Schritt (ii) eingesetzt werden.
  • Durch die Umsetzung des thermoplastischen Polyesters mit dem Diol (c) in dem Schritt (i) wird die Polymerkette des Polyesters durch das Diol (c) durch Umesterung gespalten. Das Umsetzungsprodukt des TPU weist deshalb freie Hydroxylendgruppen auf und wird bevorzugt in dem weiteren Schritt (ii) zu dem eigentlichen Produkt, dem TPU, weiterverarbeitet.
  • Die Umsetzung des Reaktionsproduktes aus dem Schritt (i) in dem Schritt (ii) erfolgt bevorzugt durch Zugabe von a) Isocyanat (a) sowie (b2) Polyetherdiolen und/oder Polyesterdiolen jeweils mit einem Schmelzpunkt kleiner 150°C und einem Molekulargewicht von 501 bis 8000 g/mol sowie gegebenenfalls weiteren Diolen (c) mit einem Molekulargewicht von 62 bis 500, (d) Katalysatoren und/oder (e) Hilfsstoffe zu dem Reaktionsprodukt aus (i). Die Umsetzung von dem Reaktionsprodukt mit dem Isocyanat erfolgt über die in dem Schritt (i) entstandenen Hydroxylendgruppen. Die Umsetzung in dem Schritt (ii) erfolgt bevorzugt bei einer Temperatur von 190 bis 250°C bevorzugt für eine Dauer von 0,5 bis 5 min, besonders bevorzugt 0,5 bis 2 min, bevorzugt in einem Reaktionsextruder, besonders bevorzugt in dem gleichen Reaktionsextruder, in dem auch der Schritt (i) durchgeführt wurde. Beispielsweise kann die Umsetzung des Schrittes (i) in den ersten Gehäusen eines üblichen Reaktionsextruders erfolgen und an späterer Stelle, d.h. späteren Gehäusen, nach der Zugabe der Komponenten (a) und (b2), die entsprechende Umsetzung des Schrittes (ii) durchgeführt werden. Beispielsweise können die ersten 30 bis 50 % der Länge des Reaktionsextruders für den Schritt (i) verwendet und die restlichen 50 bis 70 % für den Schritt (ii) eingesetzt werden.
  • Die Umsetzung in dem Schritt (ii) erfolgt bevorzugt bei einem Überschuss der Isocyanatgruppen zu den gegenüber Isocyanaten reaktiven Gruppen. Bevorzugt beträgt in der Umsetzung (ii) das Verhältnis der Isocyanatgruppen der zu den Hydroxylgruppen 1 : 1 bis 1,2 : 1, besonders bevorzugt 1,02 : 1 bis 1,2. 1.
  • Bevorzugt führt man die Umsetzungen (i) und (ii) in einem allgemein bekannten Reaktionsextruder durch. Derartige Reaktionsextruder sind beispielhaft in den Firmenschriften von Werner & Pfleiderer oder in der DE-A 2 302 564 beschrieben.
  • Bevorzugt wird das bevorzugte Verfahren derart durchgeführt, dass man in das erste Gehäuse eines Reaktionsextruders mindestens einen thermoplastischen Polyester, z.B. Polybutylenterephthalat, dosiert und bei Temperaturen bevorzugt zwischen 180°C bis 270°C, bevorzugt 240°C bis 270°C aufschmilzt, in ein nachfolgendes Gehäuse ein Diol (c), z.B. Butandiol, und bevorzugt einen Umesterungskatalysator zugibt, bei Temperaturen zwischen 240°C bis 280°C den Polyester durch das Diol (c) zu Polyesteroligomeren mit Hydroxylendgruppen und Molekulargewichten zwischen 1000 bis 5000 g/mol abbaut, in einem nachfolgenden Gehäuse Isocyanat (a) und (b2) gegenüber Isocyanaten reaktiven Verbindungen mit einem Molekulargewicht von 501 bis 8000 g/mol sowie gegebenenfalls (c) Diole mit einem Molekulargewicht von 62 bis 500, (d) Katalysatoren und/oder (e) Hilfsstoffe zudosiert und anschließend bei Temperaturen von 190 bis 250°C den Aufbau zu den bevorzugten thermoplastischen Polyurethanen durchführt.
  • Bevorzugt werden im Schritt (ii) mit Ausnahme der im Umsetzungsprodukt von (i) enthaltenen (c) Diole mit einem Molekulargewicht von 62 bis 500 keine (c) Diole mit einem Molekulargewicht von 62 bis 500 zugeführt.
  • Der Reaktionsextruder weist in dem Bereich, in dem der thermoplastische Polyester geschmolzen wird, bevorzugt neutrale und/oder rückwärtsfördernde Knetblöcke und Rückförderelemente auf sowie in dem Bereich, in dem der thermoplastische Polyester mit dem Diol umgesetzt wird, bevorzugt Schneckenmischelemente, Zahnscheiben und/oder Zahnmischelemente in Kombination mit Rückförderelementen.
  • Nach dem Reaktionsextruder wird die klare Schmelze üblicherweise mittels einer Zahnradpumpe einer Unterwassergranulierung zugeführt und granuliert.
  • Die besonders bevorzugten thermoplastischen Polyurethane zeigen optisch klare, einphasige Schmelzen, die rasch erstarren und infolge der teilkristallinen Polyesterhartphase schwach opake bis weiß-undurchsichtige Formkörper bilden. Das rasche Erstarrungsverhalten ist ein entscheidender Vorteil zu bekannten Rezepturen und Herstellverfahren für thermoplastische Polyurethane. Das rasche Erstarrungsverhalten ist so ausgeprägt, dass selbst Produkte mit Härten 50 bis 60 Shore A im Spritzguss mit Zykluszeiten kleiner 35s verarbeitbar sind. Auch in der Extrusion, z.B. bei der Blasfolienherstellung, treten keinerlei TPU-typische Probleme wie Verkleben oder Verblocken der Folien oder Schläuche auf.
  • Der Anteil des thermoplastischen Polyesters in dem Endprodukt, d.h. dem thermoplastischen Polyurethan, beträgt bevorzugt 5 bis 75 Gew.-%. Besonders bevorzugt stellen die bevorzugten thermoplastischen Polyurethane Produkte der Reaktion eines Gemisches enthaltend 10 bis 70 Gew.-% des Umsetzungsproduktes aus (i), 10 bis 80 Gew.-% (b2) und 10 bis 20 Gew.-% (a) dar, wobei die Gewichtsangaben auf das Gesamtgewicht des Gemisches enthaltend (a), (b2), (d), (e) und das Umsetzungsprodukt aus (i) bezogen sind.
  • Die bevorzugten thermoplastischen Polyurethane weisen bevorzugt eine Härte von Shore 45A bis Shore 78D, besonders bevorzugt 50 A bis 75 D auf.
  • Bevorzugt weisen die bevorzugten thermoplastischen Polyurethane die folgende Struktureinheit (II) auf:
    Figure 00160001
    mit den folgenden Bedeutungen für R1, R2, R3 und X:
    R1: Kohlenstoffgerüst mit 2 bis 15 Kohlenstoffatomen, bevorzugt eine Alkylengruppe mit 2 bis 15 Kohlenstoffatomen und/oder ein aromatischer Rest mit 6 bis 15 Kohlenstoffatomen,
    R2: gegebenenfalls verzweigtkettige Alkylengruppe mit 2 bis 8 Kohlenstoffatomen, bevorzugt 2 bis 6, besondere bevorzugt 2 bis 4 Kohlenstoffatomen, insbesondere -CH2-CH2- und/oder -CH2-CH2-CH2-CH2-,
    R3: Rest, der sich aus durch den Einsatz von Polyetherdiolen und/oder Polyesterdiolen mit jeweils Molekulargewichten zwischen 501 g/mol und 8000 g/mol als (b2) oder durch den Einsatz von Alkandiolen mit 2 bis 12 Kohlenstoffatomen für die Umsetzung mit Diisocyanaten ergibt,
    X: eine ganze Zahl aus dem Bereich 5 bis 30,
    n, m: eine ganze Zahl aus dem Bereich 5 bis 20.
  • Der Rest R1 wird durch das eingesetzte Isocyanat definiert, der Rest R2 durch das Umsetzungsprodukt des thermoplastischen Polyesters mit dem Diol (c) in (i) und der Rest R3 durch die Ausgangskomponenten (b2) und gegebenenfalls (c) bei der Herstellung der TPU.

Claims (14)

  1. Artikel enthaltend Glas, dadurch gekennzeichnet, dass zumindest ein Teil der Oberfläche des Glas ohne chemischen Haftvermittler haftend mit thermoplastischem Polyurethan verbunden ist.
  2. Artikel nach Anspruch 1, dadurch gekennzeichnet, dass das thermoplastische Polyurethan eine Shore-A Härte kleiner 95 aufweist.
  3. Artikel nach Anspruch 1, dadurch gekennzeichnet, dass das thermoplastische Polyurethan eine Shore-Härte von 45 A bis 80 A, eine Zugfestigkeit nach DIN 53504 von größer 15 MPa, eine Weiterreißfestigkeit nach DIN 53515 von größer 30 N/mm und einen Abrieb nach DIN 53516 von kleiner 250 mm3 aufweist.
  4. Artikel nach Anspruch 1, dadurch gekennzeichnet, dass der Schälwiderstand bezüglich der Haftung des thermoplastischen Polyurethans an dem Glas nach DIN EN 1464 mindestens 1 N/mm beträgt.
  5. Verfahren zur Herstellung eines Artikels enthaltend Glas sowie daran ohne chemischen Haftvermittler haftend verbunden thermoplastisches Polyurethan, dadurch gekennzeichnet, dass die Oberfläche des Glas zumindest abschnittsweise plasmabehandelt wird und dass anschließend das thermoplastische Polyurethan mit der plasmabehandelten Oberfläche des Glas in Kontakt gebracht wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das thermoplastische Polyurethan mittels Spritzguss auf die plasmabehandelte Oberfläche des Glas aufgetragen wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das thermoplastische Polyurethan mittels Spritzguss auf die plasmabehandelte Oberfläche des Randes des Glas aufgetragen wird.
  8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Glas mit einem atmosphärischen Plasma behandelt wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass in einer Plasmaquelle mittels hochfrequenter Hochspannungsentladung ein Plasma erzeugt wird und dass dieses Plasma mittels einer Plasmadüse mit der Oberfläche des Glas in Kontakt gebracht wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Plasmaquelle in einem Abstand zwischen 2 mm und 25 mm mit einer Geschwindigkeit zwischen 0,1 m/min und 400 m/min relativ zur Oberfläche des Glas bewegt wird.
  11. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Plasmabehandlung über einen Zeitraum von 1 ms bis 100 s durchgeführt wird.
  12. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das thermoplastische Polyurethan eine Shore-A Härte kleiner 95 aufweist.
  13. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das thermoplastische Polyurethan eine Shore-Härte von 45 A bis 80 A, eine Zugfestigkeit nach DIN 53504 von größer 15 MPa, eine Weiterreißfestigkeit nach DIN 53515 von größer 30 N/mm und einen Abrieb nach DIN 53516 von kleiner 250 mm3 aufweist.
  14. Verwendung eines Artikels nach einem der Ansprüche 1 bis 4 als Fensterscheibe, beispielsweise für Automobile, Flugzeuge oder Bauwerke, insbesondere Automobil Heck- oder Seitenscheibe, oder Abdeckung einer Lichtquelle, bevorzugt Scheinwerfer und/oder Blinkergehäuse besonders bevorzugt Automobilscheinwerfer- und/oder Blinkergehäuse.
DE200510020510 2005-04-29 2005-04-29 Verbundelement, insbesondere Fensterscheibe Withdrawn DE102005020510A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE200510020510 DE102005020510A1 (de) 2005-04-29 2005-04-29 Verbundelement, insbesondere Fensterscheibe
PCT/EP2006/061886 WO2006117325A1 (de) 2005-04-29 2006-04-27 Verbundelement, insbesondere fensterscheibe
JP2008508228A JP2008539153A (ja) 2005-04-29 2006-04-27 複合成分、特に窓ガラス
EP06754895A EP1877349A1 (de) 2005-04-29 2006-04-27 Verbundelement, insbesondere fensterscheibe
CNA2006800147029A CN101166698A (zh) 2005-04-29 2006-04-27 尤其是窗玻璃的复合元件
KR1020077027605A KR20080003007A (ko) 2005-04-29 2006-04-27 복합 부재, 특히 창유리
US11/912,775 US7771829B2 (en) 2005-04-29 2006-04-27 Composite element, especially a window pane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510020510 DE102005020510A1 (de) 2005-04-29 2005-04-29 Verbundelement, insbesondere Fensterscheibe

Publications (1)

Publication Number Publication Date
DE102005020510A1 true DE102005020510A1 (de) 2006-11-09

Family

ID=36679346

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200510020510 Withdrawn DE102005020510A1 (de) 2005-04-29 2005-04-29 Verbundelement, insbesondere Fensterscheibe

Country Status (7)

Country Link
US (1) US7771829B2 (de)
EP (1) EP1877349A1 (de)
JP (1) JP2008539153A (de)
KR (1) KR20080003007A (de)
CN (1) CN101166698A (de)
DE (1) DE102005020510A1 (de)
WO (1) WO2006117325A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT9951U1 (de) * 2004-11-19 2008-06-15 Vetrotech Saint Gobain Int Ag Verfahren und vorrichtung zum streifen- und flächenförmigen bearbeiten von oberflächen von glasscheiben
DE102005020511A1 (de) * 2005-04-29 2006-11-09 Basf Ag Verbundelement, insbeondere Fensterscheibe
DE102007043650A1 (de) * 2007-09-13 2009-04-02 Siemens Ag Verfahren zur Verbesserung der Eigenschaften von Beschichtungen
KR100928798B1 (ko) * 2007-11-13 2009-11-25 주식회사 포스코 향상된 내알칼리성과 가공성을 갖는 크롬 프리 수지 용액조성물, 이를 이용한 강판의 표면처리 방법 및 표면처리된 강판
SI2968461T1 (sl) 2013-03-13 2023-01-31 Genzyme Corporation Fuzijski proteini, ki vsebujejo vezavna dela PDGF in VEGF in postopek njihove uporabe
CN110178449B (zh) * 2016-12-23 2021-07-23 等离子体处理有限公司 喷嘴组件和用于制造大气等离子体射流的装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2576012B1 (fr) * 1985-01-15 1991-11-22 Saint Gobain Vitrage Procede et dispositif pour la fabrication d'un vitrage de securite
FR2643361B1 (fr) * 1989-01-12 1991-05-03 Saint Gobain Vitrage Vitrage encapsule pret a etre monte et procede de fabrication
FR2705275B1 (fr) * 1993-05-13 1995-07-21 Saint Gobain Vitrage Int Vitrages feuilletés et procédé de fabrication.
DE10001795A1 (de) * 2000-01-18 2001-07-19 Bayer Ag Verbundscheibe zur Verwendung als Schutz von Displays
US7238395B2 (en) * 2000-05-10 2007-07-03 Nkt Research A/S Method of coating the surface of an inorganic substrates with an organic material and the product obtained
DE10138298A1 (de) 2001-08-10 2003-02-27 Basf Ag Thermoplastische Polyurethane
ATE294145T1 (de) 2001-11-29 2005-05-15 Dow Global Technologies Inc Methode zum verbinden einer glasscheibe mit einem substrat ohne verwendung eines primers
EP1476497A1 (de) 2002-01-23 2004-11-17 Glasshield Patent Holding Company, Ltd. Verfahren und vorrichtung zum aufbringen von material auf glas
ATE274787T1 (de) * 2002-02-09 2004-09-15 Plasma Treat Gmbh Plasmadüse

Also Published As

Publication number Publication date
CN101166698A (zh) 2008-04-23
US20080187765A1 (en) 2008-08-07
EP1877349A1 (de) 2008-01-16
WO2006117325A1 (de) 2006-11-09
KR20080003007A (ko) 2008-01-04
US7771829B2 (en) 2010-08-10
JP2008539153A (ja) 2008-11-13

Similar Documents

Publication Publication Date Title
DE102005020511A1 (de) Verbundelement, insbeondere Fensterscheibe
EP1855880B1 (de) Artikel enthaltend polystyrol und thermoplastisches polyurethan
DE102005020510A1 (de) Verbundelement, insbesondere Fensterscheibe
EP2139934B1 (de) Verfahren zur umsetzung von thermoplastischen polyurethanen mit isocyanatgruppen aufweisenden verbindungen
DE102005028056A1 (de) Thermoplastisches Polyurethan enthaltend Isocyanat
WO2006072461A1 (de) Verfahren zur herstellung von thermoplastischen polyurethanpartikeln
EP2445968B1 (de) Polyurethan auf der basis weichen thermoplastischen polyurethans
EP2586807A1 (de) Thermoplastische Polyurethane und deren Verwendung
EP1204688A1 (de) Thermoplastische polyurethane
WO2017108920A1 (de) Tpu schrumpfmaterial
DE102005008261A1 (de) Artikel enthaltend Polypropylen und thermoplastisches Polyurethan
EP1458779B1 (de) Thermoplastische polyurethane auf der basis aliphatischer isocyanate
DE102019007939B4 (de) Verfahren zur Herstellung von Polymer-Formteilen aus thermoplastischen Polymeren mitFormgedächtniseigenschaften und/oder mit thermoresponsiven Eigenschaften, insbesondere mittels 4D-Druck, sowie solchermaßen hergestelltes Polymer-Formteil
EP2569359B1 (de) Thermoplastisches polyurethan enthaltend glycerin, das mit mindestens einer aliphatischen carbonsäure verestert ist als weichmacher
WO2008077777A1 (de) Artikel, insbesondere kabelummantelung, enthaltend haftend verbunden thermoplastisches polyurethan und vernetztes polyethylen
DE102005019663A1 (de) Thermoplastische Polyurethane
EP1945697B1 (de) Artikel enthaltend gummi, thermoplastisches polyurethan und technischen kunststoff
EP1323769B1 (de) Verfahren zur Aufbringung von Funktionsmaterialien auf thermoplastisches Polyurethan
EP3487677B1 (de) Mikrowellenverschweissung von elastomerpulver
EP2092208B1 (de) Rundlager
EP3755752B1 (de) Verbindung von körpern durch thermoplastisches elastomer mittels hochfrequenzstrahlung
DE102007008938A1 (de) Artikel enthaltend thermoplastisches Polyurethan und thermoplastische Mischung enthaltend Polybutylenterephthalat sowie mindestens einen weiteren thermoplastischen Kunststoff
EP2125924B1 (de) Kabelummantelung aus thermoplastischen Polyurethan
WO2003031506A1 (de) Stabilisatorengemisch und stabilisierte polyurethane
DE10037622A1 (de) Verfahren zur Herstellung von Folien auf der Basis von thermoplastischen Polyurethanen

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee