DE102005019421B4 - Lüfterhaube für einen Wärmeübertrager, insbesondere für Kraftfahrzeuge - Google Patents

Lüfterhaube für einen Wärmeübertrager, insbesondere für Kraftfahrzeuge Download PDF

Info

Publication number
DE102005019421B4
DE102005019421B4 DE102005019421.4A DE102005019421A DE102005019421B4 DE 102005019421 B4 DE102005019421 B4 DE 102005019421B4 DE 102005019421 A DE102005019421 A DE 102005019421A DE 102005019421 B4 DE102005019421 B4 DE 102005019421B4
Authority
DE
Germany
Prior art keywords
fan
struts
fan cover
cover according
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102005019421.4A
Other languages
English (en)
Other versions
DE102005019421A1 (de
Inventor
Dr.-Ing. Stommel Markus
Dipl.-Ing. Markus (FH) Höglinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Priority to DE102005019421.4A priority Critical patent/DE102005019421B4/de
Publication of DE102005019421A1 publication Critical patent/DE102005019421A1/de
Application granted granted Critical
Publication of DE102005019421B4 publication Critical patent/DE102005019421B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/06Guiding or ducting air to, or from, ducted fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/50Details mounting fans to heat-exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Lüfterhaube (2, 11) eingerichtet für einen von Luft durchströmbaren Wärmeübertrager (1) mit einem aus einem Axiallüfter (3a) und einem Antriebsmotor (3b, 12) bestehenden Lüftergebläse (3), welches über Streben mit der Lüfterhaube (2, 11) verbunden ist, dadurch gekennzeichnet, dass die Streben (15, 16) in Umfangsrichtung gegensinnig geneigt oder gekrümmt angeordnet sind und ein Strebengitter (14) mit Kreuzungspunkten (17) bilden, wobei die Kreuzungspunkte auf einer Ellipse angeordnet sind.

Description

  • Die Erfindung betrifft eine Lüfterhaube für einen von Luft durchströmbaren Wärmeübertrager nach dem Oberbegriff des Patentanspruches 1.
  • Lüfterhauben werden bei Lüfteraggregaten mit Lüftergebläse zur Kanalisierung des Luftstromes und zur Halterung des Lüftergebläses verwendet. Insbesondere bei Kraftfahrzeugen ist in Luftströmungsrichtung hinter einem Wärmeübertrager, z. B. einem Kühlmittelkühler eine Lüfterhaube angeordnet, welche an dem Wärmeübertrager befestigt ist und eine kreisförmige Zarge aufweist, innerhalb welcher ein von einem Elektromotor angetriebener Axiallüfter zur Förderung des Luftstromes durch den Wärmeübertrager umläuft. Der Elektromotor mit dem Lüfter, kurz Lüftergebläse genannt, ist über einzelne Streben mit der Zarge bzw. der Lüfterhaube verbunden, wobei es sich vielfach um einstückig ausgebildete, gespritzte Kunststoffbauteile handelt. Ein derartiges Lüfter- oder Kühleraggregat für ein Kraftfahrzeug wurde durch die DE 42 44 037 A1 der Anmelderin bekannt. Dabei sind die Lüfterhaube mittels Rastverbindungen am Kühler und das Lüftergebläse an einem Befestigungsring befestigt, welcher über radial und im Wesentlichen in einer Ebene angeordnete Streben gehalten wird. Die auf die Streben wirkenden Kräfte und Momente, welche aus dem Gewicht und den Massenkräften des Gebläses mit Elektromotor, dem Reaktionsmoment und dem Axialschub des Lüfters resultieren, sind nicht unerheblich, sodass die Streben entsprechend kräftig dimensioniert sein müssen. Insbesondere in axialer Richtung muss eine hinreichende Steifigkeit gegeben sein, damit der Lüfter oder der Motor nicht am Wärmeübertrager anschlägt oder anstreift. Andererseits sollen die Streben nur einen minimalen Anteil des Zargenquerschnittes einnehmen, um die Strömungsverluste für den vom Lüfter geförderten Luftstrom so gering wie möglich zu halten. Daher werden die Streben möglichst schlank und strömungsgünstig, teilweise auch mit einem Strömungsprofil ausgebildet. Ein weiteres Problem bei der Gestaltung und Dimensionierung der Streben sind Lüftergeräusche, welche sich durch die Luftströmung infolge von stehenden Streben und rotierenden Lüfterblättern ergeben.
  • Die US 6 139 265 A offenbart eine Lüfteranordnung, wobei ein Körper eine Strömungspassage für einen Luftstrom ausbildet. Konzentrisch in dieser Strömungspassage ist eine Aufnahme für einen Elektromotor vorgesehen, welcher einen Lüfter antreiben kann. Die Aufnahme ist über eine Mehrzahl von Streben zum Außenring des Körpers, welcher die Strömungspassage begrenzt, beabstandet. Die Streben sind dabei entweder geradlinig ausgebildet oder in die Drehrichtung des Lüfters gekrümmt.
  • Die US 2 557 223 A offenbart Mittel zur Befestigung eines Lüfters in einer Gehäuseöffnung, wobei durch die Mittel erreicht wird, dass der Lüfter koaxial zu der jeweiligen Öffnung positioniert ist, um eine maximale Wirkung des durch den Lüfter erzeugten Luftstroms zu erhalten. Die Mittel zur Befestigung sind hierbei durch vier zueinander um jeweils 90° beabstandete Streben gebildet, die jeweils von der Umrandung der Öffnung hin zu einer Aufnahme im zentralen Bereich der Öffnung verlaufen.
  • Die US 2 142 307 A offenbart eine Befestigung eines Axiallüfters. Der Axiallüfter wird dabei mittels Streben konzentrisch vor einer Öffnung montiert, so dass ein Luftstrom, welcher vom Lüfter erzeugt wird, durch die Öffnung geleitet werden kann. Die US 2 142 307 A offenbart dabei unterschiedliche Ausgestaltungen der Streben.
  • Die US 3 883 264 A offenbart eine Anordnung von Luftleitschaufeln, welche einem Lüfter in Strömungsrichtung nachgelagert sind. Die Lüfterschaufeln sollen dabei den von dem Lüfter erzeugten Luftstrom beeinflussen, damit der Luftstrom vorteilhaftere Eigenschaften aufweist. Hierzu ist eine Anordnung von Lüfterschaufeln gezeigt, wobei Lüfterschaufeln sich zumindest teilweise überschneiden und Kreuzungspunkte bilden.
  • Um eine derartige Geräuschentwicklung zu vermeiden, wurde in der DE 41 05 378 A1 bei einem Lüfteraggregat mit Lüfterhaube und Lüftergebläse vorgeschlagen, die das Gebläse abstützenden Streben schräg zur radialen Richtung anzuordnen, vorzugsweise mit einem Neigungswinkel von 20°.
  • Ferner wurde zur Vermeidung von Lüftergeräuschen in der DE 196 38 518 A1 vorgeschlagen, die Haltestreben für den Elektromotor und den Axiallüfter zwischen Wärmeübertrager und Axiallüfter, also stromaufwärts vom Lüfter, anzuordnen. Die an einem äußeren Stützring befestigten Streben verlaufen dabei im Wesentlichen, d. h. im Bereich des Lüfterdurchmessers in einer zur Rotationsachse des Lüfters normalen Ebene. Um die in axialer Richtung vom Lüfter hervorgerufenen Schubkräfte und die vom Fahrzeug verursachten Trägheitskräfte durch Beschleunigen oder Verzögern aufzunehmen, müssen die Streben ein hinreichendes Widerstandsmoment aufweisen, was sich im Gewicht und in der Bautiefe bzw. im Druckabfall für den geförderten Luftstrom negativ auswirkt.
  • Es ist Aufgabe der vorliegenden Erfindung, eine Lüfterhaube der eingangs genannten Art in Bezug auf ihre axiale Steifigkeit zu verbessern, und zwar möglichst ohne das Gewicht, die Anzahl und/oder die Querschnitte der Streben zu erhöhen.
  • Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Erfindungsgemäß ist eine Lüfterhaube für einen von Luft durchströmbaren Wärmeübertrager mit einem aus einem Axiallüfter und einem Antriebsmotor bestehenden Lüftergebläse, welches über Streben mit der Lüfterhaube verbunden ist, vorgesehen, wobei die Streben in Umfangsrichtung gegensinnig geneigt bzw. gekrümmt angeordnet sind und ein Strebengitter mit Kreuzungspunkten bilden, wobei die Kreuzungspunkte auf einer Ellipse angeordnet sind. Damit wird der Vorteil einer axialen und radialen Versteifung erreicht.
  • Dabei ist es vorteilhaft, wenn die Streben derart gekrümmt sind, dass sie mit ihren An- bzw. Abströmkanten jeweils eine gekrümmte Fläche aufspannen, welche vorzugsweise die Oberfläche eines Sphäroids bzw. einer Kuppel bildet. Durch diesen „Kuppeleffekt” ergibt sich für die Streben eine höhere Gestaltfestigkeit, d. h. insbesondere eine höhere Steifigkeit in axialer Richtung, ohne dass hierfür eine Erhöhung der Anzahl der Streben oder eine Vergrößerung des Querschnittes im Wesentlichen notwendig ist. Das Potenzial des Werkstoffes, sei es Kunststoff oder sei es Leichtmetalldruckguss, wird damit besser und gleichmäßiger ausgenutzt.
  • In einer vorteilhaften Ausgestaltung wird eine Umhüllende, beispielsweise die Oberfläche des Sphäroiden (Paraboloid, Ellipsoid) durch Rotation eines Kurvenastes um die Rotationsachse des Gebläses erzeugt. Der Kurvenast kann Teil eines Kreises, einer Parabel, einer Ellipse oder einer anderen nicht linearen Kurve sein, deren Abstand in axialer Richtung zu einer Radialebene in radialer Richtung von innen nach außen ständig wächst. Damit wird ein ähnlicher Abstützeffekt für die Streben erreicht, wie er bei Kuppeln oder Gewölben bekannt ist, und zwar insbesondere im radial äußeren Bereich, wo auch die mechanische Beanspruchung am stärksten ist.
  • In einer weiteren vorteilhaften Ausgestaltung können die Streben einerseits zwischen Wärmeübertrager und Lüfter, also in Strömungsrichtung vor dem Lüfter als auch in Strömungsrichtung hinter dem Lüfter angeordnet sein. Insbesondere die Ausführungen, bei welchen der Abstand zwischen den Vorderkanten des Lüfters und den Hinterkanten der Streben oder der Abstand zwischen den Hinterkanten des Lüfters und den Vorderkanten der Streben radial von innen nach außen wächst, bringt Vorteile im Bereich der Aerodynamik und der Geräuschentwicklung, weil im äußeren Durchmesserbereich die größten Strömungsgeschwindigkeiten auftreten und die größten Förderleistungen erreicht werden, während gleichzeitig der Abstand zwischen Lüfter und Streben am größten ist. Dadurch werden die schädlichen Interferenzen deutlich vermindert.
  • Vorteilhafterweise können die unterschiedlich geneigten Streben unterschiedlich dimensioniert, d. h. als Druck- und Zugstreben ausgebildet sein, wobei die Druckstreben stärker als die Zugstreben dimensioniert sind. Dadurch wird der Vorteil einer weiteren Materialersparnis, verbunden mit einem geringeren Druckabfall für die Luftströmung erreicht. Die Anordnung der Streben in Gitterform gilt sowohl für Streben, welche im Wesentlichen in einer Ebene oder auf einer Kegelfläche angeordnet sind, als auch für Streben, welche sphärische oder sphäroide Krümmungen aufweisen.
  • In weiterer vorteilhaften Ausgestaltung ist zusätzlich eine Verstärkung des Querschnittes der Streben vorgesehen, und zwar insbesondere im äußeren Durchmesserbereich, wo die größte Biegebeanspruchung aufgrund axialer Belastung auftritt. Die Strebenquerschnitte nehmen somit mit wachsendem Radius zu, wobei entweder die Strebenhöhe (in Luftströmungsrichtung) oder die Strebenbreite (quer zur Luftströmungsrichtung) erhöht werden kann. Damit wird der Vorteil eines weiteren Zuwachses bezüglich der axialen Steifigkeit der Gebläseaufhängung erreicht.
  • Gemäß einer vorteilhaften Ausführungsform sind die Kreuzungspunkte in Bereichen mit im wesentlichen axialer Durchströmung angeordnet. Da in diesen Bereichen eine Radialkomponente der Durchströmung minimal ist, stellen die Kreuzungspunkte bei einer solchen Anordnung einen geringeren Strömungswiderstand dar.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben. Es zeigen
  • 1 ein erstes Ausführungsbeispiel mit entgegen der Luftströmungsrichtung gekrümmten Streben zwischen Wärmeübertrager und Lüfter,
  • 2 ein zweites Ausführungsbeispiel mit in Luftströmungs-Richtung gekrümmten Streben zwischen Wärmeübertrager und Lüfter,
  • 3 ein drittes Ausführungsbeispiel mit in Luftströmungs-Richtung gekrümmten Streben stromabwärts vom Lüfter,
  • 4 ein viertes Ausführungsbeispiel mit entgegen der Luftströmungsrichtung gekrümmten Streben stromabwärts vom Lüfter,
  • 5 ein fünftes Ausführungsbeispiel mit einem Strebengitter in einer Ansicht entgegen der Luftströmungsrichtung,
  • 6 das Ausführungsbeispiel gemäß 5 in einer Ansicht in Luftströmungsrichtung auf die Lüfterhaube mit Strebengitter und
  • 7 eine schematische Ansicht einer Lüfterhaube mit gekreuzten Streben.
  • 1 zeigt eine Anordnung eines Wärmeübertragers 1, einer Lüfterhaube 2 sowie eines Lüftergebläses 3, welches über eine Anzahl von Streben 4 gegenüber der Lüfterhaube 2 befestigt ist. Der Wärmeübertrager 1 kann vorzugsweise als Kühlmittel/Luftkühler eines Kraftfahrzeuges ausgebildet und in einem nicht dargestellten vorderen Motorraum eines Kraftfahrzeuges angeordnet sein. Zur Vereinfachung ist nur das Netz des Kühlers 1 dargestellt, welches von Umgebungsluft in Richtung des Pfeils L durchströmt wird. Die Lüfterhaube 2 ist ebenfalls nur unvollständig dargestellt, sie ist in nicht dargestellter, jedoch aus dem Stand der Technik bekannter Weise mit dem Kühler 1, z. B. über eine Rastverbindung verbunden. Die Lüfterhaube 2 weist an ihrem stromabwärtigen Ende eine Zarge 2a auf, in welcher ein Axiallüfter 3a umläuft, welcher von einem Elektromotor 3b angetrieben wird. Die gemeinsame Rotationsachse ist mit 3c bezeichnet. Das aus Elektromotor 3b und Lüfter 3a bestehende Gebläse 3 weist einen Haltering 5 auf, an welchem die Streben 4 befestigt sind und somit das Gebläse 3 innerhalb der Lüfterhaube 2 halten; damit ist das Gebläse 3 sowohl in radialer Richtung gegenüber der Lüfterzarge 2a als auch in axialer Richtung gegenüber dem Netz des Kühlers 1 fixiert. Die Streben 4 weisen im Querschnitt ein strömungsgünstiges Profil 4a auf, welches durch eine Strebenhöhe h in Luftströmungsrichtung und eine maximale Strebenbreite b quer zur Luftströmungsrichtung gekennzeichnet ist. Das Strebenprofil kann in radialer Richtung unterschiedliche Querschnitte, d. h. unterschiedliche Höhen und/oder Breiten aufweisen – daher ist ein weiteres Strebenprofil 4b mit einem geringeren Querschnitt dargestellt. Die Streben 4 weisen jeweils gestrichelt dargestellte Vorder- oder Anströmkanten 6 und Hinter- oder Abströmkanten 7 auf. Sowohl die Vorderkanten 6 als auch die Hinterkanten 7 sind – in diesem Ausführungsbeispiel – entgegen der Luftströmungsrichtung, d. h. in Richtung des Kühlers 1 gekrümmt – sie spannen jeweils eine die Streben 4 umhüllende Fläche auf, welche einen Teil der Oberfläche eines Sphäroiden, d. h. eines Rotationskörpers bildet. Ein solcher Sphäroid wird durch Rotation eines Kurvenastes (einer so genannten Erzeugenden) um eine Rotationsachse erzeugt; im dargestellten Ausführungsbeispiel sind die Erzeugenden die Vorderkanten 6 und die Hinterkanten 7 der Streben 4, d. h. beide liegen in der Zeichenebene. Sie weisen jeweils einen nicht linearen Kurvenverlauf auf, d. h. die Vorderkante 6 und die Hinterkante 7 könnten z. B. Bogenstücke einer Parabel sein. Durch diesen nicht linearen Kurvenverlauf ergibt sich ein veränderlicher Abstand x zwischen der Hinterkante 7 der Streben 4 und der Eintrittsebene E des Axiallüfters 3a, d. h. es ergibt sich radial innen ein minimaler Abstand xi und radial außen ein maximaler Abstand xa. Der Abstand x nimmt somit nicht linear (progressiv) mit wachsendem Radius (Abstand von der Rotationsachse 3c) zu. Die Streben 4 erhalten durch die beschriebene Krümmung eine erhöhte Gestaltfestigkeit, d. h. durch die gewölbte Ausbildung, bei welcher die Streben 4 quasi das Gerüst einer Kuppel bilden, ergibt sich ein Abstützeffekt, und zwar insbesondere bei axialer Belastung in Richtung der Rotationsachse 3c. Da im Schaufelspitzenbereich des Axiallüfters 3a die höchsten Umfangs- bzw. Strömungsgeschwindigkeiten auftreten, ergeben sich durch den vergrößerten Abstand xa zwischen Streben 4 und Lüfter 3a in diesem Bereich verbesserte Strömungsverhältnisse, was zu Geräuschminderungen und Wirkungsgraderhöhung führt. Die Streben 4 unterliegen bei axialer Belastung einer Biegebeanspruchung, welche im radial äußern Bereich, d. h. im Bereich des größten Abstandes x am größten ist. Obwohl in diesem Bereich aufgrund der Wölbung bereits ein Festigkeitszuwachs durch erhöhte Gestaltfestigkeit erreicht wird, kann es von Vorteil sein, in diesem Bereich den Strebenquerschnitt 4a zu vergrößern, d. h. entweder durch Vergrößerung der Strebenhöhe h oder Vergrößerung der Strebenbreite b oder durch beides, wobei ein schlankes Profil sowohl festigkeitsmäßige als auch aerodynamische Vorteile bietet.
  • 2 zeigt ein zweites Ausführungsbeispiel, wobei für gleiche Teile gleiche Bezugszahlen verwendet werden, also für den Wärmeübertrager 1 und das Gebläse 3 sowie die Lüfterhaube 2. Das Gebläse 3 ist mittels des Halteringes 5 über Streben 8 gegenüber der Lüfterhaube 2 befestigt, wobei die Streben 8 Vorderkanten 8a und Hinterkanten 8b aufweisen, welche hier in Richtung der Luftströmung, entsprechend dem Pfeil L, gekrümmt sind. In diesem Falle ist also der axiale Abstand xi im radial inneren Bereich zwischen dem Netz des Wärmeübertragers 1 und der Vorderkante 8a kleiner als der Abstand xa im radial äußeren Bereich. Die Streben 8 sind somit gegenüber den Streben 4 gemäß 1 gegenüber einer Radialebene gespiegelt. Der Abstützeffekt aufgrund der kuppelartigen Wölbung der Streben 8 ist also hier derselbe wie beim Ausführungsbeispiel gemäß 1. Die Lüfterhaube 2 ist vorzugsweise am Wärmeübertrager 1 befestigt, d. h. die vom Gebläse 3 ausgehenden, über die Streben 8 übertragenen Kräfte werden vom Wärmeübertrager 1 bzw. dessen Lagerung im Fahrzeug aufgenommen. Eine Abstützung der Lüfterhaube 2 auf andere Weise, z. B. direkt gegenüber dem Fahrzeug ist auch möglich.
  • 3 zeigt ein weiteres (drittes) Ausführungsbeispiel, bei welchem das Gebläse 3 über Streben 9 gegenüber der Lüfterhaube 2 gehalten ist und die Streben 9 stromabwärts vom Lüfter 3a angeordnet sind. Die Streben 9 weisen eine Vorderkante 9a und eine Hinterkante 9b auf, welche in Richtung der Luftströmung gekrümmt sind. Der Abstand x zwischen einer Austrittsebene A des Axiallüfters 3a und der Vorderkante 9a der Streben 9 wächst also mit zunehmendem Radius, d. h. der äußere Abstand xa ist größer als der innere Abstand xi, wobei x von xi nach xa progressiv zunimmt. Auch bei dieser Lösung ergeben sich insbesondere im radial äußeren Bereich aerodynamische Vorteile, verbunden mit einer Geräuschminderung und Wirkungsgraderhöhung.
  • 4 zeigt ein weiteres (viertes) Ausführungsbeispiel, bei welchem das Gebläse 3 über Streben 10 gegenüber der Lüfterhaube 2 abgestützt ist. Die Streben 10 weisen Vorderkanten 10a und Hinterkanten 10b auf, welche entgegen der Luftströmungsrichtung gekrümmt und hinter der Austrittsebene A des Axiallüfters 3a angeordnet sind. Diese Ausführungsform stellt somit eine Spiegelung der Ausführungsform gemäß 3 dar. Der Abstützeffekt aufgrund der kuppelförmigen Wölbung der Streben 10 ist auch hier gegeben.
  • 5 zeigt ein weiteres (fünftes) erfindungsgemäßes Ausführungsbeispiel, nämlich eine Lüfterhaube 11 mit einer Löfterzarge 11a, innerhalb welcher ein Elektromotor 12 für den Antrieb eines nicht dargestellten Löfterrades angeordnet ist. Die Lüfterhaube 11 ist mit ihrer Rückseite 11b dargestellt und auf nicht auf dargestellte Weise an ihrer Vorderseite mit einem ebenfalls nicht dargestellten Wärmeübertrager verbunden. Der Elektromotor 12 ist in einem Haltering 13 aufgenommen, welcher über ein Strebengitter 14 mit der Lüfterhaube 11 verbunden ist. Das Strebengitter 14 besteht aus Streben 15, die im Uhrzeigersinn in Umfangsrichtung gekrümmt sind, und aus Streben 16, die in entgegengesetzter Umfangsrichtung gekrümmt sind. Die Streben 15, 16 sind derart angeordnet, dass sich zwischen ihnen eine Vielzahl von Kreuzungspunkten 17 ergibt, welche zusammen mit den Streben 15, 16 die Gitterstruktur 14 bilden. Im Sinne einer Aufgabenteilung kann ein Teil der Streben als Druckstreben 15 und ein anderer Teil der Streben als Zugstreben 16 ausgebildet werden, womit auch die radiale Steifigkeit erhöht wird. Die Zugstreben können schlanker, d. h. mit einem geringeren Querschnitt ausgebildet werden. Die Lüfterhaube 11 einschließlich Zarge 11a, Strebengitter 14 und Haltering 13 kann als einstückiges Kunststoffspritzteil hergestellt werden. Das Strebengitter 14, bestehend aus in Umfangsrichtung gekrümmten Streben 15, 16 kann sowohl in einer Ebene als auch auf der Oberfläche eines Sphäroiden – wie in den vorigen Ausführungsbeispielen beschrieben – angeordnet sein. Durch die zusätzliche kuppelförmige Wölbung des Strebengitters 14 kann also eine zusätzliche axiale Steifigkeit durch Erhöhung der Gestaltfestigkeit erreicht werden.
  • 6 zeigt die erfindungsgemäße Lüfterhaube 11 gemäß 5 in einer Ansicht in Luftströmungsrichtung mit Streben 15, 16, welche das Strebengitter 14 zur Halterung des Halteringes 13 bilden – das Gebläse ist hier nicht dargestellt.
  • Die oben beschriebenen Ausführungsbeispiele beziehen sich auf einen Sauglüfter, d. h. eine Anordnung von Lüfterhaube und Lüftergebläse in Luftströmungsrichtung hinter dem Wärmeübertrager. Im Rahmen der Erfindung liegt auch eine Lüfterhaubenanordnung mit drückendem Lüfter, d. h. in Luftströmungsrichtung vor dem Wärmeübertrager.
  • 7 zeigt eine erfindungsgemäße Lüfterhaube 21 in schematischer Ansicht in Luftströmungsrichtung mit nur angedeuteten Streben 22, 23, 28, 29, welche sich in einem Kreuzungspunkt 24 kreuzen. Die jeweilige Form der Strebenpaare 22, 23 beziehungsweise 28, 29 ist dabei an die jeweiligen Stabilitätserfordernisse anzupassen. Weitere, nicht explizit dargestellte Kreuzungspunkte sind entlang einer Ellipse 25 mit Halbachsen c und d angeordnet. Im Bereich der Ellipse 25 ist die Durchströmung vorwiegend axial, das heißt senkrecht zur Zeichenebene von 7. Da die Kreuzungspunkte einen erhöhten Strömungswiderstand bei Durchströmung mit einer Komponente innerhalb der Zeichenebene von 7 darstellen, ist ein Gesamtströmungswiderstand der Lüfterhaube 21 bei dieser Anordnung reduziert. CFD-Strömungssimulationen einer rechteckigen Lüfterhaube ohne Streben führen ebenfalls zu einer Ellipsenform.
  • Beim vorliegenden Ausführungsbeispiel ist die Durchströmung innerhalb der Ellipse 25 aufgrund einer Ablenkung durch die Lüfternabe 26 schräg nach außen gerichtet, weist also eine Radialkomponente nach außen auf. Außerhalb der Ellipse ist die Durchströmung aufgrund einer Ablenkung durch die äußere Fläche 27 der Lüfterhaube 21 schräg nach innen gerichtet, weist also eine Radialkomponente nach innen auf.
  • Diese nach innen gerichtete Radialkomponente ist umso stärker ausgeprägt, je breiter die Außenfläche 27 ist. Somit ergibt sich die Ellipsenform aus der länglichen Rechteckform der Lüfterhaube 21. Generell ergibt sich bei rechteckigen Lüfterhauben mit den Kantenlängen a und b gemäß 7 und kreisrunder Lüfteröffnung eine Ellipse mit den Halbachsen c und d, wobei b kleiner als a ist und c kleiner als d ist. Die längliche Form der Ellipse ist also gegenüber der länglichen Form der Lüfterhaube um 90° gedreht.
  • Bei einer quadratischen Lüfterhaube ergibt sich dementsprechend ein Kreis als Spezialfall einer Ellipse.
  • Die Merkmale der Ausführungsbeispiele der 5 bis 7 sind mit den Merkmalen der Ausführungsbeispiele der 1 bis 4 kombinierbar. Dies gilt insbesondere für die Kreuzungspunkte der Streben, welche auf einer ellipsenförmigen Bahn angeordnet sind. Weiterhin können für alle Ausführungsbeispiele der 1 bis 7 jeweils in Luftströmungsrichtung vor oder hinter einem Wärmeübertrager angeordnet sein.

Claims (13)

  1. Lüfterhaube (2, 11) eingerichtet für einen von Luft durchströmbaren Wärmeübertrager (1) mit einem aus einem Axiallüfter (3a) und einem Antriebsmotor (3b, 12) bestehenden Lüftergebläse (3), welches über Streben mit der Lüfterhaube (2, 11) verbunden ist, dadurch gekennzeichnet, dass die Streben (15, 16) in Umfangsrichtung gegensinnig geneigt oder gekrümmt angeordnet sind und ein Strebengitter (14) mit Kreuzungspunkten (17) bilden, wobei die Kreuzungspunkte auf einer Ellipse angeordnet sind.
  2. Lüfterhaube (2) nach Anspruch 1, dadurch gekennzeichnet, dass die Streben ein Querschnittsprofil mit einer Vorder- und einer Hinterkante sowie einer Strebenhöhe h und einer Strebenbreite b aufweisen, wobei die Vorder- und/oder die Hinterkanten (6, 7; 8a, 8b; 9a, 9b; 10a, 10b) der Streben (4, 8, 9, 10) in einer nichtebenen sphärischen oder sphäroiden Fläche angeordnet sind.
  3. Lüfterhaube nach Anspruch 2, dadurch gekennzeichnet, dass eine die nichtebene sphäriche oder sphäroide Fläche umhüllende Fläche durch einen um die Rotationsachse (3c) des Gebläses (3) rotierenden, nicht linearen Kurvenast (6, 7; 8a, 8b) erzeugbar ist, welcher einen mit zunehmendem Abstand von der Rotationsachse (3c) zunehmenden Abstand x von einer Radialebene (E, A) aufweist.
  4. Lüfterhaube nach Anspruch 3, dadurch gekennzeichnet, dass der Kurvenast (6, 7; 10a, 10b) entgegen einer Luftströmungsrichtung L gekrümmt ist.
  5. Lüfterhaube nach Anspruch 3, dadurch gekennzeichnet, dass der Kurvenast (8a, 8b; 9a, 9b) in Luftströmungsrichtung L gekrümmt ist.
  6. Lüfterhaube nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Streben (9, 10) in Luftströmungsrichtung hinter dem Axiallüfter (3a) angeordnet sind.
  7. Lüfterhaube nach einem der vorhergehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Streben (4, 8) in Luftströmungsrichtung vor dem Axiallüfter (3a) angeordnet sind.
  8. Lüfterhaube nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Strebenquerschnitt (4a, 4b) mit zunehmendem Abstand von einer Rotationsachse (3c) zunimmt.
  9. Lüfterhaube nach Anspruch 2, dadurch gekennzeichnet, dass die Strebenhöhe h mit zunehmendem Abstand zunimmt.
  10. Lüfterhaube nach Anspruch 2, dadurch gekennzeichnet, dass die Strebenbreite b mit zunehmendem Abstand zunimmt.
  11. Lüfterhaube nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Streben in einer Umfangsrichtung als Druckstreben (15) und in der anderen Umfangsrichtung als Zugstreben (16) ausgebildet sind, wobei die Druckstreben einen größeren Querschnitt als die Zugstreben aufweisen.
  12. Lüfterhaube nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Kreuzungspunkte in Bereichen mit im Wesentlichen axialer Durchströmung angeordnet sind.
  13. Lüfterhaube nach einem der Anspruch 1 bis 12, dadurch gekennzeichnet, dass ein Längenverhältnis von Hauptachsen der Ellipse einem Kehrwert eines Längenverhältnisses der dazu jeweils parallelen Seitenkanten der Lüfterhaube entspricht.
DE102005019421.4A 2004-04-26 2005-04-25 Lüfterhaube für einen Wärmeübertrager, insbesondere für Kraftfahrzeuge Expired - Fee Related DE102005019421B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102005019421.4A DE102005019421B4 (de) 2004-04-26 2005-04-25 Lüfterhaube für einen Wärmeübertrager, insbesondere für Kraftfahrzeuge

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004020508 2004-04-26
DE102004020508.6 2004-04-26
DE102005019421.4A DE102005019421B4 (de) 2004-04-26 2005-04-25 Lüfterhaube für einen Wärmeübertrager, insbesondere für Kraftfahrzeuge

Publications (2)

Publication Number Publication Date
DE102005019421A1 DE102005019421A1 (de) 2005-11-17
DE102005019421B4 true DE102005019421B4 (de) 2014-02-13

Family

ID=35160474

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102005019421.4A Expired - Fee Related DE102005019421B4 (de) 2004-04-26 2005-04-25 Lüfterhaube für einen Wärmeübertrager, insbesondere für Kraftfahrzeuge

Country Status (1)

Country Link
DE (1) DE102005019421B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102296564B1 (ko) 2017-11-15 2021-08-31 브로제 파르초이크타일레 에스에 운트 코. 콤만디트게젤샤프트, 뷔르츠부르크 냉각 팬 모듈

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006009845A1 (de) * 2006-03-01 2007-09-13 Behr Gmbh & Co. Kg Lüfterzarge für einen Wärmeübertrager und Anordnung eines Axiallüfters in einer Lüfterzarge
DE102014116047A1 (de) * 2014-11-04 2016-05-04 Ebm-Papst Mulfingen Gmbh & Co. Kg Schutzgitter mit verbessertem Wirkungsgrad- und Geräuschverhalten

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2142307A (en) * 1934-06-14 1939-01-03 Mey Rene De Mounting of axial flow fans and the like
US2557223A (en) * 1948-06-17 1951-06-19 Edmund E Hans Means for supporting a fan in a housing opening
GB733544A (en) * 1952-11-10 1955-07-13 Henning Guenther Bartels Device for increasing pressure or speed of a fluid flowing in a pipeline
FR78447E (fr) * 1959-10-16 1962-07-20 Bertin & Cie Diffuseur pour fluide et appareils en comportant application
US3883264A (en) * 1971-04-08 1975-05-13 Gadicherla V R Rao Quiet fan with non-radial elements
DE9017417U1 (de) * 1990-12-22 1991-03-14 Behr GmbH & Co, 7000 Stuttgart Lüfteraggregat für einen Kühler
DE19638518A1 (de) * 1996-09-20 1998-04-02 Distelkamp Stroemungstechnik Axiallüfter, insbesondere zur Luftförderung durch den Wärmetauscher eines Kraftfahrzeuges
US6139265A (en) * 1996-05-01 2000-10-31 Valeo Thermique Moteur Stator fan

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2142307A (en) * 1934-06-14 1939-01-03 Mey Rene De Mounting of axial flow fans and the like
US2557223A (en) * 1948-06-17 1951-06-19 Edmund E Hans Means for supporting a fan in a housing opening
GB733544A (en) * 1952-11-10 1955-07-13 Henning Guenther Bartels Device for increasing pressure or speed of a fluid flowing in a pipeline
FR78447E (fr) * 1959-10-16 1962-07-20 Bertin & Cie Diffuseur pour fluide et appareils en comportant application
US3883264A (en) * 1971-04-08 1975-05-13 Gadicherla V R Rao Quiet fan with non-radial elements
DE9017417U1 (de) * 1990-12-22 1991-03-14 Behr GmbH & Co, 7000 Stuttgart Lüfteraggregat für einen Kühler
US6139265A (en) * 1996-05-01 2000-10-31 Valeo Thermique Moteur Stator fan
DE19638518A1 (de) * 1996-09-20 1998-04-02 Distelkamp Stroemungstechnik Axiallüfter, insbesondere zur Luftförderung durch den Wärmetauscher eines Kraftfahrzeuges

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102296564B1 (ko) 2017-11-15 2021-08-31 브로제 파르초이크타일레 에스에 운트 코. 콤만디트게젤샤프트, 뷔르츠부르크 냉각 팬 모듈

Also Published As

Publication number Publication date
DE102005019421A1 (de) 2005-11-17

Similar Documents

Publication Publication Date Title
EP1600640A2 (de) Lüfterhaube für einen Wärmeübertrager, insbesondere für Kraftfahrzeuge
EP3486499B1 (de) Kühlerlüftermodul
EP2926013B1 (de) Lüftereinrichtung und fahrzeug mit einer lüftereinrichtung
WO2012084725A1 (de) Ventilatordiffusor mit kreisförmigem einlass und nicht rotationssymmetrischem auslass
WO2011038884A1 (de) Diagonalventilator
DE2657840A1 (de) Geraeuscharme kuehlanlage fuer brennkraftmaschinen
WO2017017264A1 (de) Lüfterrad und kühlerlüftermodul
DE102016221642A1 (de) Zargenvorrichtung für ein Kühlerlüftermodul, ein Kühlerlüftermodul mit einer Zargenvorrichtung und Fahrzeug mit einem solchen Kühlerlüftermodul
DE102018211808A1 (de) Ventilator und Leiteinrichtung für einen Ventilator
DE102011050777A1 (de) Rotor und Rotorblatt für eine Windkraftanlage
EP3034886A1 (de) Schaufel und lüfterlaufrad damit
DE202018106504U1 (de) Kompakter Diagonalventilator mit Nachleiteinrichtung
EP2333348A2 (de) Radiallüftergehäuse
DE102010039219A1 (de) Lüfter, insbesondere für ein Motorkühlungsgebläse in einem Kraftfahrzeug
DE102019103541A1 (de) Kühlmodul mit Axialgebläse für Fahrzeuge, insbesondere für Elektrofahrzeuge
DE102005019421B4 (de) Lüfterhaube für einen Wärmeübertrager, insbesondere für Kraftfahrzeuge
EP2133574A2 (de) Räumliches Schutzgitter für Axiallüfter und Verfahren zur Herstellung des Schutzgitters
EP3617529B1 (de) Lüfterzarge eines kraftfahrzeugs
EP1887195B1 (de) Kühlvorrichtung für ein Kraftfahrzeug
DE1628421A1 (de) Geblaeserad,im besonderen fuer Ventilatoren
DE102022200382A1 (de) Ventilator
DE102015207399A1 (de) Kühlerlüftermodul und Fahrzeug mit einem Kühlerlüftermodul
DE20319741U1 (de) Radial- oder Diagonal-Ventilator
DE102016112876A1 (de) Durchströmwindkraftanlage
EP2151345B1 (de) Lüfter und Verfahren zur Montage eines Lüfters

Legal Events

Date Code Title Description
OR8 Request for search as to paragraph 43 lit. 1 sentence 1 patent law
8105 Search report available
8110 Request for examination paragraph 44
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R020 Patent grant now final

Effective date: 20141114

R082 Change of representative

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

R081 Change of applicant/patentee

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20150311

R082 Change of representative

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20150311

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee