DE102005015634A1 - Verwendung von Polyisobuten enthaltenden Copolymerisaten in Wasch-, Dusch- und Badepräparaten - Google Patents

Verwendung von Polyisobuten enthaltenden Copolymerisaten in Wasch-, Dusch- und Badepräparaten Download PDF

Info

Publication number
DE102005015634A1
DE102005015634A1 DE200510015634 DE102005015634A DE102005015634A1 DE 102005015634 A1 DE102005015634 A1 DE 102005015634A1 DE 200510015634 DE200510015634 DE 200510015634 DE 102005015634 A DE102005015634 A DE 102005015634A DE 102005015634 A1 DE102005015634 A1 DE 102005015634A1
Authority
DE
Germany
Prior art keywords
mol
acid
oligomer
optionally
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200510015634
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE200510015634 priority Critical patent/DE102005015634A1/de
Priority to PCT/EP2006/061332 priority patent/WO2006106112A2/de
Publication of DE102005015634A1 publication Critical patent/DE102005015634A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/91Graft copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cosmetics (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Copolymerisaten, erhältlich durch Copolymerisation von mindestens einem ethylenisch ungesättigten Dicarbonsäureanhydrid, abgeleitet von mindestens einer Dicarbonsäure mit 4 bis 8 C-Atomen und mindestens einem Oligomeren von verzweigtem oder unverzweigtem C¶3¶-C¶10¶-Alken, wobei mindestens ein Oligomer ein mittleres Molekulargewicht M¶n¶ im Bereich von 300 bis 5000 g/mol, bevorzugt bis zu 1200 g/mol, aufweist oder durch Oligomerisierung von mindestens 3 Äquivalenten C¶3¶-C¶10¶-Alken erhältlich ist, in Wasch-, Dusch- und Badepräparaten.

Description

  • Die vorliegende Erfindung betrifft die Verwendung von
    • a) Copolymerisaten, erhältlich durch Copolymerisation von (A) mindestens einem ethylenisch ungesättigten Dicarbonsäureanhydrid, abgeleitet von mindestens einer Dicarbonsäure mit 4 bis 8 C-Atomen, (B) mindestens einem Oligomeren von verzweigtem oder unverzweigtem C3-C10-Alken, wobei mindestens ein Oligomer ein mittleres Molekulargewicht Mn im Bereich von 300 bis 5000 g/mol, bevorzugt bis zu 1200 g/mol aufweist oder durch Oligomerisierung von mindestens 3 Äquivalenten C3-C10-Alken erhältlich ist, (C) optional mindestens einem α-Olefin mit bis zu 24, bevorzugt mit bis zu 16 C-Atomen, (D) optional mindestens einem weiteren von (A), (B) und (C) verschiedenen ethylenisch ungesättigten Comonomer, gegebenenfalls Umsetzung mit (E) mindestens einer Verbindung der allgemeinen Formel Ia, Ib, Ic oder Id
      Figure 00010001
      wobei A1 C2-C20-Alkylen, gleich oder verschieden, R1 C1-C30-Alkyl, linear oder verzweigt, Phenyl oder Wasserstoff, n eine ganze Zahl von 1 bis 200, gegebenenfalls anschließendem Kontaktieren mit Wasser, gegebenenfalls gemischt mit
    • b) mindestens einem Oligomeren von verzweigtem oder unverzweigtem C3-C10-Alken, wobei mindestens ein Oligomer ein mittleres Molekulargewicht Mn im Bereich von 300 bis 5000 g/mol, bevorzugt bis 1200 g/mol aufweist oder durch Oligomerisierung von mindestens 3 Äquivalenten C3-C10-Alken erhältlich ist, in Wasch-, Dusch- und Badepräparaten.
  • Weiterhin betrifft die vorliegende Erfindung kosmetische Zusammensetzungen ausgewählt aus Wasch-, Dusch- und Badepräparaten enthaltend die vorgenannten Komponenten a) und gegebenenfalls b).
  • Unter Wasch-, Dusch- und Badepräparaten werden im Rahmen dieser Erfindung Seifen von flüssiger bis gelförmiger Konsistenz, wie Transparentseifen, Luxusseifen, Deoseifen, Cremeseifen, Babyseifen, Hautschutzseifen, Abrasivseifen und Syndets, pasteuse Seifen, Schmierseifen und Waschpasten, flüssige Wasch-, Dusch- und Badepräparate, wie Waschlotionen, Duschbäder und -gele, Schaumbäder, Ölbäder und Scrub-Präparate, Rasierschäume, -lotionen und -cremes verstanden.
  • Shampoos und Haarpflegemittel sind nicht Gegenstand dieser Erfindung. Auch kosmetische oder dermatologiche Zusammensetzungen mit einem Lichtschutzfaktor (LSF) von wenigstens 4, bestimmt nach der COLIPA-Methode, sind nicht Gegenstand dieser Erfindung.
  • Der im Folgenden verwendete Ausdruck "Reinigungspräparate" steht synonym für Wasch-, Dusch- oder Badepräparate. Selbstverständlich fallen auch Zusammensetzungen, die gleichzeitig für mindestens zwei der Zwecke Waschen, Duschen und Baden geeignet sind, unter den Ausdruck Wasch-, Dusch- oder Badepräparate.
  • Kosmetische und/oder dermatologische Reinigungspräparate werden in aller Regel in Form eines Schaums mit Wasser auf die zu reinigenden Körperpartien aufgetragen. Basis fast aller kosmetischen oder dermatologischen Reinigungspräparate sind waschaktive Tenside. Tenside sind amphiphile Stoffe, die organische, unpolare Substanzen in Wasser lösen können. Sie zeichnen sich durch ein ambivalentes Verhalten gegenüber Wasser und Lipiden aus. Das Tensidmolekül enthält mindestens je eine hydrophile und eine lipophile Gruppe, die die Anlagerung an der Grenzfläche zwischen diesen beiden Substanzklassen ermöglichen. Auf diese Weise sorgen Tenside für eine Herabsetzung der Oberflächenspannung des Wassers, die Benetzung der Haut, die Erleichterung der Schmutzentfernung und -lösung, ein leichtes Abspülen und je nach Wunsch- auch für Schaumregulierung. Damit ist die Grundlage für die Schmutzentfernung lipidhaltiger Verschmutzungen gegeben.
  • Die hohe Reinigungsleistung tensidhaltiger Reinigungszusammensetzungen, insbesondere gegenüber Lipiden, birgt jedoch auch eine Reihe von dermatologischen Nachteilen in sich: Bereits bei einer Reinigung der Haut mit Hilfe von Wasser-ohne Zusatz von Tensiden – kommt es zunächst zu einer Quellung der Hornschicht der Haut.
  • Der Grad dieser Quellung hängt u.a. von der Dauer des Bades und dessen Temperatur ab. Gleichzeitig werden wasserlösliche Stoffe ab- bzw. ausgewaschen, wie z.B. wasserlösliche Schmutzbestandteile, aber auch hauteigene Stoffe, die für das Wasserbindungsvermögen der Hornschicht verantwortlich sind (Feuchthaltemittel oder Moisturizer). Durch hauteigene oberflächenaktive Stoffe werden außerdem auch Hautfette in gewissem Ausmaß gelöst und ausgewaschen. Dies bedingt nach anfänglicher Quellung eine nachfolgende Austrocknung der Haut.
  • Es ist verständlich, dass waschaktive Tenside, die die Haut von fettigen und wasserlöslichen Schmutzbestandteilen reinigen sollen, auch eine entfettende Wirkung auf die normalen Hautlipide haben. Bei jeder Hautreinigung werden in unterschiedlichem Maß auch interkorneozytäre Lipide und Sebumbestandteile entfernt. Das bedeutet, dass der natürliche Wasser-Lipid-Mantel der Haut bei jedem Waschvorgang gestört wird. Dies kann besonders bei sehr starker Entfettung zu einer kurzzeitigen Veränderung der Barrierefunktion der Haut führen, wobei selbstverständlich auch der jeweilige Zustand der behandelten Hautregion auf die dargestellten Veränderungen von erheblichem Einfluss ist. Beispielsweise können die Hautdicke, die Anzahl der Talg- und Schweißdrüsen sowie die damit verbundene Empfindlichkeit erheblich variieren.
  • Grundsätzlich gilt dementsprechend als Forderung an waschaktive Tenside, dass sie biologisch möglichst inaktiv sind, um unerwünschte Nebenwirkungen zu vermeiden. Sie sollen ihre reinigende Wirkung bei optimaler Milde, bester Hautverträglichkeit und geringer Entfettung entfalten.
  • Es hat daneben aber auch nicht an Versuchen gefehlt, geeignete Reinigungszusammensetzungen zu finden, welche die Haut bei guter Reinigungsleistung gleichzeitig regenerieren bzw. „rückfetten". Allerdings bleibt die erzielte Leistung häufig hinter der erwarteten zurück, so dass der Anwender in aller Regel auf separate Pflegeprodukte zurückgreifen muss, welche nach der Reinigung auf die Haut aufgetragen werden und auf dieser verbleiben (sogenannte „leave-on" Produkte).
  • Es ist eine Reihe von Reinigungszusammensetzungen, beispielsweise Duschöle, bekannt, die zur gleichzeitigen Reinigung und Rückfettung der Haut eingesetzt werden können. Auch rückfettende Reinigungszusammensetzungen auf der Basis von Emulsionen sind bekannt. EP-A1 166 772 beispielsweise beschreibt Reinigungsemulsionen mit einem hohen Ölgehalt.
  • Derartige Zusammensetzungen des Standes der Technik weisen jedoch eine Reihe von Nachteilen auf:
    • – Die Verteilbarkeit der Zusammensetzung auf der Haut ist unbefriedigend. Die meist zähflüssigen, hydrophoben Zusammensetzungen lassen sich relativ schwer auf der (mit Wasser benetzten) Haut verteilen;
    • – Die Zusammensetzungen sind bei Salzgehalten > 1 Gew.-% instabil;
    • – Die rückfettende Wirkung ist mangelhaft;
    • – Die Reinigungszusammensetzungen entfernen gleichzeitig und relativ unselektiv den (lipophilen) Schmutz auf der Haut ebenso wie die hauteigenen Lipide;
    • – die Zusammensetzungen aus dem Stand der Technik bestehen vielfach aus zahlreichen Komponenten, da sie nur so ausreichend stabil und kosmetisch akzeptabel bereitgestellt werden können.
  • Die Aufgabe der vorliegenden Erfindung bestand darin, die vorgenannten Mängel des Standes der Technik zu beseitigen oder zumindest zu vermindern. Es sollten Zusammensetzungen auf Basis möglichst weniger Einsatzstoffe entwickelt werden, deren Verteilbarkeit und Stabilität verbessert, deren rückfettende Wirkung verstärkt, deren Selektivität bei der Entfernung lipophiler Bestandteile erhöht ist, die durch die geringere Anzahl an Komponenten Hautirritationen vermindern.
  • Weiterhin war es eine Aufgabe dieser Erfindung, Wasch-, Dusch- und Badepräparate zu entwickeln, bei deren Herstellung die gewünschten Öl- und/oder Fettkomponenten auf einfache Weise in die wässrige Phase eingearbeitet werden können und die auch ohne den Zusatz von weiteren Tensiden Waschaktivität aufweisen.
  • Lösung der Aufgabe
  • Die vorgenannten Aufgaben werden gelöst durch die Verwendung von
    • a) Copolymerisaten, erhältlich durch Copolymerisation von (A) mindestens einem ethylenisch ungesättigten Dicarbonsäureanhydrid, abgeleitet von mindestens einer Dicarbonsäure mit 4 bis 8 C-Atomen, (B) mindestens einem Oligomeren von verzweigtem oder unverzweigtem C3-C10-Alken, wobei mindestens ein Oligomer ein mittleres Molekulargewicht Mn im Bereich von 300 bis 5000 g/mol, bevorzugt bis zu 1200 g/mol aufweist oder durch Oligomerisierung von mindestens 3 Äquivalenten C3-C10-Alken erhältlich ist, (C) optional mindestens einem α-Olefin mit bis zu 24, bevorzugt mit bis zu 16 C-Atomen, (D) optional mindestens einem weiteren von (A), (B) und (C) verschiedenen ethylenisch ungesättigten Comonomer, gegebenenfalls Umsetzung mit (E) mindestens einer Verbindung der allgemeinen Formel Ia, Ib, Ic oder Id
      Figure 00050001
      wobei A1 C2-C20-Alkylen, gleich oder verschieden, R1 C1-C30-Alkyl, linear oder verzweigt, Phenyl oder Wasserstoff, n eine ganze Zahl von 1 bis 200, gegebenenfalls anschließendem Kontaktieren mit Wasser, gegebenenfalls gemischt mit
    • b) mindestens einem Oligomeren von verzweigtem oder unverzweigtem C3-C10-Alken, wobei mindestens ein Oligomer ein mittleres Molekulargewicht Mn im Bereich von 300 bis 5000 g/mol, bevorzugt bis 1200 g/mol aufweist oder durch Oligomerisierung von mindestens 3 Äquivalenten C3-C10-Alken erhältlich ist, in kosmetischen Zusammensetzungen ausgewählt aus der Gruppe bestehend aus Wasch-, Dusch- und Badepräparaten.
  • Copolymerisat a)
  • Copolymerisat a) ist erhältlich durch vorzugsweise radikalische Copolymerisation von
    • (A) mindestens einem ethylenisch ungesättigten Dicarbonsäureanhydrid, abgeleitet von mindestens einer Dicarbonsäure mit 4 bis 8 C-Atomen, beispielsweise Maleinsäureanhydrid, Itaconsäureanhydrid, Citraconsäureanhydrid, Methylenmalonsäureanydrid, bevorzugt Itaconsäureanhydrid und Maleinsäureanhydrid und ganz besonders bevorzugt Maleinsäureanhydrid;
    • (B) mindestens einem Oligomeren von verzweigtem oder unverzweigtem C3-C10-Alken, wobei mindestens ein Oligomer ein mittleres Molekulargewicht Mn im Bereich von 300 bis 5000 g/mol, bevorzugt bis zu 1200 g/mol aufweist oder durch Oligomerisierung von mindestens 3 Äquivalenten C3-C10-Alken erhältlich ist,
    • (C) optional mindestens einem α-Olefin mit bis zu 24, bevorzugt mit bis zu 16 C-Atomen,
    • (D) optional mindestens einem weiteren von (A), (B) und (C) verschiedenen ethylenisch ungesättigten Comonomer, gegebenenfalls Umsetzung mit
    • (E) mindestens einer Verbindung der allgemeinen Formel Ia, Ib, Ic oder Id
      Figure 00060001
      wobei A1 C2-C20-Alkylen, gleich oder verschieden, R1 C1-C30-Alkyl, linear oder verzweigt, Phenyl oder Wasserstoff, n eine ganze Zahl von 1 bis 200, wobei die Carboxylgruppen des Copolymerisats a) zumindest partiell verestert oder amidiert sein können, und gegebenenfalls anschließendem Kontaktieren mit Wasser.
  • Oligomere (B) bzw. b)
  • Als Oligomere (B) bzw. b) kommen Oligomere des Propylens oder unverzweigter oder vorzugsweise verzweigter C4-C10-Olefine in Betracht, wobei mindestens ein Oligomer ein mittleres Molekulargewicht Mn im Bereich von 300 bis 5000 g/mol, bevorzugt bis zu 1200 g/mol aufweist oder durch Oligomerisierung von mindestens 3 Äquivalenten C3-C10-Alken erhältlich ist.
  • Beispielhaft seien Oligomere von Propylen, Isobuten, 1-Penten, 2-Methylbuten-1, 1-Hexen, 2-Methylpenten-1, 2-Methylhexen-1, 2,4-Dimethyl-1-hexen, Diisobuten (Gemisch aus 2,4,4-Trimethyl-1-penten und 2,4,4-Trimethyl-2-penten), 2-Ethylpenten-1,2-Ethylhexen-1 und 2-Propylhepten-1, 1-Okten, 1-Decen und 1-Dodecen genannt, ganz besonders bevorzugt sind Oligomere von Isobuten, Diisobuten und 1-Dodecen.
  • Die Oligomere (B) bzw. b) weisen eine ethylenisch ungesättigte Gruppe auf, die in Form einer Vinyl-, Vinyliden- oder Alkylvinylidengruppe vorliegen kann.
  • Auch Co-Oligomere der vorstehend genannten Olefine untereinander oder mit bis zu 20 Gew.-%, bezogen auf (B) bzw. b), Vinylaromaten wie Styrol und α-Methylstyrol, C1-C4-Alkylstyrol wie beispielsweise 2-, 3- und 4-Methylstyrol sowie 4-tert.-Butylstyrol kommen in Frage.
  • Besonders bevorzugte Oligomere (B) bzw. b) sind Oligopropylene und Oligoisobutene mit einem mittleren Molekulargewicht Mn bis zu 1200 g/mol, bevorzugt im Bereich von 300 bis 1000 g/mol, besonders bevorzugt von mindestens 400 g/mol, ganz besonders bevorzugt von mindestens 500 g/mol, beispielsweise bestimmt mittels Gelpermeationschromatographie (GPC).
  • In einer Ausführungsform der vorliegenden Erfindung weisen Oligomere (B) bzw. b) eine Polydispersität Mw/Mn im Bereich von 1,1 bis 10, bevorzugt bis 5 und besonders bevorzugt von 1,5 bis 1,8 auf.
  • In einer Ausführungsform der vorliegenden Erfindung weisen Oligomere (B) bzw. b) eine bimodale Molekulargewichtsverteilung auf mit einem Maximum von Mn im Bereich von 500 bis 1200 g/mol und einem lokalen Maximum von Mn im Bereich von 2000 bis 5000 g/mol.
  • Oligomer (B) kann gleich oder verschieden sein von Oligomer (b). In einer Ausführungsform der vorliegenden Erfindung sind Oligomer (B) und Oligomer (b) gleich.
  • Als Oligomer b) sind bevorzugt Oligomere von C4-Olefinen geeignet. In einer Ausführungsform der Erfindung sind die Oligomere b) hydrierte Oligomere von C4-Olefinen. Besonders bevorzugt als Oligomere b) sind auch, gegebenenfalls hydrierte, Oligomere aus 3, 4, 5, 6, 7 oder 8 C4-Olefin-Molekülen.
  • Comonomer (C)
  • Als Comonomer (C) eingesetzte α-Olefine mit bis zu 16 C-Atomen sind gewählt aus Propylen, 1-Buten, Isobuten, 1-Penten, 4-Methylbut-1-en, 1-Hexen, Diisobuten (Gemisch aus 2,4,4-Trimethyl-1-penten und 2,4,4-Trimethyl-2-penten), 1-Hepten, 1-Octen, 1-Decen, 1-Dodecen, 1-Tetradecen und 1-Hexadecen; besonders bevorzugt sind Isobuten, Diisobuten und 1-Dodecen.
  • Herstellung von Copolymerisat a)
  • Man kann zur Herstellung von erfindungsgemäß verwendetem Copolymerisat a) (A), (B) und gegebenenfalls (C) miteinander copolymerisieren. Man kann auch zur Herstellung von erfindungsgemäßem Copolymerisat a) (A), (B) und gegebenenfalls (C) miteinander copolymerisieren und gegebenenfalls mit (E) umsetzen oder (A), (B) und gegebenenfalls (C) und gegebenenfalls ein weiteres Comonomer (D) miteinander copolymerisieren, oder man kann (A) und (B) und gegebenenfalls (C) und gegebenenfalls ein weiteres Comonomer (D) miteinander copolymerisieren und gegebenenfalls mit (E) umsetzen.
  • Wünscht man ein Copolymerisat a) einzusetzen, dessen Carboxylgruppen zumindest partiell verestert oder amidiert sind, so wählt man als Verbindung (E) mindestens eine Verbindung der allgemeinen Formel Ia bis Id, vorzugsweise Ia,
    Figure 00080001
    wobei die Variablen wie folgt definiert sind:
    A1 C2-C20-Alkylen, beispielsweise -(CH2)2-, -CH2-CH(CH3)-, -(CH2)3-, -CH2-CH(C2H5)-, -(CH2)4-, -(CH2)5-, -(CH2)6-, vorzugsweise C2-C4-Alkylen; insbesondere -(CH2)2-, -CH2-CH(CH3)- und -CH2-CH(C2H5)-;
    R1 Phenyl,
    Wasserstoff
    oder vorzugsweise C1-C30-Alkyl, linear oder verzweigt, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Dodecyl, n-Hexadecyl, n-Octadecyl, n-Eicosyl; besonders bevorzugt C1-C4-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl, ganz besonders bevorzugt Methyl.
    n eine ganze Zahl im Bereich von 1 bis 200, bevorzugt 4 bis 20.
  • Die Gruppen A1 können natürlich nur dann verschieden sein, wenn n eine Zahl größer 1 ist oder wenn man verschiedene Verbindungen der allgemeinen Formel Ia bis Id einsetzt.
  • Besondere Beispiele für Verbindungen der allgemeinen Formel Ia sind
    • – Methylendgruppenverschlossene Polyethylenglykole der Formel HO-(CH2CH2O)m CH3 mit m = 1 bis 200, vorzugsweise 4 bis 100, besonders bevorzugt 4–50
    • – Methylendgruppenverschlossene Blockcopolymere aus Ethylenoxid, Propylenoxid und/oder Butylenoxid mit einem Molekulargewicht Mn von 300 bis 5000 g/mol
    • – Methylendgruppenverschlossene statistische Copolymere aus Ethylenoxid, Propylenoxid und/oder Butylenoxid mit einem Molekulargewicht Mn von 300 bis 5000 g/mol
    • – Alkoxylierte C2- bis C30-Alkohole, insbesondere Fettalkoholalkoxylate, Oxoalkoholalkoxylate oder Guerbet-Alkoholalkoxylate, wobei die Alkoxylierung mit Ethylenoxid, Propylenoxid und/oder Butylenoxid durchgeführt werden kann, Beispiele sind
    • – C13-C15-Oxoalkoholethoxylate mit 3 bis 30 Ethylenoxideinheiten
    • – C13-Oxoalkoholethoxylate mit 3 bis 30 Ethylenoxideinheiten,
    • – C12C14-Fettalkoholethoxylate mit 3 bis 30 Ethylenoxideinheiten,
    • – C10-Oxoalkoholethoxylate mit 3 bis 30 Ethylenoxideinheiten,
    • – C10-Guerbetalkoholethoxylate mit 3 bis 30 Ethylenoxideinheiten,
    • – C9-C11-Oxoalkoholalkoxylate mit 2 bis 20 Ethylenoxideinheiten, 2 bis 20 Propylenoxideinheiten und/oder 1-5 Butylenoxideinheiten;
    • – C13-C15-Oxoalkoholalkoxylate mit 2 bis 20 Ethylenoxideinheiten, 2 bis 20 Propylenoxideinheiten und/oder 1-5 Butylenoxideinheiten;
    • – C4-C20-Alkoholethoxylate mit 2 bis 20 Ethylenoxideinheiten.
  • Bevorzugte Beispiele für Verbindungen der Formel Ib sind Methylendgruppenverschlossene Polyethylenglykolamine der Formel H2N-(CH2CH2O)m-CH3 mit m = 1 bis 200, vorzugsweise 4 bis 100, besonders bevorzugt 4 bis 50.
  • Wünscht man mit Verbindung Id umzusetzen, so kann man Verbindung Ic mit Alkylierungsagenzien wie beispielsweise Halogeniden oder Sulfaten der Formel R1-Y mit Y gewählt aus Cl, Br und I oder (R1)2SO4 umsetzen. Je nach Verwendung des oder der Alkylierungsagenzien erhält man Verbindung Id mit Y, SO4 2 oder R1-SO4 als Gegenion.
  • In einer Ausführungsform der vorliegenden Erfindung setzt man Mischungen von verschiedenen Komponenten (E), beispielsweise der Formel Ia ein. Insbesondere kann man solche Mischungen an Verbindungen der Formel Ia einsetzen, in denen – bezogen jeweils auf die Mischung – mindestens 95 mol-%, bevorzugt mindestens 98 mol-% bis maximal 99,8 mol-% R1 für C1-C30-Alkyl steht und mindestens 0,2 mol-% und maximal 5 mol-%, bevorzugt maximal 2 mol-% für Wasserstoff.
  • In einer Ausführungsform der vorliegenden Erfindung kontaktiert man zur Herstellung des erfindungsgemäß eingesetzten Copolymerisats a) die Reaktionsmischung nach der vorzugsweise radikalischen Copolymerisation und gegebenenfalls der Umsetzung mit (E) mit Wasser, wobei das Wasser noch Brønsted-Säure oder bevorzugt Brønsted-Base enthalten kann. Beispiele für Brønsted-Säuren sind Schwefelsäure, Salzsäure, Weinsäure und Zitronensäure. Beispiele für Brønsted-Base sind Alkalimetallhydroxid wie beispielsweise NaOH und KOH, Alkalimetallcarbonat wie beispielsweise Na2CO3 und K2CO3, Alkalimetallhydrogencarbonat wie beispielsweise NaHCO3 und KHCO3, Ammoniak, Amine wie beispielsweise Trimethylamin, Triethylamin, Diethylamin, Ethanolamin, N,N-Diethanolamin, N,N,N-Triethanolamin, N-Methylethanolamin.
  • In einer anderen Ausführungsform der vorliegenden Erfindung kann man bereits während der vorzugsweise radikalischen Copolymerisation mit Wasser kontaktieren.
  • Monomere (D)
  • Das oder die Monomere (D), das bzw. die man optional zur Herstellung von erfindungsgemäß verwendeten Copolymerisat (a) verwenden kann, sind von (A), (B) und (C) verschieden. Als bevorzugte Monomere (D) sind zu nennen:
    C3-C8-Carbonsäuren bzw. Carbonsäurederivaten der allgemeinen Formel II
  • Figure 00100001
  • Carbonsäureamide der Formel III,
    Figure 00100002
    nicht-cyclische Amide der allgemeinen Formel IV a und cyclische Amide der allgemeinen Formel IV b
  • Figure 00110001
  • C1-C20-Alkyl-vinylether wie Methyl-vinylether, Ethyl-vinylether, n-Propyl-vinylether, iso-Propyl-vinylether, n-Butyl-vinylether, iso-Butyl-vinylether, 2-Ethylhexyl-vinylether oder n-Octadecyl-vinylether;
    N-Vinyl-derivate von stickstoffhaltigen aromatischen Verbindungen, bevorzugt N-Vinylimidazol, 2-Methyl-1-vinylimidazol, N-Vinyloxazolidon, N-Vinyltriazol, 2-Vinylpyridin, 4-Vinylpyridin, 4-Vinylpyridin-N-oxid, N-Vinylimidazolin, N-Vinyl-2-methylimidazolin,
    α,β-ungesättigte Nitrile wie beispielsweise Acrylnitril, Methacrylnitril;
    alkoxylierte ungesättigte Ether der allgemeinen Formel V,
  • Figure 00110002
  • Ester und Amide der allgemeinen Formel VI,
    Figure 00110003

    ungesättigte Ester der allgemeinen Formel VII
    Figure 00110004
    vinylaromatische Verbindungen der allgemeinen Formel VIII
  • Figure 00120001
  • Phosphat-, phosphonat-, sulfat-, und sulfonathaltige Comonomere wie beispielsweise [2-{(Meth)acryloyloxy}-ethyl]-phosphat, 2-(Meth)acrylamido-2-methyl-1-propansulfonsäure;
    α-Olefine, linear oder verzweigt, mit 18 bis 40 Kohlenstoffatomen, bevorzugt mit bis 24 Kohlenstoffatomen, beispielsweise 1-Oktadecen, 1-Eicosen, α-C22H44, α-C24H48 und Gemische der vorstehend genannten α-Olefine.
  • Dabei sind die Variablen wie folgt definiert:
    R2, R3 gleich oder verschieden und gewählt aus unverzweigten oder verzweigten C1-C5-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, besonders bevorzugt C1-C4-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl;
    und insbesondere Wasserstoff;
    R4 gleich oder verschieden und C1-Cu-Alkyl, verzweigt oder unverzweigt, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Dodecyl, n-Eicosyl; besonders bevorzugt C1-C4-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl;
    oder besonders bevorzugt Wasserstoff;
    R5 Wasserstoff oder Methyl,
    x eine ganze Zahl im Bereich von 2 bis 6, vorzugsweise 3 bis 5;
    y eine ganze Zahl, ausgewählt aus 0 oder 1, vorzugsweise 1;
    a eine ganze Zahl im Bereich von 0 bis 6, vorzugsweise im Bereich von 0 bis 2;
    R6, R7 gleich oder verschieden und gewählt aus Wasserstoff, unverzweigten oder verzweigten C1-C10-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, bevorzugt C1-C4-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl, ganz besonders bevorzugt Methyl;
    X Sauerstoff oder N-R4;
    R8 [A3-O]n-R4,
    R9 gewählt aus unverzweigten oder verzweigten C1-C20-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Dodecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl, n-Eicosyl; bevorzugt C1-C14-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Dodecyl, n-Tetradecyl,
    und insbesondere Wasserstoff oder Methyl;
    R10, R11 unabhängig voneinander jeweils Wasserstoff, Methyl oder Ethyl, bevorzugt sind R10 und R11 jeweils Wasserstoff;
    R12 Methyl oder Ethyl;
    k eine ganze Zahl im Bereich von 0 bis 2 bedeutet, bevorzugt gilt k = 0,
    A2, A3 gleich oder verschieden und C2-C20-Alkylen, beispielsweise -(CH2)2-, -CH2-CH(CH3)-, -(CH2)3-, -CH2CH(C2H5)-, -(CH2)4-, -(CH2)4-, -(CH2)6-, vorzugsweise C2-C4-Alkylen; insbesondere -(CH2)2-, -CH2-CH(CH3)- und -(CH2)3-;
    A4 C1-C20-Alkylen, beispielsweise -CH2-, -CH(CH3)., -CH(C6H5)-, -C(CH3)2-, -(CH2)2-, -CH2-CH(CH3)-, -(CH2)3-, -CH2-CH(C2H5)-, -(CH2)4-, -(CH2)5-, -(CH2)6-, vorzugsweise C2-C4-Alkylen; insbesondere -(CH2)2-, -CH2-CH(CH3)- und -(CH2)3-,
    oder insbesondere eine Einfachbindung.
  • Die übrigen Variablen sind wie oben stehend definiert.
  • Beispielhaft ausgewählte Verbindungen der Formel III sind (Meth)Acrylamide wie Acrylamid, N-Methylacrylamid, N,N-Dimethylacrylamid, N-Ethylacrylamid, N-Propylacrylamid, N-tert.-Butylacrylamid, N-tert.-Octylacrylamid, N-Undecylacrylamid oder die entsprechenden Methacrylamide.
  • Beispielhaft ausgewählte Verbindungen der Formel IV a sind N-Vinylcarbonsäureamide wie N-Vinylformamid, N-Vinyl-N-methylfomamid, N-Vinylacetamid oder N-Vinyl-N-methylacetamid; Beispielhaft ausgewählte Vertreter für Verbindungen der Formel IV b sind N-Vinylpyrrolidon, N-Vinyl-4-piperidon und N-Vinyl-ε-caprolactam.
  • Beispielhaft ausgewählte Verbindungen der Formel VI sind (Meth)acrylsäureester und -amide wie N,N-Dialkylaminoalkyl(meth)acrylate oder N,N-Dialkylaminoalkyl(meth)acrylamide; Beispiele sind N,N-Dimethylaminoethylacrylat, N,N-Dimethylaminoethylmethacrylat, N,N-Diethylaminoethylacrylat, N,N-Diethylaminoethylmethacrylat, N,N-Dimethylaminopropylacrylat, N,N-Dimethylaminopropylmethacrylat, N,N-Diethylaminopropylacrylat, N,N-Diethylaminopropylmethacrylat, 2-(N,N-Dimethylamino)ethylacrylamid, 2-(N,N-Dimethylamino)ethylmethacrylamid, 2-(N,N-Diethylamino)ethylacrylamid, 2-(N,N-Diethylamino)ethylmethacrylamid, 3-(N,N-Dimethylamino)propylacrylamid und 3-(N,N-Dimethylamino)propylmethacrylamid.
  • Beispielhaft ausgewählte Verbindungen der Formel VII sind Vinylacetat, Allylacetat, Vinylpropionat, Vinylbutyrat, Vinyl-2-ethylhexanoat oder Vinyllaurat.
  • Beispielhaft ausgewählte vinylaromatische Verbindungen der allgemeinen Formel VIII sind α-Methylstyrol, para-Methylstyrol und insbesondere Styrol.
  • Ganz besonders bevorzugt wird als Comonomer (D) eingesetzt: Acrylsäure, 1-Octadecen, Methacrylsäure, Methylacrylat, Methylmethacrylat, Acrylamid, Vinyl-n-butylether, Vinyl-iso-butylether, Styrol, N-Vinylformamid, N-Vinylpyrrolidon, 1-Vinylimidazol und 4-Vinylpyridin.
  • Die Copolymerisate a) können betreffend (A), (B), gegebenenfalls (C) und gegebenenfalls (D) Blockcopolymerisate, alternierende Copolymerisate oder statistische Copolymerisate sein, wobei alternierende Copolymerisate bevorzugt sind.
  • In einer Ausführungsform der vorliegenden Erfindung liegen die Anhydridgruppen von Copolymerisat a) nach der Polymerisation vollständig oder partiell hydrolysiert und gegebenenfalls neutralisiert vor.
  • In einer Ausführungsform der vorliegenden Erfindung liegen die Anhydridgruppen von Copolymerisat a) nach der Copolymerisation als Anhydridgruppen vor.
  • In einer Ausführungsform der vorliegenden Erfindung betragen die Molverhältnisse von in erfindungsgemäß verwendetem Copolymerisat a)
    • (A) im Bereich von 5 bis 60 mol-%, bevorzugt 10 bis 55 mol-%,
    • (B) im Bereich von 1 bis 95 mol-%, bevorzugt 5 bis 70 mol-%,
    • (C) im Bereich von 0 bis 60 mol-%, bevorzugt 10 bis 55 mol-%,
    • (D) 0 bis 70 mol-%, bevorzugt 1 bis 50 mol-%, jeweils bezogen auf Copolymerisat, wobei die Summe aus (A), (B), (C) und (D) 100 mol-% ergibt, und
    • (A) im Bereich von 0 bis 50 mol-%, bevorzugt 1 bis 30 mol-%, besonders bevorzugt 2 bis 20 mol-%, bezogen auf alle Carboxylgruppen des Copolymerisats.
  • In einer Ausführungsform wählt man ein Gewichtsverhältnis von Oligomer b) zu Copolymerisat a) im Bereich von 0,1:1 bis 100:1, bevorzugt von 0,5:1 bis 10:1.
  • In einer anderen Ausführungsform wählt man ein Gewichtsverhältnis von Oligomer (b) zu Copolymerisat a) im Bereich von 1:1 bis 100:1, bevorzugt von 10:1 bis 50:1.
  • Die erfindungsgemäß verwendeten Copolymerisate a) sowie deren Mischungen mit Oligomer b) und Herstellung sind beschrieben in den deutschen Patentanmeldungen mit den Aktenzeichen DE 10353557.8 , DE 10355402.5 und DE 10345094.7 , auf die hier in vollem Umfang Bezug genommen wird.
  • In einer Ausführungsform der vorliegenden Erfindung haben die erfindungsgemäß verwendeten Copolymerisate a) von (A), (B) und gegebenenfalls (C) und (D) eine mittlere Molmasse Mw im Bereich von 1000 g/mol bis 50.000 g/mol, bevorzugt 1500 g/mol bis 25.000 g/mol, bestimmt beispielsweise durch Gelpermeationschromatographie mit Dimethylacetamid als Lösemittel und Polymethylmethacrylat als Standard.
  • Erfindungsgemäß verwendete Copolymerisate a) von (A), (B) und gegebenenfalls (C) und (D) und (E) können betreffend (A), (B) und gegebenenfalls (C) und (D) Blockcopolymerisate, alternierende Copolymerisate oder statistische Copolymerisate sein, wobei alternierende Copolymerisate bevorzugt sind.
  • Die Polydispersität Mw/Mn von erfindungsgemäß als Copolymerisat a) verwendeten Copolymerisaten von (A), (B) und gegebenenfalls (C) und (D) und (E) liegt im Allgemeinen im Bereich von 1,1 bis 20, bevorzugt von 2 bis 10.
  • In einer Ausführungsform der vorliegenden Erfindung haben erfindungsgemäß als Copolymerisat a) verwendete Copolymerisate von (A), (B) und gegebenenfalls (C) und (D) und (E) K-Werte nach Fikentscher im Bereich von 5 bis 100, vorzugsweise 8 bis 30 (gemessen nach H. Fikentscher bei 25°C in Cyclohexanon und einer Polymerkonzentration von 2 Gew.-%).
  • In einer Ausführungsform der vorliegenden Erfindung können erfindungsgemäß verwendete Copolymerisate a) nicht einpolymerisiertes Comonomer (B) enthalten, beispielsweise in Anteilen von 1 bis zu 50 Gew.-%, bezogen auf das Gesamtgewicht an Copolymerisat a).
  • Zur Herstellung von erfindungsgemäß als Copolymerisat a) verwendeten Copolymerisaten von (A), (B) und gegebenenfalls (C) und (D) und (E) geht man aus von (A), (B) und gegebenenfalls (C) und (D), die man vorzugsweise radikalisch miteinander copolymerisiert und gegebenenfalls mit (E) umsetzt. Die Umsetzung mit (E) kann, wenn sie gewünscht wird, vor, während und nach der Copolymerisation erfolgen. Während oder vorzugsweise nach der Copolymerisation kann man mit Wasser kontaktieren. Man kann aber zur Herstellung von erfindungsgemäß verwendetem Copolymerisat a) auch auf das Kontaktieren mit Wasser verzichten.
  • In einer speziellen Ausführungsform der vorliegenden Erfindung führt man zunächst eine radikalische Copolymerisation von (A), (B) und gegebenenfalls (C) und (D) durch und setzt anschließend mit (E) um.
  • In einer anderen speziellen Ausführungsform der vorliegenden Erfindung wird die radikalische Copolymerisation von (A), (B), und gegebenenfalls (C) und (D) in Gegenwart der gesamten Menge oder Anteilen der einzusetzenden Verbindung (E) durchgeführt.
  • In einer anderen speziellen Ausführungsform der vorliegenden Erfindung setzt man zunächst (A) und gegebenenfalls (D) mit (E) um und copolymerisiert anschließend radikalisch mit (B) und gegebenenfalls (C).
  • Wünscht man eine Umsetzung von Copolymerisat aus (A), (B) und gegebenenfalls (C) und (D) mit (E) oder eine radikalische Copolymerisation in Gegenwart von (E), dann berechnet man gesamte Menge an (E) so, dass man von einer vollständigen Umsetzung von (E) ausgeht und bis 50 mol-%, bevorzugt 1 bis 30 mol-%, besonders bevorzugt 2 bis 20 mol-% (E), bezogen auf alle Carboxylgruppen des Copolymerisats, einsetzt. Unter dem Begriff „alle im Polymerisat enthaltene Carboxylgruppen" sind im Rahmen der vorliegenden Erfindung diejenigen Carboxylgruppen aus einpolymerisierten Comonomeren (A) und gegebenenfalls (D) zu verstehen, die als Anhydrid, als C1-C4-Alkylester oder als Carbonsäure vorliegen.
  • Man startet die radikalische Copolymerisation vorteilhaft durch Initiatoren, beispielsweise Peroxide oder Hydroperoxide. Als Peroxide bzw. Hydroperoxide seien Di-tert.-Butylperoxid, tert.-Butylperoctoat, tert.-Butylperpivalat, tert.-Butylper-2-ethylhexanoat, tert.-Butylpermaleinat, tert.-Butylperisobutyrat, Benzoylperoxid, Diacetylperoxid, Succinylperoxid, p-Chlorbenzoylperoxid, Dicyclohexylperoxiddicarbonat, beispielhaft genannt. Auch der Einsatz von Redoxinitiatoren ist geeignet, beispielsweise Kombinationen aus Wasserstoffperoxid oder Natriumperoxodisulfat oder einem der vorstehend genannten Peroxide mit einem Reduktionsmittel. Als Reduktionsmittel sind beispielsweise geeignet: Ascorbinsäure, Weinsäure, Fe(II)-Salze wie beispielsweise FeSO4, Natriumbisulfit, Kaliumbisulfit.
  • Geeignete Initiatoren sind außerdem Azoverbindungen wie 2,2'-Azobis(isobutyronitril), 2,2'-Azobis(2-methylpropion-amidin)dihydrochlorid und 2,2'-Azobis(4-methoxy-2,4-dimethylvaleronitril).
  • Im allgemeinen wird Initiator in Mengen von 0,1 bis 20 Gew.-%, vorzugsweise 0,2 bis 15 Gew.-%, berechnet auf die Masse aller Comonomeren, eingesetzt.
  • Man kann die Copolymerisation in Anwesenheit oder in Abwesenheit von Lösungsmitteln und Fällungsmitteln durchführen. Als Lösemittel für die radikalische Copolymerisation kommen polare, gegenüber Säureanhydrid inerte Lösemittel in Betracht wie z.B. Aceton, Tetrahydrofuran und Dioxan. Als Fällungsmittel eignen sich beispielsweise Toluol, ortho-Xylol, meta-Xylol und aliphatische Kohlenwasserstoffe.
  • In einer bevorzugten Ausführungsform arbeitet man ohne Lösungsmittel oder in Gegenwart von nur geringen Mengen an Lösungsmittel, d.h. 0,1 bis maximal 10 Gew.-%, bezogen auf sie Gesamtmasse an Comonomeren (A), (B) und gegebenenfalls (C) und (D). Als Lösungsmittel sind unter den Bedingungen der Copolymerisation und der Veresterung beziehungsweise Amidbildung inerte Stoffe zu verstehen, insbesondere aliphatische und aromatische Kohlenwasserstoffe wie beispielsweise Cyclohexan, n-Heptan, Isododekan, Benzol, Toluol, Ethylbenzol, Xylol als Isomerengemisch, meta-Xylol, ortho-Xylol. Arbeitet man bei der Umsetzung mit (E) ohne sauren Katalysator oder verzichtet man auf die Umsetzung mit (E), so kann man die radikalische Copolymerisation und gegebenenfalls Umsetzung mit (E) auch in Lösungsmitteln, gewählt aus Ketonen wie beispielsweise Aceton, Methylethylketon, oder cyclischen oder nichtcyclischen Ethern wie beispielsweise Tetrahydrofuran oder Di-n-Butylether durchführen.
  • Die Copolymerisation und gegebenenfalls die Umsetzung mit (E) übt man vorzugsweise unter Ausschluss von Sauerstoff aus, beispielsweise in einer Stickstoff- oder Argonatmosphäre, vorzugsweise in einem Stickstoffstrom.
  • Für die radikalische Copolymerisation und gegebenenfalls die Umsetzung mit (E) können übliche Apparaturen verwendet werden, z.B. Autoklaven und Kessel.
  • Die Reihenfolge der Zugabe der Comonomere kann man auf verschiedene Weise vornehmen.
  • In einer Ausführungsform legt man eine Mischung aus (E) und (A) vor und gibt Initiator und gleichzeitig (B) und gegebenenfalls (C) und (D) zu. Dabei ist es bevorzugt, (B) und gegebenenfalls (C) und gegebenenfalls (D) nach Art eines Zulaufverfahrens zuzugeben.
  • In einer anderen Ausführungsform legt man eine Mischung aus (E) und (A) vor und gibt Initiator und gleichzeitig (B) und gegebenenfalls (C) und (D) nach Art eines Zulaufverfahrens zu, wobei Initiator, (B) und gegebenenfalls (C) und (D) jeweils in (E) gelöst sind.
  • In einer anderen Ausführungsform legt man eine Mischung aus (E) und (A) vor und gibt Initiator und (B), (C) und (D) nach Art eines Zulaufverfahrens zu, wobei die Zulaufgeschwindigkeiten von (B), (C) und (D) unterschiedlich gewählt werden.
  • In einer anderen Ausführungsform legt man eine Mischung aus (E) und (A) vor und gibt Initiator und (B), (C) und (D) nach Art eines Zulaufverfahrens zu, wobei die Zulaufgeschwindigkeiten von (B), (C) und (D) gleich gewählt werden.
  • In einer anderen Ausführungsform legt man (A) und gegebenenfalls (D) vor und gibt Initiator und (B) und gegebenenfalls (C) nach Art eines Zulaufverfahrens zu und setzt anschließend gegebenenfalls mit (E) um.
  • In einer anderen Ausführungsform legt man (A) vor und gibt Initiator, (B) und gegebenenfalls (C) und (D) nach Art eines Zulaufverfahrens zu und setzt anschließend gegebenenfalls mit (E) um.
  • In einer anderen Ausführungsform legt man (A) und (B) vor und gibt Initiator und gegebenenfalls (C) nach Art eines Zulaufverfahrens zu und setzt anschließend gegebenenfalls mit (E) um.
  • In einer anderen Ausführungsform legt man (B), und gegebenenfalls (C) und (D) vor und gibt Initiator und (A) nach Art eines Zulaufverfahrens zu und setzt anschließend gegebenenfalls mit (E) um.
  • In einer anderen Ausführungsform legt man (B) und gegebenenfalls (C) vor und gibt Initiator, (A) und gegebenenfalls (D) nach Art eines Zulaufverfahrens zu und setzt anschließend gegebenenfalls mit (E) um.
  • In einer anderen Ausführungsform legt man (B) und gegebenenfalls (D) vor und gibt Initiator, (A) und gegebenenfalls (C) nach Art eines Zulaufverfahrens zu und setzt anschließend gegebenenfalls mit (E) um.
  • In einer anderen Ausführungsform legt man (A), (B) und gegebenenfalls (C) und (E) vor und gibt Initiator und (D) nach Art eines Zulaufverfahrens zu. (A), (B) und gegebenenfalls (E) können auch in einem Lösungsmittel vorgelegt werden.
  • In einer Ausführungsform gibt man während der Zugabe von (B), (C) und gegebenenfalls (D) weiteren Initiator zu.
  • In einer Ausführungsform gibt man während der Zugabe von (A) und gegebenenfalls (D) weiteren Initiator zu.
  • In einer Ausführungsform liegt die Temperatur für die Copolymerisation von (A), (B) und gegebenenfalls (C) und (D) im Bereich von 80 bis 300°C, bevorzugt 90 bis 200°C.
  • Der Druck liegt beispielsweise im Bereich von 1 bis 15 bar, bevorzugt 1 bis 10 bar.
  • Man kann Regler einsetzen, beispielsweise C1 bis C4-Aldehyde, Ameisensäure und organische SH-Gruppen enthaltende Verbindungen, wie 2-Mercaptoethanol, 2-Mercaptopropanol, Mercaptoessigsäure, tert.-Butylmercaptan, n-Dodecylmercaptan. Polymerisationsreglerwerder im allgemeinen in Mengen von 0,1 bis 10 Gew.-%, be zogen auf die Gesamtmasse der eingesetzten Comonomeren eingesetzt. Bevorzugt arbeitet man ohne Einsatz von Reglern.
  • Man kann während der Copolymerisation einen oder mehrere Polymerisationsinhibitoren in geringen Mengen zugeben, beispielsweise Hydrochinonmonomethylether. Polymerisationsinhibitor kann man vorteilhaft mit (B) und gegebenenfalls (C) und (D) dosieren. Geeignete Mengen an Polymerisationsinhibitor sind 0,01 bis 1 Gew.%, vorzugsweise 0,05 bis 0,5 Gew.-%, berechnet auf die Masse aller Comonomeren. Die Zugabe von Polymerisationsinhibitor ist insbesondere dann bevorzugt, wenn man die Copolymerisation bei Temperaturen über 80°C durchführt.
  • Nach Beendigung der Zugabe von (A), (B) und gegebenenfalls (C) und (D), gegebenenfalls (E) sowie gegebenenfalls Initiator kann man nachreagieren lassen.
  • Die Dauer der radikalischen Copolymerisation beträgt im Allgemeinen 1 bis 12 Stunden, bevorzugt 2 bis 9 Stunden, besonders bevorzugt 3 bis 6 Stunden.
  • Die Dauer der Umsetzung mit (E) kann 1 bis 12 Stunden, bevorzugt 2 bis 9 Stunden betragen, besonders bevorzugt 3 bis 6 Stunden.
  • Führt man die Herstellung von (a) so durch, dass man (A), (B) und gegebenenfalls (C) und (D) in Gegenwart der gesamten Menge an (E) copolymerisiert, so ist eine Reaktionsdauer von insgesamt 1 bis 12 Stunden, bevorzugt 2 bis 10 Stunden geeignet, besonders bevorzugt 3 bis 8.
  • Man kann die Umsetzung mit (E) in Abwesenheit oder auch Anwesenheit von Katalysatoren durchführen, insbesondere sauren Katalysatoren wie z.B. Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, n-Dodecylbenzolsulfonsäure, Salzsäure oder sauren lonenaustauschern.
  • In einer weiteren Variante des beschriebenen Verfahrens führt man die Umsetzung mit (E) in Anwesenheit eines Schleppmittels durch, das mit bei der Reaktion gegebenenfalls entstehendem Wasser ein Azeotrop bildet.
  • Im Allgemeinen regiert unter den Bedingungen der oben beschriebenen Schritte (E) vollständig oder zu einem gewissen Prozentsatz mit den Carboxylgruppen der Anhydride (A) und gegebenenfalls den Carboxylgruppen aus (D). Im Allgemeinen bleiben weniger als 40 mol-% als nicht umgesetztes (E) zurück.
  • Es ist möglich, durch an sich bekannte Methoden wie beispielsweise Extraktion nicht umgesetztes (E) von nach dem erfindungsgemäßen Herstellverfahren erhältlichen Copolymerisat abzutrennen.
  • In einer Ausführungsform kann man auf den weiteren Schritt der Abtrennung von nicht abreagiertem (E) von den hergestellten Copolymerisaten verzichten. In dieser Ausführungsform setzt man Copolymerisate zusammen mit einem gewissen Prozentsatz an nicht abreagiertem (E) zur Behandlung von faserigen Substraten ein.
  • Durch die oben beschriebene Copolymerisation von (A), (B) und gegebenenfalls (C) und (D) erhält man Copolymerisate. Die anfallenden Copolymerisate kann man einer Reinigung nach konventionellen Methoden unterziehen, beispielsweise Umfällen oder extraktiver Entfernung nicht-umgesetzter Monomere. Wenn ein Lösemittel oder Fällungsmittel eingesetzt wurde, so ist es möglich, dieses nach beendeter Copolymerisation zu entfernen, beispielsweise durch Abdestillieren.
  • Im Rahmen der vorliegenden Erfindung kann man wie oben beschrieben hergestelltes Copolymerisat mit Wasser kontaktieren, und zwar berechnet man die Menge an zugesetztem Wasser so, dass man erfindungsgemäße Dispersion erhält, die einen Wassergehalt im Bereich von 30 bis 99,5 Gew.-%, bezogen auf die Gesamtmasse an Hilfsmittel aufweisen.
  • In einer Ausführungsform versetzt man nach der radikalischen Copolymerisation und gegebenenfalls der Umsetzung mit (E) mit Wasser, wobei das Wasser noch Brønsted-Säure oder bevorzugt Brønsted-Base enthalten kann. Beispiele für Brønsted-Säuren sind Schwefelsäure, Salzsäure, Weinsäure und Zitronensäure. Beispiele für Brønsted-Base sind Alkalimetallhydroxid wie beispielsweise NaOH und KOH, Alkalimetallcarbonat wie beispielsweise Na2CO3 und K2CO3, Alkalimetallhydrogencarbonat wie beispielsweise NaHCO3 und KHCO3, Ammoniak, Amine wie beispielsweise Trimethylamin, Triethylamin, Diethylamin, Ethanolamin, N,N-Diethanolamin, N,N,N-Triethanolamin, N-Methylethanolamin. Die Konzentration an Brønsted-Säure oder bevorzugt Brønsted-Base beträgt im Allgemeinen 1 bis 20 Gew.-%, bezogen auf die Summe aus Wasser und Brønsted-Säure bzw. Wasser und Brønsted-Base.
  • Man kann bereits während der radikalischen Copolymerisation Wasser zusetzen, vorzugsweise setzt man jedoch erst gegen Ende der radikalischen Copolymerisation Wasser zu. Hat man die radikalische Copolymerisation und die Umsetzung mit (E) in Gegenwart von Lösungsmittels durchgeführt, so ist es bevorzugt, zunächst Lösungsmittel zu entfernen, beispielsweise durch Abdestillieren und erst danach mit Wasser zu kontaktieren.
  • Durch das Kontaktieren mit Wasser, das gegebenenfalls Brønsted-Säure oder bevorzugt Brønsted-Base enthalten kann, können die im Copolymerisat vorhandenen Carbonsäureanhydridgruppen partiell oder vollständig hydrolysiert werden.
  • Nach dem Kontaktieren mit Wasser, das gegebenenfalls Brønsted-Säure oder bevorzugt Brønsted-Base enthalten kann, kann man bei Temperaturen im Bereich von 20 bis 120°C, bevorzugt bis 100°C nachreagieren lassen, und zwar für einen Zeitraum von 10 Minuten bis 48 Stunden.
  • In einer Ausführungsform der vorliegenden Erfindung legt man Wasser, wobei das Wasser noch Brønsted-Säure oder bevorzugt Brønsted-Base enthalten kann, bei 50 bis 100°C vor und gibt nach Art eines Zulaufverfahrens gegebenenfalls auf 50 bis 120 °C erwärmtes Copolymerisat zu.
  • In einer weiteren Ausführungsform der vorliegenden Erfindung legt man Copolymerisat bei 50 bis 120°C vor und gibt nach Art eines Zulaufverfahrens das gegebenenfalls auf 50 bis 100°C erwärmte Wasser zu, wobei das Wasser noch Brønsted-Säure oder bevorzugt Brønsted-Base enthalten kann.
  • In einer Ausführungsform der vorliegenden Erfindung legt man eine Mischung aus Wasser, wobei das Wasser noch Brønsted-Säure oder bevorzugt Brønsted-Base und nicht-ionisches Tensid enthalten kann, bei 50 bis 100°C vor und gibt nach Art eines Zulaufverfahrens gegebenenfalls auf 50 bis 120°C erwärmtes Copolymerisat zu. Als nicht-ionische Tenside kommen beispielsweise mehrfach, bevorzugt 3 bis 30-fach alkoxylierte C12-C30-Alkanole in Frage.
  • In einer weiteren Ausführungsform legt man Copolymerisat bei 50 bis 120°C vor und gibt nach Art eines Zulaufverfahrens die gegebenenfalls auf 50 bis 100°C erwärmte Mischung aus Wasser zu, wobei das Wasser noch Brønsted-Säure oder bevorzugt Brønsted-Base und nichtionisches Tensid enthalten kann, Als nicht-ionisches Tensid kommt beispielsweise mehrfach, bevorzugt 3 bis 30-fach alkoxyliertes C12-C30-Alkanol in Frage.
  • Die oben beschriebenen Copolymerisate fallen üblicherweise in Form von wässrigen Dispersionen oder wässrigen Lösungen oder in Masse an. Wässrige Dispersionen und Lösungen von oben beschriebenen Copolymerisaten sind ebenfalls Gegenstand der vorliegenden Erfindung. Aus erfindungsgemäßen wässrigen Dispersionen und Lösungen lassen sich erfindungsgemäße Copolymerisate durch dem Fachmann an sich bekannte Methoden isolieren, beispielsweise durch Verdampfen von Wasser oder durch Sprühtrocknen.
  • Copolymerisat a) ist in den erfindungsgemäßen Zusammensetzungen in einer Menge von 0,1 bis 15 Gew.-%, bevorzugt 1 bis 10, besonders bevorzugt 2 bis 6 Gew.-%, bezogen auf das Gewicht der Zusammensetzung enthalten. Liegt Copolymerisat gemischt mit Oligomer b) in der Zusammensetzung vor, so beträgt das Gewichtsverhältnis von Oligomer b) zu Copolymerisat a) in einer Ausführungsform der Erfindung bevorzugt von 1:10 bis 3:1, besonders bevorzugt von 1:5 bis 2:1 und ganz besonders bevorzugt von 1:2 bis 1,5:1.
  • Wasch-, Dusch- und Badepräparate
  • Unter Wasch-, Dusch- und Badepräparaten werden im Rahmen dieser Erfindung Seifen von flüssiger bis gelförmiger Konsistenz, wie Transparentseifen, Luxusseifen, Deoseifen, Cremeseifen, Babyseifen, Hautschutzseifen, Abrasivseifen und Syndets, pasteuse Seifen, Schmierseifen und Waschpasten, flüssige Wasch-, Dusch- und Badepräparate, wie Waschlotionen, Duschbäder und -gele, Schaumbäder, Ölbäder und Scrub-Präparate, Rasierschäume, -lotionen und -cremes verstanden.
  • Mittel zur Reinigung und Pflege der Haare, wie beispielsweise Shampoos, sind nicht Gegenstand der vorliegenden Erfindung.
  • Die erfindungsgemäßen Zusammensetzungen enthaltend Copolymerisat a), gegebenenfalls gemischt mit Oligomer b), weisen bereits ohne Zusatz von weiteren Tensiden Waschaktivität auf.
  • In einer bevorzugten Ausführungsform der Erfindung enthalten die erfindungsgemäßen Zusammensetzungen neben Copolymerisat a), das gegebenenfalls gemischt mit Oligomer b) vorliegt, weiterhin wenigstens eine Öl- und/oder Fettphase.
  • In einer bevorzugten Ausführungsform der Erfindung enthalten die erfindungsgemäßen Zusammensetzungen neben Copolymerisat a), das gegebenenfalls gemischt mit Oligomer b) vorliegt, weiterhin wenigstens ein Tensid.
  • In einer bevorzugten Ausführungsform der Erfindung enthalten die erfindungsgemäßen Zusammensetzungen neben Copolymerisat a), das gegebenenfalls gemischt mit Oligomer b) vorliegt, weiterhin wenigstens eine Öl- und/oder Fettphase und ein Tensid.
  • Tenside
  • Es ist erfindungsgemäß von Vorteil, wenn als Tenside anionische, kationische, nichtionische und/oder amphotere Tenside eingesetzt werden. Erfindungsgemäß bevorzugt werden ionische Tenside, d.h. anionische, kationische und/oder amphotere Tenside eingesetzt.
  • Vorteilhafte waschaktive anionische Tenside im Sinne der vorliegenden Erfindung sind Acylaminosäuren und deren Salze, wie
    • – Acylglutamate, insbesondere Natriumacylglutamat
    • – Sarcosinate, beispielsweise Myristoyl Sarcosin, TEA-Lauroyl Sarcosinat, Natriumlauroylsarcosinat und Natriumcocoylsarkosinat, Sulfonsäuren und deren Salze, wie
    • – Acylisethionate, beispielsweise Natrium- oder Ammoniumcocoylisethionat
    • – Sulfosuccinate, beispielsweise Dioctylnatriumsulfosuccinat, Dinatriumlaurethsulfosuccinat, Dinatriumlaurylsulfosuccinat und Dinatriumundecylenamido MEA-Sulfosuccinat, Dinatrium PEG-5 Laurylcitratsulfosuccinat und Derivate, sowie Schwefelsäureester, wie
    • – Alkylethersulfat, beispielsweise Natrium-, Ammonium-, Magnesium-, MIPA-, TIPA-Laurethsulfat, Natriummyrethsulfat und Natrium C12-13 Parethsulfat,
    • – Alkylsulfate, beispielsweise Natrium-, Ammonium- und TEA-Laurylsulfat. Weitere vorteilhafte anionische Tenside sind
    • – Taurate, beispielsweise Natriumlauroyltaurat und Natriummethylcocoyltaurat,
    • – Ether-Carbonsäuren, beispielsweise Natriumlaureth-13 Carboxylat und Natrium PEG-6 Cocamide Carboxylat, Natrium PEG-7-Olivenöl-Carboxylat
    • – Phosphorsäureester und Salze, wie beispielsweise DEA-Oleth-10 Phosphat und Dilaureth-4 Phosphat,
    • – Alkylsulfonate, beispielsweise Natriumcocosmonoglyceridsulfat, Natrium C12-14 Olefinsulfonat, Natriumlaurylsulfoacetat und Magnesium PEG-3 Cocamidsulfat,
    • – Acylglutamate wie Di-TEA-palmitoylaspartat und Natrium Caprylic/Capric Glutamat,
    • – Acylpeptide, beispielsweise Palmitoyl hydrolysiertes Milchprotein, Natrium Cocoyl hydrolysiertes Sojaprotein und Natrium-/Kalium Cocoyl hydrolysiertes Kollagen sowie Carbonsäuren und Derivate, wie
    • – beispielsweise Laurinsäure, Aluminiumstearat, Magnesiumalkanolat und Zinkundecylenat, Ester-Carbonsäuren, beispielsweise Calciumstearoyllactylat, Laureth-6 Citrat und Natrium PEG-4 Lauramidcarboxylat
    • – Alkylarylsulfonate.
  • Vorteilhafte waschaktive kationische Tenside im Sinne der vorliegenden Erfindung sind quaternäre Tenside. Quaternäre Tenside enthalten mindestens ein N-Atom, das mit 4 Alkyl- oder Arylgruppen kovalent verbunden ist. Vorteilhaft sind beispielsweise Alkylbetain, Alkylamidopropylbetain und Alkylamidopropylhydroxysultain.
  • Weitere vorteilhafte kationische Tenside im Sinne der vorliegenden Erfindung sind ferner
    • – Alkylamine,
    • – Alkylimidazole und
    • – ethoxylierte Amine
    und insbesondere deren Salze.
  • Vorteilhafte waschaktive amphotere Tenside im Sinne der vorliegenden Erfindung sind Acyl-/dialkylethylendiamine, beispielsweise Natriumacylamphoacetat, Dinatriumacylamphodipropionat, Dinatriumalkylamphodiacetat, Natriumacylamphohydroxypropylsulfonat, Dinatriumacylamphodiacetat, Natriumacylamphopropionat, und N-Kokosfettsäureamidoethyl-N-hydroxyethylglycinat Natriumsalze.
  • Weitere vorteilhafte amphotere Tenside sind N-Alkylaminosäuren, beispielsweise Aminopropylalkylglutamid, Alkylaminopropionsäure, Natriumalkylimidodipropionat und Lauroamphocarboxyglycinat.
  • Vorteilhafte waschaktive nicht-ionische Tenside im Sinne der vorliegenden Erfindung sind
    • – Alkanolamide, wie Cocamide MEA/DEA/MIPA,
    • – Ester, die durch Veresterung von Carbonsäuren mit Ethylenoxid, Glycerin, Sorbitan oder anderen Alkoholen entstehen,
    • – Ether, beispielsweise ethoxylierte Alkohole, ethoxyliertes Lanolin, ethoxylierte Polysiloxane, propoxylierte POE Ether, Alkylpolyglycoside wie Laurylglucosid, Decylglycosid und Cocoglycosid, Glycoside mit einem HLB-Wert von wenigstens 20 (z.B. Belsil®SPG 128V (Wacker)).
  • Weitere vorteilhafte nicht-ionische Tenside sind Alkohole und Aminoxide, wie Cocoamidopropylamin-Oxid.
  • Es ist vorteilhaft, das oder die erfindungsgemäßen waschaktiven Tenside aus der Gruppe der Tenside zu wählen, welche einen HLB-Wert von mehr als 25 haben, besonders vorteilhaft sind solche, welchen einen HLB-Wert von mehr als 35 haben.
  • Es ist erfindungsgemäß von Vorteil, wenn ein oder mehrere dieser Tenside in einer Konzentration von 1 bis 30 Gewichts-%, bevorzugt in einer Konzentration 5 von 25 bis Gewichts-% und ganz besonders bevorzugt in einer Konzentration von 10 bis 20 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Zusammensetzung eingesetzt wird.
  • Polysorbate
  • Ferner können Polysorbate als waschaktive Agentien erfindungsgemäß vorteilhaft in die Zusammensetzung eingearbeitet werden.
  • Im Sinne der Erfindung vorteilhafte Polysorbate sind dabei das
    • – Polyoxyethylen(20)sorbitanmonolaurat (Tween 20, CAS-Nr. 9005-64-5)
    • – Polyoxyethylen(4)sorbitanmonolaurat (Tween 21, CAS-Nr. 9005-64-5)
    • – Polyoxyethylen(4)sorbitanmonostearat (Tween 61, CAS-Nr. 9005-67-8)
    • – Polyoxyethylen(20)sorbitantristearat (Tween 65, CAS-Nr. 9005-71-4)
    • – Polyoxyethylen(20)sorbitanmonooleat (Tween 80, CAS-Nr. 9005-65-6)
    • – Polyoxyethylen(5)sorbitanmonooleat (Tween 81, CAS-Nr. 9005-65-5)
    • – Polyoxyethylen(20)sorbitantrioleat (Tween 85, CAS-Nr. 9005-70-3).
  • Besonders vorteilhaft sind insbesondere
    • – Polyoxyethylen(20)sorbitanmonopalmitat (Tween 40, CAS-Nr. 9005-66-7)
    • – Polyoxyethylen(20)sorbitanmonostearat (Tween 60, CAS-Nr. 9005-67-8).
  • Diese werden erfindungsgemäß vorteilhaft in einer Konzentration von 0,1 bis 5 Gewichts-% und insbesondere in einer Konzentration von 1,5 bis 2,5 Gewichts-%, bezogen auf das Gesamtgewicht der Zusammensetzung einzeln oder als Mischung mehrer Polysorbate, eingesetzt.
  • Öle, Fette und Wachse
  • Zusätzlich zu dem gegebenfalls enthaltenen Oligomer b) enthalten die erfindungsgemäßen Zusammensetzungen bevorzugt weitere Öle, Fette oder Wachse.
  • Ein besonderer Vorteil der vorliegenden Erfindung ist, dass bei Verwendung von Copolymerisat a) gegebenenfalls gemischt mit Oligomer b) die benötigte Menge an weiteren Ölen, Fetten oder Wachsen deutlich geringer als üblich sein kann, wobei die Anwendungseigenschaften wenigstens gleich gut oder gar besser sind.
  • Bestandteile der Öl- und/oder Fettphase der erfindungsgemäßen Zusammensetzung werden vorteilhaft gewählt aus der Gruppe der Lecithine und der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 bis 18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, wie z.B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Rizinusöl, Weizenkeimöl, Traubenkernöl, Distelöl, Nachtkerzenöl, Macadamianußöl und dergleichen mehr. Weitere polare Ölkomponenten können gewählt werden aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen sowie aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopropyloleat, n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Isooctylstearat, Isononylstearat, Isononylisononanoat, 2-Ethylhexylpalmitat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-Octyldodecylpalmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucylerucat Dicaprylyl Carbonat (Cetiol CC) und Cocoglyceride (Myritol 331), Butylen Glycol Dicaprylat/Dicaprat und Dibutyl Adipat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, wie z.B. Jojobaöl.
  • Ferner können eine oder mehrere Ölkomponenten vorteilhaft gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, der Silkonöle, der Dialkylether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole.
  • Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Es kann auch gegebenenfalls vorteilhaft sein, Wachse, beispielsweise Cetylpalmitat, als alleinige Lipidkomponente der Ölphase einzusetzen.
  • Erfindungsgemäß vorteilhaft wird die Ölkomponente gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Isoeicosan, 2-Ethylhexylcocoat, C12-15-Alkylbenzoat, Capryl-Caprinsäure-triglycerid, Dicaprylylether.
  • Erfindungsgemäß vorteilhaft sind Mischungen aus C12-15-Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus C12-15-Alkylbenzoat und Isotridecylisononanoat sowie Mischungen aus C12-15-Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat.
  • Erfindungsgemäß besonders bevorzugt werden als Öle mit einer Polarität von 5 bis 50 mN/m Fettsäuretriglyceride, insbesondere Sojaöl und/oder Mandelöl eingesetzt.
  • Von den Kohlenwasserstoffen sind vorteilhaft Paraffinöl, Squalan, Squalen und insbesondere (gegebenenfalls hydrierte) Polyisobutene im Sinne der vorliegenden Erfindung zu verwenden.
  • Ferner kann die Ölphase vorteilhaft gewählt werden aus der Gruppe der Guerbetalkohole. Guerbetalkohole sind benannt nach Marcel Guerbet, der ihre Herstellung erstmalig beschrieb. Sie entstehen nach der Reaktionsgleichung
    Figure 00260001
    durch Oxidation eines Alkohols zu einem Aldehyd, durch Aldol-Kondensation des Aldehyds, Abspaltung von Wasser aus dem Aldol- und Hydrierung des Allylaldehyds. Guerbetalkohole sind selbst bei niederen Temperaturen flüssig und bewirken praktisch keine Hautreizungen. Vorteilhaft können sie als fettende, überfettende und auch rückfettend wirkende Bestandteile in kosmetischen Zusammensetzungen eingesetzt werden.
  • Die Verwendung von Guerbet-Alkoholen in Kosmetika ist an sich bekannt. Solche Species zeichnen sich dann meistens durch die Struktur
    Figure 00260002
    aus. Dabei bedeuten R1 und R2 in der Regel unverzweigte Alkylreste. Erfindungsgemäß vorteilhaft werden der oder die Guerbet-Alkohole gewählt aus der Gruppe, wobei
    R1 = Propyl, Butyl, Pentyl, Hexyl, Heptyl oder Octyl und
    R2 = Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl oder Tetradecyl.
  • Erfindungsgemäß bevorzugte Guerbet-Alkohole sind 2-Butyloctanol (beispielsweise als Isofol®12 (Condea) kommerziell erhältlich) und 2-Hexyldecanol (beispielsweise als Isofol®16 (Condea) kommerziell erhältlich).
  • Auch Mischungen von erfindungsgemäßen Guerbet-Alkoholen sind erfindungsgemäß vorteilhaft zu verwenden wie beispielsweise Mischungen aus 2-Butyloctanol und 2-Hexyldecanol (beispielsweise als Isofol®14 (Condea) kommerziell erhältlich).
  • Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen.
  • Unter den Polyolefinen sind Polydecene die bevorzugten Substanzen. Die Vorteilhaft kann die Olkomponente ferner einen Gehalt an cyclischen oder linearen Silikonölen aufweisen oder vollständig aus solchen Ölen bestehen, wobei allerdings bevorzugt wird, außer dem Silikonöl oder den Silikonölen einen zusätzlichen Gehalt an anderen Ölphasenkomponenten zu verwenden.
  • Niedermolekulare Silicone oder Siliconöle sind in der Regel durch folgende allgemeine Formel definiert
    Figure 00270001
  • Höhermolekulare Silicone oder Siliconöle sind in der Regel durch folgende allgemeine Formel definiert
    Figure 00270002
    wobei die Siliciumatome mit gleichen oder unterschiedlichen Alkylresten und/oder Arylresten substituiert sein können, welche hier verallgemeinernd durch die Reste R1 bis R4 dargestellt sind. Die Anzahl der unterschiedlichen Reste ist aber nicht notwendigerweise auf bis zu 4 beschränkt. m kann dabei Werte von 2 bis 200.000 annehmen.
  • Erfindungsgemäß vorteilhaft einzusetzende cyclische Silicone sind in der Regel durch folgende allgemeine Formel definiert
    Figure 00270003
    wobei die Siliciumatome mit gleichen oder unterschiedlichen Alkylresten und/oder Arylresten substituiert werden können, welche hier verallgemeinernd durch die Reste R1 bis R4 dargestellt sind. Die Anzahl der unterschiedlichen Reste ist aber nicht notwendigerweise auf bis zu 4 beschränkt. n kann dabei Werte von 3/2 bis 20 annehmen. Gebrochene Werte für n berücksichtigen, daß ungeradzahlige Anzahlen von Siloxylgruppen im Zyklus vorhanden sein können.
  • Vorteilhaft wird Phenyltrimethicon als Siliconöl gewählt. Auch andere Silikonöle, beispielsweise Dimethicon, Hexamethylcyclotrisiloxan, Phenyldimethicon, Cyclomethicon (z.B. Decamethylcyclopentasiloxan), Hexamethylcyclotrisiloxan, Polydimethylsiloxan, Poly(methylphenylsiloxan), Cetyldimethicon, Behenoxydimethicon sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden. Vorteilhaft sind ferner Mischungen aus Cyclomethicon und Isotridecylisononanoat, sowie solche aus Cyclomethicon und 2-Ethylhexylisostearat.
  • Es ist aber auch vorteilhaft, Silikonöle ähnlicher Konstitution wie der vorstehend bezeichneten Verbindungen zu wählen, deren organische Seitenketten derivatisiert, beispielsweise polyethoxyliert und/oder polypropoxyliert sind. Dazu zählen beispielsweise Polysiloxanpolyalkyl-Polyether-copolymere wie z.B. Cetyl-Dimethicon-Copolyol.
  • Vorteilhaft wird Cyclomethicon (Octamethylcyclotetrasiloxan) als erfindungsgemäß zu verwendendes Silikonöl eingesetzt.
  • Erfindungsgemäß vorteilhaft zu verwendende Fett- und/oder Wachskomponenten können aus der Gruppe der pflanzlichen Wachse, tierischen Wachse, Mineralwachse und petrochemischen Wachse gewählt werden. Vorteilhaft sind beispielsweise Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Beerenwachs, Ouricurywachs, Montanwachs, Jojobawachs, Shea Butter, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Paraffinwachse und Mikrowachse.
  • Weitere vorteilhafte Fett- und/oder Wachskomponenten sind chemisch modifzierte Wachse und synthetische Wachse, wie beispielsweise Syncrowax®HRC (Glyceryltribehenat), und Syncrowax®AW 1 C (C18-16-Fettsäure) sowie Montanesterwachse, Sasolwachse, hydrierte Jojobawachse, synthetische oder modifizierte Bienenwachse (z.B. Dimethicon Copolyol Bienenwachs und/oder C30-50-Alkyl Bienenwachs), Cetyl Ricinoleate wie beispielsweise Tegosoft®CR, Polyalkylenwachse, Polyethylenglykolwachse, aber auch chemisch modifzierte Fette, wie z.B. hydrierte Pflanzenöle (beispielsweise hydriertes Ricinusöl und/oder hydrierte Cocosfettglyceride), Triglyceride wie beispielsweise Hydriertes Soy Glycerid, Trihydroxystearin, Fettsäuren, Fettsäureester und Gly kolester wie beispielsweise C20-40-Alkylstearat, C20-40-Alkylhydroxystearoylstearat und/oder Glykolmontanat. Weiter vorteilhaft sind auch bestimmte Organosiliciumverbindungen, die ähnliche physikalische Eigenschaften aufweisen wie die genannten Fett- und/oder Wachskomponenten, wie beispielsweise Stearoxytrimethylsilan. Erfindungsgemäß können die Fett- und/oder Wachskomponenten sowohl einzeln als auch als Gemisch in den Zusammensetzungen verwendet werden.
  • Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen.
  • Vorteilhaft wird die Ölphase gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Butylen Glycol Dicaprylat/Dicaprat, 2-Ethylhexylcocoat, C12-15-Alkylbenzoat, Capryl-Caprin-säure-triglycerid, Dicaprylylether. Besonders vorteilhaft sind Mischungen aus Octyldodecanol, Capryl-Caprinsäuretriglycerid, Dicaprylylether, Dicaprylyl Carbonat, Cocoglyceriden oder Mischungen aus C12-15-Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus C12-15-Alkylbenzoat und Butylen Glycol Dicaprylat/Dicaprat sowie Mischungen aus C12-15-Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat.
  • Von den Kohlenwasserstoffen sind Paraffinöl, Cycloparaffin, Squalan, Squalen, hydriertes Polyisobuten bzw. Polydecen vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.
  • Die Ölkomponente wird ferner vorteilhaft aus der Gruppe der Phospholipide gewählt. Die Phospholipide sind Phosphorsäureester acylierter Glycerine. Von größter Bedeutung unter den Phosphatidylcholinen sind beispielsweise die Lecithine, welche sich durch die allgemeine Struktur
    Figure 00290001
    auszeichnen, wobei R' und R'' typischerweise unverzweigte aliphatische Reste mit 15 oder 17 Kohlenstoffatomen und bis zu 4 cis-Doppelbindungen darstellen.
  • Als erfindungsgemäß vorteilhaftes Paraffinöl kann erfindungsgemäß Merkur Weissoel Pharma 40 von Merkur Vaseline, Shell Ondina® 917, Shell Ondina® 927, Shell Oil 4222, Shell Ondina®933 von Shell & DEA Oil, Pionier® 6301 S, Pionier® 2071 (Hansen & Rosenthal) eingesetzt werden.
  • Geeignete kosmetisch verträgliche Öl- und Fettkomponenten sind in Karl-Heinz Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Verlag Hüthig, Heidelberg, S. 319–355 beschrieben, worauf hier in vollem Umfang Bezug genommen wird.
  • Der Gehalt an weiteren blen, Fetten und Wachsen beträgt höchstens 50, bevorzugt 30, weiter bevorzugt höchstens 20 Gewichts-%, bezogen auf das Gesamtgewicht der Zusammensetzung. Die Menge an Oligomer b) fällt nicht unter den Gehalt an weiteren weiteren Ölen, Fetten und Wachsen.
  • Die Zusammensetzungen enthalten gemäß der Erfindung außer den vorgenannten Substanzen gegebenenfalls die in der Kosmetik oder Dermatologie üblichen Zusatzstoffe, beispielsweise Parfüm, Farbstoffe, antimikrobielle Stoffe, rückfettende Agentien, Komplexierungs- und Sequestrierungsagentien, Perlglanzagentien, Pflanzenextrakte, Vitamine, Wirkstoffe, Konservierungsmittel, Bakterizide, Pigmente, die eine färbende Wirkung haben, Verdickungsmittel, weichmachende, anfeuchtende und/oder feuchthaltende Substanzen, oder andere übliche Bestandteile einer kosmetischen oder dermatologischen Formulierung wie Alkohole, Polyole, Polymere, organische Säuren zur pH-Wert-Einstellung, Schaumstabilisatoren, Elektrolyte, organische Lösemittel oder Silikonderivate.
  • Hinsichtlich der genannten, dem Fachmann bekannten weiteren Inhaltsstoffen für die Zusammensetzungen sei auf „Kosmetik und Hygiene von Kopf bis Fuß", Hrsg. W. Umbach, 3. Auflage, Wiley-VCH, 2004, S.123–128 verwiesen, worauf an dieser Stelle vollumfänglich Bezug genommen wird.
  • Konditionierungsmittel
  • In einer bevorzugten Ausführungsform der Erfindung enthalten die Zusammensetzungen auch Konditionierungsmittel.
  • Erfindungsgemäß bevorzugte Konditionierungsmittel sind beispielsweise alle Verbindungen, welche im International Cosmetic Ingredient Dictionary and Handbook (Volume 4, Herausgeber: R. C. Pepe, J.A. Wenninger, G. N. McEwen, The Cosmetic, Toiletry, and Fragrance Association, 9. Auflage, 2002) unter Section 4 unter den Stichworten Hair Conditioning Agents, Humectants, Skin-Conditioning Agents, Skin-Conditioning Agents-Emollient, Skin-Conditioning Agents-Humectant, Skin-Conditioning Agents-Miscellaneous, Skin-Conditioning Agents-Occlusive und Skin Protectans aufgeführt sind sowie alle in der EP-A 934 956 (S.11–13) unter "water soluble conditioning agent" und „oil soluble conditioning agent" aufgeführten Verbindungen. Weitere vorteilhafte Konditionierungsmittel stellen beispielsweise die nach INCI als Polyquaternium bezeichneten Verbindungen dar (insbesondere Polyquaternium-1 bis Polyquaternium-56).
  • Zu den geeigneten Konditionierungsmitteln zählen beispielsweise auch polymere quaternäre Ammoniumverbindungen, kationische Cellulosederivate, Chitosanderivate und Polysaccharide.
  • Erfindungsgemäß vorteilhafte Konditionierungsmittel können dabei unter den in der folgenden Tabelle 1 dargestellten Verbindungen gewählt werden.
  • Tabelle 1: Vorteilhaft zu verwendende Konditioniermittel
    Figure 00310001
  • Figure 00320001
  • Weitere erfindungsgemäß vorteilhafte Konditionierer stellen Cellulosederivate und quaternisierte Guargum Derivate, insbesondere Guar Hydroxypropylammoniumchlorid (z.B. Jaguar Excel®, Jaguar C 162® (Rhodia), CAS 65497-29-2, CAS 39421-75-5) dar. Auch nichtionische Poly-N-vinylpyrrolidon/Polyvinylacetat-Copolymere (z.B. Luviskol®VA 64 (BASF)), anionische acrylat-Copolymere (z.B. Luviflex®Soft (BASF)), und/oder amphotere Amid/Acrylat/Methacrylat Copolymere (z.B. Amphomer® (National Starch)) können erfindungsgemäß vorteilhaft als Konditionierer eingesetzt werden. Weitere mögliche Konditioniermittel sind quaternisierte Silikone.
  • Puderrohstoffe
  • Ein Zusatz von Puderrohstoffen kann allgemein vorteilhaft sein. Besonders bevorzugt wird der Einsatz von Talkum.
  • Ethoxylierte Glycerin-Fettsäureester
  • Die erfindungsgemäßen Zusammensetzungen enthalten gegebenenfalls ethoxylierte Öle ausgewählt aus der Gruppe der ethoxylierten Glycerin-Fettsäureester, insbesondere bevorzugt PEG-10 Olivenölglyceride, PEG-11 Avocadoölglyceride, PEG-11 Kakaobutterglyceride, PEG-13 Sonnenblumenölglyceride, PEG-15 Glycerylisostearat, PEG-9 Kokosfettsäureglyceride, PEG-54 Hydriertes Ricinusöl, PEG-7 Hydriertes Ricinusöl, PEG-60 Hydriertes Ricinusöl, Jojobaöl Ethoxylat (PEG-26 Jojoba-Fett-Säuren, PEG-26 Jojobaalkohol), Glycereth-5 Cocoat, PEG-9 Kokosfettsäureglyceride, PEG-7 Glycerylcocoat, PEG-45 Palmkemölglyceride, PEG-35 Ricinusöl, Olivenöl-PEG-7 Ester, PEG-6 Caprylisäure/Caprinsäureglyceride, PEG-10 Olivenölglyceride, PEG-13 Sonnenblumenölglyceride, PEG-7 Hydriertes Ricinusöl, Hydrierte Palmkernölglycerid-PEG-6 Ester, PEG-20 Maisölglyceride, PEG-18 Glycerylolead-cocoat, PEG-40 Hydriertes Ricinusöl, PEG-40 Ricinusöl, PEG-60 Hydriertes Ricinusöl, PEG-60 Maisölglyceride, PEG-54 Hydriertes Ricinusöl, PEG-45 Palmkernölglyceride, PEG-80 Glycerylcocoat, PEG-60 Mandelölglyceride, PEG-60 "Evening Primrose" Glyceride, PEG-200 Hydriertes Glycerylpalmat, PEG-90 Glycerylisostearat.
  • Bevorzugte ethoxylierte Öle sind PEG-7 Glycerylcocoat, PEG-9 Kokosglyceride, PEG-40 Hydriertes Rizinusöl, PEG-200 hydriertes Glycerylpalmat.
  • Ethoxylierte Glycerin-Fettsäureester werden in wässrigen Reinigungsrezepturen zu verschiedenen Zwecken eingesetzt. Niedrig ethoxylierte Glycerin-Fettsäureester (3–12 Ethylenoxideinheiten) dienen üblichennreise als Rückfetter zur Verbesserung des Hautgefühls nach dem Abtrocknen, Glycerin-Fettsäureester mit einem Ethoxylierungsgrad von ca. 30–50 dienen als Lösungsvermittler für unpolare Substanzen wie Parfumöle. Hochethoxylierte Glycerin-Fettsäureester werden als Verdicker eingesetzt. Allen diesen Substanzen ist gemeinsam, dass sie auf der Haut bei der Anwendung bei der Verdünnung mit Wasser ein besonderes Hautgefühl erzeugen.
  • Antioxidantien
  • Ein zusätzlicher Gehalt an Antioxidantien ist im allgemeinen bevorzugt. Erfindungsgemäß können als Antioxidantien alle für kosmetische und/oder dermatologische Anwendungen geeigneten oder gebräuchlichen Antioxidantien verwendet werden.
  • Vorteilhaft werden die Antioxidantien gewählt aus der Gruppe bestehend aus Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivaten, Imidazolen (z.B. Urocaninsäure) und deren Derivaten, Peptiden wie D,L-Camosin, D-Camosin, L-Carnosin und deren Derivaten (z.B. Anserin), Carotinoide, Carotinen (z.B. α-Carotin, β-Carotin, γ-Lycopin) und deren Derivaten, Chlorogensäure und deren Derivaten, Liponsäure und deren Derivaten (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salzen, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivaten (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Buthioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Furfurylidensorbitol und dessen Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-Eacetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Coniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z.B. ZnO, ZnSO4) Selen und dessen Derivate (z.B. Selenmethionin), Stilbene und deren Derivate (z.B. Stilbenoxid, Trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
  • Die Menge der vorgenannten Antioxidantien (eine oder mehrere Verbindungen) in den Emulsionen beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 bis 20 Gew.-%, insbesondere 0,1 bis 10 Gew-.%, bezogen auf das Gesamtgewicht der Zusammensetzung.
  • Sofern Vitamin E und/oder dessen Derivate das oder die Antioxidantien darstellen, ist es vorteilhaft, diese in Konzentrationen von 0,001 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zusammensetzung, bereitzustellen.
  • Sofern Vitamin A, bzw. Vitamin-A-Derivate, bzw. Carotine bzw. deren Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, diese in Konzentrationen von 0,001 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zusammensetzung, bereitzustellen.
  • Wirkstoffe
  • Es wurde gefunden, dass sich in die erfindungsgemäßen Zusammensetzungen verschiedenste Wirkstoffe mit unterschiedlicher Löslichkeit homogen einarbeiten lassen. Die Substantivität der Wirkstoffe auf der Haut ist aus der beschriebenen Zusammensetzung höher als aus herkömmlichen tensidhaltigen Reinigungsformulierungen. Erfindungsgemäß können die Wirkstoffe (eine oder mehrere Verbindungen) vorteilhaft gewählt werden aus der Gruppe bestehend aus Acetylsalicylsäure, Atropin, Azulen, Hydrocortison und dessen Derivaten, z.B. Hydrocortison-17-valerat, Vitamine der Bund D-Reihe, insbesondere Vitamin B1, Vitamin B12, Vitamin D, Vitamin A bzw. dessen Derivate wie Retinylpalmitat, Vitamin E oder dessen Derivate wie z.B. Tocopheryl Acetat, Vitamin C und dessen Derivate wie z.B. Ascorbylglucusid aber auch Niacinamid, Panthenol, Bisabolol, Polydocanol, ungesättigte Fettsäuren, wie z.B. die essentiellen Fettsäuren (üblicherweise als Vitamin F bezeichnet), insbesondere die γ-Linolensäure, Ölsäure, Eicosapentaensäure, Docosahexaensäure und deren Derivate, Chloramphenicol, Coffein, Prostaglandine, Thymol, Campher, Squalen, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z.B. Nachtkerzenöl, Borretschöl oder Johannisbeerkernöl, Fischöle, Lebertran aber auch Ceramide und ceramidähnliche Verbindungen, Weihrauchextrakt, Grünteeextrakt, Wasserlilienextrakt, Süßholzextrakt, Hamamelis, Antischuppenwirkstoffe (z.B. Selendisulfid, Zinkpyrithion, Pirocton, Olamin, Climbazol, Octopirox, Polydocanol und deren Kombinatinen), Komplexwirkstoffen wie z.B. jenen aus γ-Oryzanol und Calciumsalzen wie Calciumpanthotenat, Calciumchlorid, Calciumacetat.
  • Vorteilhaft ist es auch, die Wirkstoffe aus der Gruppe der rückfettenden Substanzen zu wählen, beispielsweise Purcellinöl, Eucerit® und Neocerit®.
  • Besonders vorteilhaft werden der oder die Wirkstoffe ferner gewählt aus der Gruppe der NO-Synthasehemmer, insbesondere wenn die erfindungsgemäßen Zusammensetzungen zur Behandlung und Prophylaxe der Symptome der intrinsischen und/oder extrinsischen Hautalterung sowie zur Behandlung und Prophylaxe der schädlichen Auswirkungen ultravioletter Strahlung auf die Haut dienen sollen. Bevorzugter NO-Synthasehemmer ist Nitroarginin.
  • Weiter vorteilhaft werden der oder die Wirkstoffe gewählt aus der Gruppe umfassend Catechine und Gallensäureester von Catechinen und wässrige bzw. organische Extrakte aus Pflanzen oder Pflanzenteilen, die einen Gehalt an Catechinen oder Gallensäureestern von Catechinen aufweisen, wie beispielsweise den Blättern der Pflanzenfamilie Theaceae, insbesondere der Spezies Camellia sinensis (grüner Tee). Besonders vorteilhaft sind deren typische Inhaltsstoffe (z.B. Polyphenole bzw. Catechine, Coffein, Vitamine, Zucker, Mineralien, Aminosäuren, Lipide).
  • Catechine stellen eine Gruppe von Verbindungen dar, die als hydrierte Flavone oder Anthocyanidine aufzufassen sind und Derivate des „Catechins" (Catechol, 3,3',4',5,7-Flavanpentaol, 2-(3,4-Dihydroxyphenyl)-chroman-3,5,7-triol) darstellen. Auch Epicatechin ((2R,3R)-3,3',4',5,7-Flavanpentaol) ist ein vorteilhafter Wirkstoff im Sinne der vorliegenden Erfindung.
  • Vorteilhaft sind ferner pflanzliche Auszüge mit einem Gehalt an Catechinen, insbesondere Extrakte des grünen Tees, wie z.B. Extrakte aus Blättern der Pflanzen der Spezies Camellia spec., ganz besonders der Teesorten Camellia sinenis, C. assamica, C. taliensis bzw. C. inawadiensis und Kreuzungen aus diesen mit beispielsweise Camellia japonica.
  • Bevorzugte Wirkstoffe sind ferner Polyphenole bzw. Catechine aus der Gruppe (–)-Catechin, (+)-Catechin, (–)-Catechingallat, (–)-Gallocatechingallat, (+)-Epicatechin, (–)-Epicatechin, (–)-Epicatechin Gallat, (–)-Epigallocatechin, (–)-Epigallocatechingallat. [0087] Auch Flavon und seine Derivate (oft auch kollektiv „Flavone" genannt) sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Sie sind durch folgende Grundstruktur gekennzeichnet (Substitutionspositionen angegeben):
    Figure 00350001
  • Einige der wichtigeren Flavone, welche auch bevorzugt in erfindungsgemäßen Zusammensetzungen eingesetzt werden können, sind in der nachstehenden Tabelle 2 aufgeführt.
  • Tabelle 2: Flavone
    Figure 00360001
  • In der Natur kommen Flavone in der Regel in glycosidierter Form vor. Erfindungsgemäß werden die Flavonoide bevorzugt gewählt gewählt aus der Gruppe der Substanzen der allgemeinen Formel
    Figure 00360002
    wobei Z1 bis Z7, unabhängig voneinander gewählt werden aus der Gruppe H, OH, Alkoxy- sowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei Gly gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.
  • Erfindungsgemäß können die Flavonoide aber auch vorteilhaft gewählt werden aus der Gruppe der Substanzen der allgemeinen Formel
    Figure 00370001
    wobei Z1 bis Z6 unabhängig voneinander gewählt werden aus der Gruppe H, OH, Alkoxy- sowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome auf weisen können, und wobei Gly gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.
  • Bevorzugt können solche Strukturen gewählt werden aus der Gruppe der Substanzen der allgemeinen Formel
    Figure 00370002
    wobei Z1 bis Z6 unabhängig voneinander wie vorgenannt und Gly1, Gly2 und Gly3 unabhängig voneinander Monoglycosidreste oder Oligoglycosidreste darstellen. Gly2 bzw. Gly3 können auch einzeln oder gemeinsam Absättigungen durch Wasserstoffatome darstellen.
  • Bevorzugt werden Gly1, Gly2 und Gly3 unabhängig voneinander gewählt aus der Gruppe der Hexosylreste, insbesondere der Rhamnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Mannosyl und Talosyl sind gegebenenfalls vorteilhaft zu verwenden.
  • Es kann auch erfindungsgemäß vorteilhaft sein, Pentosylreste zu verwenden.
  • Vorteilhaft werden Z1 bis Z5 unabhängig voneinander gewählt aus der Gruppe H, OH, Methoxy-, Ethoxy- sowie 2-Hydroxyethoxy-, und die Flavonglycoside entsprechen der allgemeinen Strukturformel
    Figure 00380001
  • Besonders vorteilhaft werden die Flavonglycoside aus der Gruppe gewählt, welche durch die folgende Struktur wiedergegeben werden,
    Figure 00380002
    wobei Gly1, Gly2 und Gly3 unabhängig voneinander Monoglycosidreste oder Oligoglycosidreste darstellen. Gly2 bzw. Gly3 können auch einzeln oder gemeinsam Absättigungen durch Wasserstoffatome darstellen.
  • Bevorzugt werden Gly1, Gly2 und Gly3 unabhängig voneinander gewählt aus der Gruppe der Hexosylreste, insbesondere der Rhamnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Mannosyl und Talosyl sind gegebenenfalls vorteilhaft zu verwenden. Es kann auch erfindungsgemäß vorteilhaft sein, Pentosylreste zu verwenden.
  • Besonders vorteilhaft im Sinne der vorliegenden Erfindung ist, das oder die Flavonglycoside zu wählen aus der Gruppe α-Glucosylrutin, α-Glucosylmyricetin, α-Glucosylisoquercitrin, α-Glucosylisoquercetin und α-Glucosylquercitrin.
  • Weitere vorteilhafte Wirkstoffe sind Sericosid, Pyridoxol, Vitamin K, Biotin und Aromastoffe.
  • Außerdem können die Wirkstoffe (eine oder mehrere Verbindungen) auch sehr vorteilhaft gewählt werden aus der Gruppe der hydrophilen Wirkstoffe, insbesondere aus folgender Gruppe:
    α-Hydroxysäuren wie Milchsäure oder Salicylsäure bzw. deren Salze wie z.B. Na-Lactat, Ca-Lactat, TEA-Lactat, Harnstoff, Allantoin, Serin, Sorbitol, Glycerin, Milchproteine, Panthenol, Chitosan.
  • Die Liste der genannten Wirkstoffe bzw. Wirkstoffkombinationen, die in den erfindungsgemäßen Zusammensetzungen verwendet werden können, soll selbstverständlich nicht limitierend sein. Die Wirkstoffe können einzelnen oder in beliebigen Kombinationen miteinander vennrendet werden.
  • Die Menge solcher Wirkstoffe (eine oder mehrere Verbindungen) in den Zusammensetzungen gemäß der Erfindung beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 bis 20 Gew.-%, insbesondere 1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zusammensetzung.
  • Die genannten und weitere Wirkstoffe, die in den erfindungsgemäßen Zusammensetzungen verwendet werden können, sind in der DE 103 18 526 A1 auf den Seiten 12 bis 17 angegeben, worauf an dieser Stelle in vollem Umfang Bezug genommen wird.
  • Konservierungsmittel
  • Die erfindungsgemäßen Zusammensetzungen können vorteilhaft ein oder mehrere Konservierungsmittel enthalten. Vorteilhafte Konservierungsmittel im Sinne der vorliegenden Erfindung sind beispielsweise Formaldehydabspalter (wie z.B. DMDM Hydantoin, welches beispielsweise unter der Handelsbezeichnung Glydant® (Lonza) kommerziell erhältlich ist), Iodopropylbutylcarbamate (z.B. Glycacil-L®, Glycacil-S® (Lonza), Dekaben®LMB (Jan Dekker)), Parabene (p-Hydroxybenzoesäurealkylester, wie z.B. Methyl-, Ethyl-, Propyl- und/oder Butylparaben), Dehydroacetic Acid (Euxyl® K 702 (Schülke&Mayr),Phenoxyethanol, Ethanol, Benzoesäu re. Vorteilhaft werden auch sogenannte Konservierungshelfer, wie beispielsweise Octoxyglycerin, Glycine, Soja etc. eingesetzt.
  • Die nachfolgende Tabelle gibt einen Überblick über übliche Konservierungsmittel:
    Figure 00400001
  • Ferner vorteilhaft sind in der Kosmetik gebräuchliche Konservierungsmittel oder Konservierungshilfsstoffe wie Dibromdicyanobutan (2-Brom-2-brommethylglutarodinitril), Phenoxyethanol, 3-Iod-2-propinylbutylcarbamat, 2-Brom-2-nitropropan-1,3-diol, Imidazolidinylharnstoff, 5-Chlor-2-methyl-4-isothiazolin-3-on, 2-Chloracetamid, Benzalkoniumchlorid, Benzylalkohol, Salicylsäure und Salicylate.
  • Es ist besonders bevorzugt, wenn als Konservierungsstoffe Iodopropylbutylcarbamate, Parabene (Methyl-, Ethyl-, Propyl- und/oder Butylparaben) und/oder Phenoxyethanol eingesetzt werden.
  • Erfindungsgemäß sind der oder die Konservierungsstoffe in einer Gesamtkonzentration von höchstens 2, bevorzugt höchstens 1,5 und besonders bevorzugt höchstens 1 Gewichts-%, bezogen auf das Gesamtgewicht der Zusammensetzung, enthalten.
  • Emulgatoren
  • In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Zusammensetzungen zusätzlich Emulgatoren. Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
    • (1) Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe;
    • (2) C12/18-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin;
    • (3) Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte;
    • (4) Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxylierte Analoga
    • (5) Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ölen, beispielsweise an Ricinusöl und/oder gehärtetem Ricinusöl;
    • (6) Polyol- und insbesondere Polyglycerinester, wie z.B. Polyglycerinpolyricinoleat, Polyglycerinpoly-12-hydroxystearat oder Polyglycerindimerat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen;
    • (7) Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
    • (8) Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C6/22-Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipentaerythrit, Zuckeralkohole (z.B. Sorbit), Alkylglucoside (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucoside (z.B. Cellulose);
    • (9) Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
    • (10) Wollwachsalkohole;
    • (11) Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
    • (12) Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE-PS 1165574 und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglycose und Polyolen, vorzugsweise Glycerin oder Polyglycerin sowie
    • (13) Polyalkylenglykole.
  • Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole, Glycerinmono- und -diester sowie Sorbitanmono- und- diester von Fettsäuren oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. C12 bis C18-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE-PS 2024051 als Rückfettungsmittel für kosmetische Zubereitungen bekannt. C8 bis C18-Alkylmono- und -oligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 C-Atomen. Bezüglich des Glycosidesters gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
  • Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und/oder eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,Ndimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxy-methylglycinat.
  • Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8 bis C18-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- und/oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-Nalkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12 bis C18-Acylsarcosin.
  • Neben den ampholytischen kommen auch quartäre Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind.
  • Parfümöle
  • Gegebenenfalls können die kosmetischen Zusammensetzungen Parfümöle enthalten. Als Parfümöle seien beispielsweise Gemische aus natürlichen und synthetischen Riechstoffen genannt. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rose, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orange), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estra gon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, 4-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonat, zu den Ketonen z.B. die Jonone, cc-Isomethylionen und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terioneol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten vennrendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzeöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene®Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix®Coeur, Iso-E-Super®, Fixolide®NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romillat, Irotyl und Floramat allein oder in Mischungen eingesetzt.
  • Pigmente
  • In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Zusammensetzungen mindestens ein Pigment.
  • Die Pigmente liegen in der Produktmasse in ungelöster Form vor und können in einer Menge von 0,01 bis 25 Gew.%, besonders bevorzugt von 5 bis 15 Gew.% enthalten sein. Die bevorzugte Teilchengröße beträgt 1 bis 200 μm, insbesondere 3 bis 150 μm, besonders bevorzugt 10 bis 100 μm. Die Pigmente sind im Anwendungsmedium praktisch unlösliche Farbmittel und können anorganisch oder organisch sein. Auch anorganisch-organische Mischpigmente sind möglich. Bevorzugt sind anorganische Pigmente. Der Vorteil der anorganischen Pigmente ist deren ausgezeichnete Licht-, Wetter- und Temperaturbeständigkeit. Die anorganischen Pigmente können natürlichen Ursprungs sein, beispielsweise hergestellt aus Kreide, Ocker, Umbra, Grünerde, gebranntem Terra di Siena oder Graphit. Bei den Pigmenten kann es sich um Weißpigmente wie z.B. Titandioxid oder Zinkoxid, um Schwarzpigmente wie z.B. Eisenoxidschwarz, Buntpigmente wie z.B. Ultramarin oder Eisenoxid rot, um Glanzpigmente, Metalleffekt-Pigmente, Perlglanzpigmente sowie um Fluoreszenz- oder Phosphoreszenzpigmente handeln, wobei vorzugsweise mindestens ein Pigment ein farbiges, nicht-weißes Pigment ist.
  • Geeignet sind Metalloxide, -hydroxide und -oxidhydrate, Mischphasenpigmente, schwefelhaltige Silicate, Metallsulfide, komplexe Metallcyanide, Metallsulfate, -Chromate und -molybdate sowie die Metalle selbst (Bronze-Pigmente). Geeignet sind insbesondere Titandioxid (CI 77891), schwarzes Eisenoxid (CI 77499), gelbes Eisenoxid (CI 77492), rotes und braunes Eisenoxid (CI 77491), Manganviolett (CI 77742), Ultramarine (Natrium-Aluminiumsulfosilikate, CI 77007, Pigment Blue 29), Chromoxidhydrat (C177289), Eisenblau (Fenic Ferro-Cyanide, CI7751 0), Carmine (Cochineal).
  • Besonders bevorzugt sind Perlglanz- und Farbpigmente auf Mica- bzw. Glimmerbasis welche mit einem Metalloxid oder einem Metalloxychlorid wie Titandioxid oder Wismutoxychlorid sowie gegebenenfalls weiteren farbgebenden Stoffen wie Eisenoxiden, Eisenblau, Ultramarine, Carmine etc. beschichtet sind und wobei die Farbe durch Variation der Schichtdicke bestimmt sein kann. Derartige Pigmente werden beispielsweise unter den Handelsbezeichnungen Rona®, Colorona®, Dichrona® und Timiron® (Merck) vertrieben.
  • Organische Pigmente sind beispielsweise die natürlichen Pigmente Sepia, Gummigutt, Knochenkohle, Kasseler Braun, Indigo, Chlorophyll und andere Pflanzenpigmente. Synthetische organische Pigmente sind beispielsweise Azo-Pigmente, Anthrachinoide, Indigoide, Dioxazin-, Chinacridon-, Phtalocyanin-, Isoindolinon-, Perylen- und Perinon-, Metallkomplex-, Alkaliblau- und Diketopyrrolopyrrol-Pigmente.
  • In einer Ausführungsform enthält die erfindungsmäße Zusammensetzung 0,01 bis 10, besonders bevorzugt von 0,05 bis 5 Gew.% an mindestens einem partikelförmigen Stoff. Geeignete Stoffe sind z.B. Stoffe, die bei Raumtemperatur (25°C) fest sind und in Form von Partikeln vorliegen. Geeignet sind etwa Silica, Silikate, Aluminate, Tonerden, Mica, Salze, insbesondere anorganische Metallsalze, Metalloxide, z.B. Titandioxid, Minerale und Polymerpartikel.
  • Die Partikel liegen in dem Mittel ungelöster, vorzugsweise stabil dispergierter Form vor und können sich nach Aufbringen auf die Anwendungsoberfläche und Verdampfen des Lösungsmittels in fester Form abscheiden.
  • Bevorzugte partikelförmige Stoffe sind Silica (Kieselgel, Siliciumdioxid) und Metallsalze, insbesondere anorganische Metallsalze, wobei Silica besonders bevorzugt ist. Metallsalze sind z.B. Alkali- oder Erdalkalihalogenide wie Natriumchlorid oder Kaliumchlorid; Alkali- oder Erdalkalisulfate wie Natriumsulfat oder Magnesiumsulfat.
  • Perlglanzwachse
  • Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, spezielle Ethylenglycoldisterat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanoamid; Partialglycenide, speziell Stearinsäunemonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
  • Verdickungsmittel
  • Geeignete Verdickungsmittel für die erfindungsgemäßen Zusammensetzungen sind vernetzte Polyacrylsäuren und deren Derivate, Polysaccharide wie Xanthan-gum, Guar-Guar, Agar-Agar, Alginate oder Tylosen, Cellulosederivate, z.B. Carboxymethylcellulose oder Hydroxycarboxymethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Fettalkohole, Monoglycenide und Fettsäuren, Polyvinylalkohol und Polyvinylpyrrolidon.
  • Geeignete Verdicker sind weiterhin Polyacrylate wie Carbopol® (Noveon), Ultrez® (Noveon), Luvigel® EM (BASF), Capigel®98 (Seppic), Synthalene® (Sigma), die Aculyn®-Marken der Fa. Rohm und Haas wie Aculyn® 22 (Copolymerisat aus Acrylaten und Methacrylsäureethoxylaten mit Stearylrest (20 EO-Einheiten)) und Aculyn® 28 (Copolymerisat aus Acrylaten und Methacrylsäureethoxilaten mit Behenylrest (25 EO-Einheiten)).
  • Besonders bevorzugte Verdickungsmittel zur Herstellung von Gelen sind Ultrez®21, Aculyn®28, Luvigel® EM und Capigel®98.
  • Geeignete Verdickungsmittel sind weiterhin beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polyacrylamide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren rnit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Hornologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
  • Keimhemmende Mittel
  • Weiterhin können auch keimhemmende Mittel eingesetzt werden. Dazu gehören generell alle geeigneten Konservierungsmittel mit spezifischer Wirkung gegen grampositive Bakterien, z.B. Triclosan (2,4,4'-Trichlor-2'-hydroxydiphenylether), Chlorhexidin (1,1'-Hexamethylenbis[5-(4-chlorphenyl)-biguanid) sowie TTC (3,4,4'-Trichlorcarbanilid). Quartäre Ammonium-Verbindungen sind prinzipiell ebenfalls geeignet und werden bevorzugt für desinfizierende Seifen und Waschlotionen verwendet. Auch zahlreiche Riechstoffe haben antimikrobielle Eigenschaften. Auch eine große Anzahl etherischer Öle bzw. deren charakteristische Inhaltsstoffe wie z.B. Nelkenöl (Eugenol), Minzöl (Menthol) oder Thymianöl (Thymol), zeigen eine ausgeprägte antimikrobielle Wirksamkeit.
  • Die antibakteriell wirksamen Stoffe werden in der Regel in Konzentrationen von ca. 0,1 bis 0,3 Gew.-% eingesetzt.
  • Die erfindungsgemäßen Zusammensetzungen können weiterhin Glitterstoffe und/oder andere Effektstoffe (z.B. Farbschlieren) enthalten.
  • Die erfindungsgemäßen Zusammensetzungen können auch UV-Lichtschutzfilter in einer derartigen Menge enthalten, dass der Lichtschutzfaktor (LSF, bestimmt nach der COLIPA-Methode) der Zusammensetzungen kleiner als 4 ist. Zusammensetzungen mit einem LSF von wenigstens 4 sind nicht Gegenstand dieser Erfindung.
  • Polymere
  • Die erfindungsgemäßen Zusammensetzungen können weiterhin zusätzliche Polymere enthalten.
  • Geeignete Polymere sind z.B. kationische Polymere mit der Bezeichnung Polyquaternium nach INCI, z.B. Copolymere aus Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Luviquat® FC, Luviquat® HM, Luviquat® MS, Luviquat® Care, Luviquat® UltraCare), Copolymere aus N-Vinylpyrrolidon/Dimethylaminoethylmethacrylat, quaternisiert mit Diethylsulfat (Luviquat® PQ 11), Copolymere aus N-Vinylcaprolactam/N-Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Luviquat® Hold); kationische Cellulosederivate (Polyquaternium-4 und -10), acrylamidocopolymere (Polyquaternium-7) und Chitosan. Geeignete kationische (quaternisierte) Polymere sind auch Merquat® (Polymer auf Basis von Dimethyldiallylammoniumchlorid), Gafquat® (quaternäre Polymere, die durch Reaktion von Polyvinylpyrrolidon mit quaternären Ammoniumverbindungen entstehen), Polymer JR (Hydroxyethylcellulose mit kationischen Gruppen) und kationische Polymere auf pflanzlicher Basis, z.B. Guarpolymere, wie die Jaguar®-Marken der Fa. Rhodia.
  • Weitere geeignete Polymere sind auch neutrale Polymere, wie Polyvinylpyrrolidone, Copolymere aus N-Vinylpyrrolidon und Vinylacetat und/oder Vinylpropionat und/oder Stearyl(meth)acrylat, Polysiloxane, Polyvinylcaprolactam und andere Copolymere mit N-Vinylpyrrolidon, Polyethylenimine und deren Salze, Polyvinylamine und deren Salze, Cellulosederivate, Polyasparaginsäuresalze und Derivate. Dazu zählt beispielsweise Luviflex® Swing (teilverseiftes Copolymerisat von Polyvinylacetat und Polyethylenglykol, Fa. BASF) oder Kollicoat® IR.
  • Geeignete Polymere sind auch die in der WO 03/092640 beschriebenen, insbesondere die als Beispiele 1 bis 50 (Tabelle 1, Seite 40 ff.) und Beispiele 51 bis 65 (Tabelle 2, Seite 43) beschriebenen (Meth)Acrylsäureamidcopolymere, auf die an dieser Stelle vollumfänglich Bezug genommen wird.
  • Geeignete Polymere sind auch nichtionische, wasserlösliche bzw. wasserdispergierbare Polymere oder Oligomere, wie Polyvinylcaprolactam, z.B. Luviskol® Plus (BASF), oder Polyvinylpyrrolidon und deren Copolymere, insbesondere mit Vinylestern, wie Vinylacetat, z.B. Luviskol® VA 37 (BASF); Polyamide, z.B. auf Basis von Itaconsäure und aliphatischen Diaminen, wie sie z.B. in der DE-A-43 33 238 beschrieben sind.
  • Geeignete Polymere sind auch amphotere oder zwitterionische Polymere, wie die unter den Bezeichnungen Amphomer® (National Starch) erhältlichen Octylacrylamid/Methylmethacrylat/tert.-Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere sowie zwitterionische Polymere, wie sie beispielsweise in den deutschen Patentanmeldungen DE 39 29 973 , DE 21 50 557 , DE 28 17 369 und DE 37 08 451 offenbart sind. Acrylamidopropyltrimethylammoniumchlorid/Acrylsäure- bzw. -Methacrylsäure-Copolymerisate und deren Alkali- und Ammoniumsalze sind bevorzugte zwitterionische Polymere. Weiterhin geeignete zwitterionische Polymere sind Methacroylethylbetain/Methacrylat-Copolymere, die unter der Bezeichnung Amersette® (AMERCHOL) im Handel erhältlich sind, und Copolymere aus Hydroxyethylmethacrylat, Methylmethacrylat, N,N-Dimethylaminoethylmethacrylat und Acrylsäure (Jordapon®).
  • Geeignete Polymere sind auch nichtionische, siloxanhaltige, wasserlösliche oder -dispergierbare Polymere, z.B. Polyethersiloxane, wie Tegopren® (Fa. Goldschmidt) oder Belsil® (Fa. Wacker).
  • Außerdem geeignet sind auch Biopolymere, d.h. Polymere, die aus natürlich nachwachsenden Rohstoffen gewonnen werden und aus natürlichen Monomerbausteinen aufgebaut sind, z.B. Cellulosederivate, Chitin-, Chitosan-, DNA-, Hyaluronsäure- und RNA-Derivate.
  • Weitere erfindungsgemäße Zubereitungen enthalten wenigstens ein weiteres wasserlösliches Polymer, insbesondere Chitosane (Poly(D-glucosamine)) verschiedenen Molekulargewichtes und/oder Chitosanderivate.
  • Anionische Polymere
  • Weitere für die erfindungsgemäßen Zubereitungen geeignete Polymere sind Carbonsäuregruppen-haltige Copolymere. Dabei handelt es sich um Polyelektrolyte mit einer größeren Anzahl anionisch dissoziierbarer Gruppen in der Hauptkette und/oder einer Seitenkette. Sie sind befähigt, mit den Copolymeren A) Polyelektrolyt-Komplexe (Symplexe) zu bilden.
  • In einer bevorzugten Ausführungsform weisen die in den erfindungsgemäßen Mitteln eingesetzten Polyelektrolytkomplexe einen Überschuß an anionogenen/anionischen Gruppen auf.
  • Die Polyelektrolytkomplexe umfassen neben wenigstens einem der zuvor genannten Copolymere A) auch wenigstens ein Säuregruppen-haltiges Polymer.
  • Die Polyelektrolyt-Komplexe enthalten vorzugsweise Copolymere) A) und Säuregruppen-haltige Polymere in einem Gewichtsmengenverhältnis von etwa 50:1 bis 1:20, besonders bevorzugt von 20:1 bis 1:5.
  • Geeignete Carbonsäuregruppen-haltige Polymere sind z.B. durch radikalische Polymerisation α,β-ethylenisch ungesättigter Monomere erhältlich. Dabei werden Monomere m1) eingesetzt, die wenigstens eine radikalisch polymerisierbare, α,β-ethylenisch ungesättigte Doppelbindung und wenigstens eine anionogene und/oder anionische Gruppe pro Molekül enthalten.
  • Geeignete Carbonsäuregruppenhaltige Polymere sind weiterhin Carbonsäuregruppenhaltige Polyurethane.
  • Vorzugsweise sind die Monomere ausgewählt unter monoethylenisch ungesättigten Carbonsäuren, Sulfonsäuren, Phosphonsäuren und Mischungen davon.
  • Zu den Monomeren m1) zählen monoethylenisch ungesättigte Mono- und Dicarbonsäuren mit 3 bis 25 vorzugsweise 3 bis 6 C-Atomen, die auch in Form ihrer Salze oder Anhydride eingesetzt werden können. Beispiele hierfür sind Acrylsäure, Methacrylsäure, Ethacrylsäure, α-Chloracrylsäure, Crotonsäure, Maleinsäure, Maleinsäureanhydrid, Itaconsäure, Citraconsäure, Mesaconsäure, Glutaconsäure, Aconitsäure und Fumarsäure. Zu den Monomeren zählen weiterhin die Halbester von monoethylenisch ungesättigten Dicarbonsäuren mit 4 bis 10 vorzugsweise 4 bis 6 C-Atomen, z.B. von Maleinsäure wie Maleinsäuremonomethylester. Zu den Monomeren zählen auch monoethylenisch ungesättigte Sulfonsäuren und Phosphonsäuren, beispielsweise Vinylsulfonsäure, Allylsulfonsäure, Sulfoethylacrylat, Sulfoethylmethacrylat, Sulfopropylacrylat, Sulfopropylmethacrylat, 2-Hydroxy-3-acryloxypropylsulfonsäure, 2-Hydroxy-3-methacryloxypropylsulfonsäure, Styrolsulfonsäure, 2-Acrylamido-2-methylpropansulfonsäure, Vinylphosphonsäure und Allylphosphonsäure. Zu den Monomeren zählen auch die Salze der zuvor genannten Säuren, insbesondere die Natrium-, Kalium- und Ammoniumsalze sowie die Salze mit den zuvor ge nannten Aminen. Die Monomere können als solche oder als Mischungen untereinander eingesetzt werden. Die angegebenen Gewichtsanteile beziehen sich sämtlich auf die Säureform.
  • Vorzugsweise wird das Monomer m1) ausgewählt unter Acrylsäure, Methacrylsäure, Ethacrylsäure, α-Chloracrylsäure, Crotonsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure, Citraconsäure, Mesaconsäure, Glutaconsäure, Aconitsäure und Mischungen davon, besonders bevorzugt Acrylsäure, Methacrylsäure und Mischungen davon.
  • Die zuvor genannten Monomere m1) können jeweils einzeln oder in Form von beliebigen Mischungen eingesetzt werden.
  • Prinzipiell eignen sich als Comonomere zur Herstellung der Carbonsäuregruppenhaltigen Polymere die zuvor als Komponenten des Copolymers A) genannten Verbindungen a) bis d) mit der Maßgabe, dass der Molanteil an anionogenen und anionischen Gruppen, die das Carbonsäuregruppen-haltige Polymer einpolymerisiert enthält, größer ist als der Molanteil an kationogenen und kationischen Gruppen.
  • In einer bevorzugten Ausführung enthalten die Carbonsäuregruppen-haltigen Polymere wenigstens ein Monomer einpolymerisiert, das ausgewählt ist unter den zuvor genannten Vernetzern d). Auf geeignete und bevorzugte Vernetzer d) wird Bezug genommen.
  • Des Weiteren bevorzugt enthalten die Carbonsäuregruppen-haltigen Polymere wenigstens ein Monomer m2) einpolymerisiert, das ausgewählt ist unter Verbindungen der allgemeinen Formel (VI)
    Figure 00490001

    R1 für Wasserstoff oder C1-C8-Alkyl steht,
    Y1 für O, NH oder NR3 steht, und
    R2 und R3 unabhängig voneinander für C1-C30-Alkyl oder C5-C8-Cycloalkyl stehen, wobei die Alkylgruppen durch bis zu vier nicht benachbarte Heteroatome oder Heteroatom-haltige Gruppen, die ausgewählt sind unter O, S und NH unterbrochen sein können.
  • Bevorzugt steht R1 in der Formel VI für Wasserstoff oder C1-C4-Alkyl, insbesondere Wasserstoff, Methyl oder Ethyl.
  • Bevorzugt steht R2 in der Formel VI für C1-C8-Alkyl, bevorzugt Methyl, Ethyl, n-Butyl, Isobutyl, tert.-Butyl oder eine Gruppe der Formel -CH2-CHZ-NH-C(CH3)3.
  • Wenn R3 für Alkyl steht, dann vorzugsweise für C1-C4-Alkyl, wie Methyl, Ethyl, n-Propyl, n-Butyl, Isobutyl und tert.-Butyl.
  • Geeignete Monomere m2) sind Methyl(meth)acrylat, Methylethacrylat, Ethyl(meth)acrylat, Ethylethacrylat, tert.-Butyl(meth)acrylat, tert.-Butylethacrylat, n-Octyl(meth)acrylat, 1,1,3,3-Tetramethylbutyl(meth)acrylat, Ethylhexyl(meth)acrylat, n-Nonyl(meth)acrylat, n-Decyl(meth)acrylat, n-Undecyl(meth)acrylat, Tridecyl(meth)acrylat, Myristyl(meth)acrylat, Pentadecyl(meth)acrylat, Palmityl(meth)acrylat, Heptadecyl(meth)acrylat, Nonadecyl(meth)acrylat, Arrachinyl(meth)acrylat, Behenyl(meth)acrylat, Lignocerenyl(meth)acrylat, Cerotinyl(meth)acrylat, Melissinyl(meth)acrylat, Palmitoleinyl(meth)acrylat, Oleyl(meth)acrylat, Linolyl(meth)acrylat, Linolenyl(meth)acrylat, Stearyl(meth)acrylat, Lauryl(meth)acrylat und Mischungen davon.
  • Geeignete Monomere m2) sind weiterhin Acrylsäureamid, Methacrylsäureamid, N-Methyl(meth)acrylamid, N-Ethyl(meth)acrylamid, N-Propyl(meth)acrylamid, N-(n-Butyl)(meth)acrylamid, N-(tert.-Butyl)(meth)acrylamid, N,N-Dimethyl(meth)acrylamid, N,N-Diethyl(meth)acrylamid Piperidinyl(meth)acrylamid und Morpholinyl(meth)acrylamid, N-(n-Octyl)(meth)acrylamid, N-(1,1,3,3-Tetramethylbutyl)(meth)acrylamid, N-Ethylhexyl(meth)acrylamid, N-(n-Nonyl)(meth)acrylamid, N-(n-Decyl)(meth)acrylamid, N-(n-Undecyl)(meth)acrylamid, N-Tridecyl(meth)acrylamid, N-Myristyl(meth)acrylamid, N-Pentadecyl(meth)acrylamid, N-Palmityl(meth)acrylamid, N-Heptadecyl(meth)acrylamid, N-Nonadecyl(meth)acrylamid, N-Arrachinyl(meth)acrylamid, N-Behenyl(meth)acrylamid, N-Lignocerenyl(meth)acrylamid, N-Cerotinyl(meth)acrylamid, N-Mclissinyl(meth)acrylamid, N-Palmitoleinyl(meth)acrylamid, N-Oleyl(meth)acrylamid, N-Linolyl(meth)acrylamid, N-Linolenyl(meth)acrylamid, N-Stearyl(meth)acrylamid und N-Lauryl(meth)acrylamid.
  • Desweiteren bevorzugt enthalten die Carbonsäuregruppen-haltigen Polymere wenigstens ein Monomer m3) einpolymerisiert, das ausgewählt ist unter Verbindungen der allgemeinen Formel VII
    Figure 00500001
    worin
    die Reihenfolge der Alkylenoxideinheiten beliebig ist,
    k und l unabhängig voneinander für eine ganze Zahl von 0 bis 1000 stehen, wobei die Summe aus k und l mindestens 5 beträgt,
    R4 für Wasserstoff, C1-C30-Alkyl oder C5-C8-Cycloalkyl steht,
    R5 für Wasserstoff oder C1-C8-Alkyl steht,
    Y2 für O oder NR6 steht, wobei R6 für Wasserstoff, C1-C30-Alkyl oder C5-C8-Cycloalkyl steht.
  • Bevorzugt steht in der Formel VII k für eine ganze Zahl von 1 bis 500, insbesondere 3 bis 250. Bevorzugt steht l für eine ganze Zahl von 0 bis 100.
  • Bevorzugt steht R5 für Wasserstoff, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl oder n-Hexyl, insbesondere für Wasserstoff, Methyl oder Ethyl.
  • Vorzugsweise steht R4 in der Formel VII für Wasserstoff, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, n-Pentyl, n-Hexyl, Octyl, 2-Ethylhexyl, Decyl, Launl, Palmityl oder Stearyl.
  • Vorzugsweise steht Y2 in der Formel VII für O oder NH.
  • Geeignete Polyetheracrylate VII) sind z.B. die Polykondensationsprodukte der zuvor genannten α,β-ethylenisch ungesättigten Mono- und/oder Dicarbonsäuren und deren Säurechloriden, -amiden und Anhydriden mit Polyetherolen. Geeignete Polyetherole können leicht durch Umsetzung von Ethylenoxid, 1,2-Propylenoxid und/oder Epichlorhydrin mit einem Startermolekül, wie Wasser oder einem kurzkettigen Alkohol R4-OH hergestellt werden. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischung eingesetzt werden. Die Polyetheracrylate VII) können allein oder in Mischungen zur Herstellung der erfindungsgemäß eingesetzten Polymere verwendet werden. Geeignete Polyetheracrylate II) sind auch Urethan(meth)acrylate mit Alkylenoxidgruppen. Derartige Verbindungen sind in der DE 198 38 851 (Komponente e2)) beschrieben, worauf hier in vollem Umfang Bezug genommen wird.
  • Als Carbonsäuregruppen-haltige Polymere bevorzugte anionische Polymere sind beispielsweise Homo- und Copolymerisate von Acrlsäure und Methacrylsäure und deren Salze. Dazu zählen auch vernetzte Polymere der Acrlsäure, wie sie unter dem INCI-Namen Carbomer erhältlich sind. Derartige vernetzte Homopolymere der acrylsäure sind beispielsweise kommerziell unter dem Namen Carbopol® von der Firma Noveon erhältlich. Bevorzugt sind auch hydrophob modifizierte vernetzte PolyacrylatPolymere, wie Carbopol® Ultrez 21 von der Firma Noveon.
  • Weitere Beispiele für geeignete anionische Polymere sind Copolymere von acrylsäure und Acrylamid und deren Salze; Natriumsalze von Polyhydroxycarbonsäuren, wasserlösliche oder wasserdispergierbare Polyester, Polyurethane und Polyharnstoffe. Be sonders geeignete Polymere sind Copolymere aus (Meth)acrylsäure und Polyetheracrylaten, wobei die Polyetherkette mit einem C8-C30-Alkylrest terminiert ist. Dazu zählen z.B. Acrylat/Beheneth-25-metacrylat-Copolymere, die unter der Bezeichnung Aculyn® von der Firma Rohm und Haas erhältlich sind. Besonders geeignete Polymere sind weiterhin Copolymere aus t-Butylacrylat, Ethylacrylat, Methacrylsäure (z.B. Luvimer® 100P, Luvimer® Pro55), Copolymere aus Ethylacrylat und Methacrylsäure (z.B. Luviumer® MAE), Copolymere aus N-tert.-Butylacrylamid, Ethylacrylat, Acrylsäure (Ultrahold® 8, Ultrahold® Strong), Copolymere aus Vinylacetat, Crotonsäure und gegebenenfalls weitere Vinylester (z.B. Luviset® Marken), Maleinsäureanhydridcopolymere, gegebenenfalls mit Alkohol umgesetzt, anionische Polysiloxane, z.B. carboxyfunktionelle, t-Butylacrylat, Methacrylsäure (z.B. Luviskol® VBM), Copolymere von acrylsäure und Methacrylsäure mit hydrophoben Monomeren, wie z.B. C4-C30-Alkylester der Meth(acrylsäure), C4-C30-Alkylvinylester, C4-C30-Alkylvinylether und Hyaluronsäure. Beispiele für anionische Polymere sind weiterhin Vinylacetat/Crotonsäure-Copolymere, wie sie beispielsweise unter den Bezeichnungen Resyn® (National Starch) und Gafset® (GAF) im Handel sind und Vinylpyrrolidon/Vinylacrylat-Copolymere, erhältlich beispielsweise unter dem Warenzeichen Luviflex® (BASF). Weitere geeignete Polymere sind das unter der Bezeichnung Luviflex® VBM-35 (BASF) erhältliche Vinylpyrrolidon/Acrylat-Terpolymer und Natriumsulfonat-haltige Polyamide oder Natriumsulfonathaltige Polyester.
  • Weiterhin umfasst die Gruppe der geeigneten anionischen Polymere beispielhaft Balance® CR (National Starch; Acrylate Copolymer), Balance® 0/55 (National Starch; Acrylate Copolymer), Balance® 47 (National Starch; Octylacrylamid/-Acrylate/Butylaminoethylmethacrylate-Copolymer), Aquaflex® FX 64 (ISP; Isobutylen/Ethylmaleimid/Hydroxyethylmaleimid-Copolymer), Aquaflex® SF-40 (ISP/National Starch; VP/Vinyl Caprolactam/DMAPA acrylate Copolymer), Allianz® LT-120 (ISP/ Rohm & Haas; Acrylat/C1–2 Succinat/Hydroxyacrylat Copolymer), Aquarez® HS (Eastman; Polyester-1), Diaformer® Z-400 (Clariant; Methacryloylethylbetain/Methacrylat-Copolymer), Diaformer® Z-711 (Clariant; Methacryloylethyl N-oxid/Methacrylat-Copolymer), Diaformer® Z-712 (Clariant; Methacryloylethyl N-oxide/Methacrylat-Copolymer), Omnirez® 2000 (ISP; Monoethylester von Poly(Methylvinylether/Maleinsäure in Ethanol), Amphomer® HC (National Starch; Acrylat/ Octylacrylamid-Copolymer), Amphomer® 28-4910 (National Starch; Octyl-acrylamid/Acrylat/Butylaminoethylmethacrylat-Copolymer), Advantage® HC 37 (ISP; Terpolymer aus Vinylcapro-Iactam/Vinylpyrrolidon/Dimethylaminoethylmethacrylat), Advantage® LC55 und LC80 oder LC A und LC E, Advantage® Plus (ISP; VA/Butyl Maleate/Isobornyl Acrylate Copolymer), Aculyne® 258 (Rohm & Haas; Acrylat/ Hydroxyesteracrylat-Copolymer), Luviset® P.U.R. (BASF, Polyurethane-1), Luviflex® Silk (BASF), Eastman® AQ 48 (Eastman), Styleze® CC-10 (ISP; VP/DMAPA acrylates Copolymer), Styleze® 2000 (ISP; VP/Acrylates/Lauryl Methacrylate Copolymer), DynamX® (National Starch; VP/Acrylates/Lauryl Methacrylate Copolymer), DynamX® (National Starch; Polyurethane-14 AMP-Acrylates Copolymer), Resyn XP® (National Starch; acrylates/Octylacrylamide Copolymer), Fixomer® A-30 (Ondeo Nalco; Polymethacrylsäure (und) Acrylamidomethylpropansulfonsäure), Fixate® G-100 (Noveon; AMP-Acrylates/Allyl Methacrylate Copolymer).
  • Geeignete Carbonsäuregruppen-haltige Polymere sind auch die in der US 3,405,084 beschriebenen Terpolymere aus Vinylpyrrolidon, C1-C10-Alkyl-Cycloalkyl- und Aryl(meth)acrylaten und Acrylsäure. Geeignete Carbonsäuregruppen-haltige Polymere sind weiterhin die in der EP-A-0 257 444 und EP-A-0 480 280 beschriebenen Terpolymere aus Vinylpyrrolidon, tert.-Butyl(meth)acrylat und (Meth)acrylsäure. Geeignete Carbonsäuregruppen-haltige Polymere sind weiterhin die in der DE-A-42 23 066 beschriebenen Copolymere, die wenigstens einen (Meth)acrylsäureester, (Meth)acrylsäure sowie N-Vinylpyrrolidon und/oder N-Vinylcaprolactam einpolymerisiert enthalten. Auf die Offenbarung dieser Dokumente wird hier in vollem Umfang Bezug genommen.
  • Die Herstellung der zuvor genannten Carbonsäuregruppen-haltigen Polymere erfolgt nach bekannten Verfahren, zum Beispiel der Lösungs-, Fällungs-, Suspensions- oder Emulsionspolymerisation, wie zuvor für die Copolymere A) beschrieben.
  • Geeignete Carbonsäuregruppen-haltige Polymere sind weiterhin Carbonsäuregruppenhaltige Polyurethane.
  • Die EP-A-636361 offenbart geeignete Blockcopolymere mit Polysiloxanblöcken und Polyurethan-/Polyharnstoffblöcken, die Carbonsäure- und/oder Sulfonsäuregruppen aufweisen. Geeignete siliconhaltige Polyurethane sind auch in der WO 97/25021 und der EP-A-751 162 beschrieben.
  • Geeignete Polyurethane sind auch in der DE-A-42 25 045 beschrieben, worauf hier in vollem Umfang Bezug genommen wird.
  • Die Säuregruppen der Carbonsäuregruppen-haltigen Polymere können teilweise oder vollständig neutralisiert sein. Dann liegt wenigstens ein Teil der Säuregruppen in deprotonierter Form vor, wobei die Gegenionen vorzugsweise ausgewählt sind unter Alkalimetallionen, wie Na+, K+, Ammoniumionen und deren organischen Derivaten etc.
  • Es ist vorteilhaft, wenn die erfindungsgemäße kosmetische Zusammensetzungen in einer Flasche oder Quetschflasche aufbewahrt und aus dieser heraus angewendet werden. Demzufolge sind auch Flaschen oder Quetschflaschen, welche eine erfindungsgemäße Zusammensetzung enthalten, erfindungsgemäß.
  • Seifen und Syndets
  • Erfindungsgemäße kosmetische Zusammensetzungen enthaltend Copolymerisat a) gegebenenfalls gemischt mit Oligomer b) sind beispielsweise Seifen und Syndets. Seife entsteht bei der Reaktion eines (Neutral-)Fettes oder daraus gewonnener Fettsäuren bzw. Fettsäuremethylester mit Natron- oder Kalilauge („Verseifung"). Seife ist in der Zusammensetzung chemisch das Alkalisalz von Fettsäuren. Als Neutralfette werden üblicherweise Rindertalg oder Palmöl im Gemisch mit Kokosöl oder Palmkernöl und – seltener – andere natürliche Öle oder Fette bei der Seifenherstellung eingesetzt, wobei die Qualität der Ausgangsfette stark mitbestimmend für die Güte der daraus gewonnenen Seife ist.
  • Wichtig für die Auswahl der Fettkomponenten ist die Verteilung der Kettenlängen der entsprechenden Fettsäuren. Gefragt sind normalerweise vor allem C12-C18-Fettsäuren. Da Lauratseife besonders gut schäumt, werden üblicherweise das laurinreiche Kokosöl oder das ähnlich aufgebaute Palmkernöl in höheren Anteilen (bis zu 50% des Neutralfettgemisches) für Seifen verwendet, bei denen viel Schaum bei der Benutzung erwünscht ist.
  • Die Natriumsalze der genannten Fettsäuregemische sind fest, die Kaliumsalze dagegen weich und pastös. Aus diesem Grunde wird als Laugenkomponente zur Herstellung fester Seifen vorzugsweise Natronlauge, für flüssig-pastöse Seifen vorzugsweise Kalilauge verwendet. Bei der Verseifung wird das Verhältnis von Lauge zu Fettsäure so gewählt, dass allenfalls ein minimaler Oberschuss an Lauge (max.0,05 %) im fertigen Seifenstück vorhanden ist.
  • Zu den Seifen werden üblicherweise Toilette-, Kern-, Transparent-, Luxus-, Creme-, Frische-/Deo-, Baby-, Hautschutz-, Abrasiv-, Schwimm- und Flüssigseifen sowie Waschpasten und Seifenblättchen gezählt.
  • Erfindungsgemäße Seifen enthalten neben Copolymerisat a) und gegebenenfalls Oligomer b) vorteilhafterweise weiterhin Antioxidantien, Komplexierungs- und Feuchthaltemittel sowie gegebenenfalls Duftstoffe, Farbstoffe und weitere, kosmetisch akzeptable Inhaltsstoffe.
  • Syndets (von engl. „synthetic detergent") sind Alternativen zu den herkömmlichen Seifen, die durch die gegenüber der Seife unterschiedliche Zusammensetzung gewisse Vorteile aufweist, wo Seife eher Nachteile besitzt.
  • Syndets enthalten als Schaum- und Reinigungskomponenten waschaktive Substanzen (Tenside), die durch chemische Synthese gewonnen werden. Seifen dagegen sind – wie beschrieben – Salze natürlich vorkommender Fettsäuren. Für Syndets werden hautmilde, biologisch gut abbaubare Tenside verwendet, vorzugsweise Fettsäure-Isethionate (Sodium Cocoyl Isethionate), Sulfobernsteinsäure-Halbester (Disodium Lauryl Sulfosuccinate), Alkylpolyglucoside (Decyl Glucoside), Amphotertenside (z.B. Sodium Cocoamphoacetate). Daneben spielen Monoglycerid-Sulfat und Ethercarboxy late vereinzelt eine Rolle. Fettalkoholsulfat (z.B. Sodium Lauryl Sulfate) hat seine einstige Bedeutung als Basistensid für Syndets weitestgehend verloren. Die Basistenside werden mit Gerüstsubstanzen, Rückfettungsmitteln und weiteren Zusätzen zu Formulierungen kombiniert, die sich nach üblicher Seifentechnologie verarbeiten lassen und Stücke ergeben, die sich möglichst „seifenähnlich", aber ohne die erwähnten Nachteile der Seife verhalten. Sie schäumen bei jeder Wasserhärte und besitzen eine sehr gute Reinigungskraft. Ihr pH-Wert ist in einem breiten Bereich (meist zwischen 4 und 8) einstellbar.
  • Aufgrund der intensiveren Reinigungs-/Entfettungskraft der Basistenside ist der Tensidanteil im Syndet gewöhnlich deutlich geringer, der Anteil an Überfettungsmitteln deutlich höher als in Seifen, ohne dass das Schaumvermögen herabgesetzt wird. Syndets werden speziell zur Reinigung der sensiblen Haut, der jugendlich-unreinen Haut und zur Gesichtswäsche empfohlen.
  • Neben den (seifenfreien) Syndets findet man auch das Marktsegment der Halb- oder Combars (abgeleitet von Combination bar). Dabei handelt es sich um Stücke, die sowohl Seife als auch Syndettenside enthalten. Combars enthalten 10 bis 80 Gew.-% Seife. Sie stellen für die Kriterien Kosten, Schaumvermögen, Hautgefühl und Verträglichkeit einen Kompromiss zwischen Seifen und Syndets dar. Beim Waschen mit einem Combar stellt sich, abhängig von seinem Seifenanteil, ein pH-Wert von ca. 7 bis 9 ein.
  • Hinsichtlich dem Fachmann bekannter, möglicher Rezepturen für Seifen und Syndets sei auf „Kosmetik und Hygiene von Kopf bis Fuß", Hrsg. W. Umbach, 3. Auflage, Wiley-VCH, 2004, S.112–122 verwiesen, worauf an dieser Stelle vollumfänglich Bezug genommen wird.
  • Duschbad- und Badeprodukte
  • Hinsichtlich spezieller Zusammensetzungen für Duschbad- und Badeprodukte oder Waschlotionen sei auf "Kosmetik und Hygiene von Kopf bis Fuß", Hrsg. W. Umbach, 3. Auflage, Wiley-VCH, 2004, S.128–134 verwiesen, worauf an dieser Stelle vollumfänglich Bezug genommen wird.
  • Die Erfindung wird durch Beispiele erläutert.
  • 1. Synthesevorschrift für Copolymerisation und partielle Veresterung
  • Alle Reaktionen wurden – wenn nicht anders angegeben – unter einer Atmosphäre von Stickstoff durchgeführt.
  • Die K-Werte der erfindungsgemäßen Copolymerisate wurden nach H. Fikentscher, Cellulose-Chemie, Band 13, 58–64 und 761–774 (1932) in Cyclohexanon bei 25°C und einer Polymerkonzentration von 2 Gew.-% bestimmt.
  • Herstellvorschrift
  • 206 g Polyisobuten mit einem Molekulargewicht Mn von 550 g/mol und 185 g Diisobuten (Gemisch aus 2,4,4-Trimethyl-1-penten und 2,4,4-Trimethyl-2-penten in einem Molverhältnis von 80:20, bestimmt durch 1H-NMR-Spektroskopie) wurden in einem 4-I-Kessel vorgelegt und im schwachen Stickstoffstrom auf 110°C erhitzt. Nach Erreichen der Temperatur von 110°C wurde innerhalb von 5 Stunden 184 g Maleinsäureanhydrid in flüssiger Form als Schmelze von ca. 70°C und innerhalb von 5,5 Stunden 5,5 g Tert.-Butylperoctoat, gelöst in 25 g Diisobuten (Gemisch aus 2,4,4-Trimethyl-1-penten und 2,4,4-Trimethyl-2-penten) zudosiert. Anschließend wurde eine Stunde bei 120°C nacherhitzt. Danach erhöhte man die Temperatur auf 160°C und destillierte nicht umgesetztes Diisobuten ab.
  • Die resultierende Reaktionsmischung wurde auf 90°C abgekühlt und gleichzeitig mit 2400 g Wasser und 140 g 50 Gew.-% wässriger Natronlauge versetzt. Anschließend wurde 4 Stunden bei 90°C gerührt und danach auf Raumtemperatur abgekühlt. Man erhielt Copolymerisat a) in Form einer wässrigen Dispersion, die einen pH-Wert von 6,5 und einen Wassergehalt von 80 Gew.-% aufwies. Der K-Wert betrug 14,7.
  • Mischen von Copolymerisat a) und Oligomer b)
  • Mischung 1:
  • Man stellte eine erste Mischung von Copolymerisat a) mit Oligomer b) her, indem man 90g Polyisobuten mit einem Molekulargewicht Mn von 550 g/mol mit 10g der oben beschriebenen Dispersion von Copolymerisat a) durch Verrühren in einem Becherglas vermischte.
  • Mischung 2:
  • Man stellte eine zweite Mischung von Copolymerisat a) mit Oligomer b) her, indem man 90g Polyisobuten mit einem Molekulargewicht Mn von 1000 g/mol mit 10g der oben beschriebenen Dispersion von Copolymerisat a) durch Verrühren in einem Becherglas vermischte.
  • Man erhielt so zwei für die erfindungsgemäße Verwendung geeignete Mischungen von Copolymerisat a) und Oligomer b).
  • Anwendungstechnische Beispiele:
  • Mit den oben beschriebenen Mischungen 1 und/oder 2 werden nachfolgend genannte Zusammensetzungen hergestellt. Die Mengenangaben sind jeweils in Gew.-%, sofern keine anderweitigen Angaben gemacht werden.
  • Die in den Tabellen angegebene Menge von Mischung 1 und Mischung 2 ist jeweils die Menge von Copolymerisat a), also ohne sonstige Komponenten. Die entsprechende Menge von Oligomer b) ist in den Tabellen nicht angegeben, lässt sich aber aus den Zusammensetzungen der Mischungen einfach berechnen.
  • Reinigungszusammensetzungen
    Figure 00570001
  • Reinigungszusammensetzungen
    Figure 00580001
  • Reinigungszusammensetzungen
    Figure 00580002

Claims (12)

  1. Verwendung von a) Copolymerisaten, erhältlich durch Copolymerisation von (A) mindestens einem ethylenisch ungesättigten Dicarbonsäureanhydrid, abgeleitet von mindestens einer Dicarbonsäure mit 4 bis 8 C-Atomen, (B) mindestens einem Oligomeren von verzweigtem oder unverzweigtem C3-C10-Alken, wobei mindestens ein Oligomer ein mittleres Molekulargewicht Mn im Bereich von 300 bis 5000 g/mol, bevorzugt bis zu 1200 g/mol aufweist oder durch Oligomerisierung von mindestens 3 Äquivalenten C3-C10-Alken erhältlich ist, (C) optional mindestens einem α-Olefin mit bis zu 24, bevorzugt mit bis zu 16 C-Atomen, (D) optional mindestens einem weiteren von (A), (B) und (C) verschiedenen ethylenisch ungesättigten Comonomer, gegebenenfalls Umsetzung mit (E) mindestens einer Verbindung der allgemeinen Formel Ia, Ib, Ic oder Id
    Figure 00590001
    wobei A1 C2-C20-Alkylen, gleich oder verschieden, R1 C1-C30-Alkyl, linear oder verzweigt, Phenyl oder Wasserstoff, n eine ganze Zahl von 1 bis 200, gegebenenfalls anschließendem Kontaktieren mit Wasser, gegebenenfalls gemischt mit b) mindestens einem Oligomeren von verzweigtem oder unverzweigtem C3-C10-Alken, wobei mindestens ein Oligomer ein mittleres Molekulargewicht Mn im Bereich von 300 bis 5000 g/mol, bevorzugt bis zu 1200 g/mol aufweist oder durch Oligomerisierung von mindestens 3 Äquivalenten C3-C10-Alken erhältlich ist, in Wasch-, Dusch- und Badepräparaten.
  2. Verwendung nach Anspruch 1, wobei Oligomer (B) ein Oligomer von verzweigtem C4-C10-Olefin ist.
  3. Verwendung nach einem der Ansprüche 1 oder 2, wobei Oligomer (B) Polyisobuten ist.
  4. Verwendung nach einem der Ansprüche 1 bis 3, wobei das mindestens eine ethylenisch ungesättigte Dicarbonsäureanhydrid (A) Maleinsäureanhydrid ist.
  5. Verwendung nach einem der Ansprüche 1 bis 4, wobei das mindestens eine α-Olefin (C) ausgewählt ist aus Isobuten, Diisobuten und 1-Dodecen.
  6. Verwendung nach einem der Ansprüche 1 bis 5, wobei das mindestens eine weitere ethylenisch ungesättigte Comonomer (D) gewählt wird aus ethylenisch ungesättigten C3-C8-Carbonsäuren und Carbonsäurederivaten der allgemeinen Formel II
    Figure 00600001
    Carbonsäureamiden der Formel III,
    Figure 00600002
    nicht-cyclischen Amiden der allgemeinen Formel IV a oder cyclischen Amiden der allgemeinen Formel IV b
    Figure 00610001
    C1-C20-Alkyl-Vinylethern, N-Vinyl-Derivaten von stickstoffhaltigen aromatischen Verbindungen, α,β-ungesättigten Nitrilen, alkoxylierten ungesättigten Ethern der allgemeinen Formel V
    Figure 00610002
    Estern oder Amiden der allgemeinen Formel VI
    Figure 00610003
    ungesättigten Estern der allgemeinen Formel VII
    Figure 00610004
    vinylaromatischen Verbindungen der Formel VIII
    Figure 00610005
    Phosphat-, Phosphonat-, Sulfat- und Sulfonatgruppen-haltigen Comonomeren, α-Olefinen mit 18 bis 40 C-Atomen, wobei in den allgemeinen Formeln die Variablen wie folgt definiert sind: R2, R3 gleich oder verschieden und gewählt aus Wasserstoff, unverzweigten oder verzweigten C1-C5-Alkyl und COOR4, R4 gleich oder verschieden und gewählt aus Wasserstoff oder C1-C22-Alkyl, verzweigt oder unverzweigt, R5 Wasserstoff oder Methyl, x eine ganze Zahl im Bereich von 2 bis 6, y eine ganze Zahl, ausgewählt aus 0 oder 1, a eine ganze Zahl im Bereich von 0 bis 6, R6, R7 gleich oder verschieden und gewählt aus Wasserstoff, unverzweigten oder verzweigten C1-C10-Alkyl, X Sauerstoff oder N-R4 R8 [A3-O]n-R4, R9 gleich oder verschieden und gewählt aus Wasserstoff, unverzweigten oder verzweigten C1-C10-Alkyl, R10,R11 unabhängig voneinander Wasserstoff, Methyl oder Ethyl, R12 ausgewählt aus Methyl und Ethyl, k eine ganze Zahl im Bereich von 0 bis 2, A2, A3 C2-C20-Alkylen A4 C1-C20-Alkylen oder eine Einfachbindung und die übrigen Variablen wie oben stehend definiert sind.
  7. Verwendung nach einem der Ansprüche 1 bis 6, wobei das Copolymerisat (a) erhältlich ist durch Copolymerisation von (A) im Bereich von 5 bis 60 Mol-% (A), (B) im Bereich von 1 bis 95 Mol-% (B), (C) im Bereich von 0 bis 60, bevorzugt 10 bis 55 Mol-% (C), (D) im Bereich von 0 bis 70 mol-%, jeweils bezogen auf Copolymerisat, wobei die Summe aus (A), (B), (C) und (D) 100 mol-% ergibt, und Umsetzung mit (E) im Bereich von 0 bis 50 mol-%, bezogen auf alle Carboxylgruppen des Copolymerisats.
  8. Verwendung nach einem der Ansprüche 1 bis 7, wobei das Gewichtsverhältnis Oligomer b) zu Copolymerisat a) im Bereich von 0,1:1 bis 100:1, bevorzugt von 0,5:1 bis 10:1 beträgt.
  9. Verwendung nach einem der Ansprüche 1 bis 8, wobei Oligomer (b) Polyisobuten ist.
  10. Kosmetische Zusammensetzung ausgewählt aus Wasch-, Dusch- und Badepräparaten, enthaltend ein Copolymerisat a), gegebenenfalls gemischt mit ei nem Oligomer b) wie in einem der Ansprüche 1 bis 9 definiert.
  11. Kosmetische Zusammensetzung nach Anspruch 10, enthaltend weiterhin wenigstens eine Öl- und/oder Fettkomponente.
  12. Kosmetische Zusammensetzung nach einem der Ansprüche 10 oder 11, enthaltend weiterhin wenigstens ein Tensid.
DE200510015634 2005-04-05 2005-04-05 Verwendung von Polyisobuten enthaltenden Copolymerisaten in Wasch-, Dusch- und Badepräparaten Withdrawn DE102005015634A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE200510015634 DE102005015634A1 (de) 2005-04-05 2005-04-05 Verwendung von Polyisobuten enthaltenden Copolymerisaten in Wasch-, Dusch- und Badepräparaten
PCT/EP2006/061332 WO2006106112A2 (de) 2005-04-05 2006-04-05 Verwendung von polyisobuten enthaltenden copolymerisaten in wasch-, dusch- und badepräparaten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510015634 DE102005015634A1 (de) 2005-04-05 2005-04-05 Verwendung von Polyisobuten enthaltenden Copolymerisaten in Wasch-, Dusch- und Badepräparaten

Publications (1)

Publication Number Publication Date
DE102005015634A1 true DE102005015634A1 (de) 2006-10-12

Family

ID=37026173

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200510015634 Withdrawn DE102005015634A1 (de) 2005-04-05 2005-04-05 Verwendung von Polyisobuten enthaltenden Copolymerisaten in Wasch-, Dusch- und Badepräparaten

Country Status (2)

Country Link
DE (1) DE102005015634A1 (de)
WO (1) WO2006106112A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007039029A1 (de) * 2007-08-17 2009-02-19 Beiersdorf Ag Rasierhilfsmittel III

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130190463A1 (en) * 2010-09-27 2013-07-25 Aquapharm Chemicals Pvt Limited Water soluble biodegradable polymer and process for preparation thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9714069D0 (en) * 1997-07-04 1997-09-10 Bp Chem Int Ltd Lubricating oil additives
FR2811565B1 (fr) * 2000-07-13 2003-01-17 Oreal Emulsion eau-dans-huile et ses utilisations notamment dans le domaine cosmetique
DE10059318B4 (de) * 2000-11-29 2005-02-10 Clariant Gmbh Kosmetische Mittel enthaltend Alk(en)ylbernsteinsäurederivate
DE10109845A1 (de) * 2001-03-01 2002-09-05 Basf Ag Emulgatoren, insbesondere auf Basis von Polyisobutylenaminen
DE10143948A1 (de) * 2001-09-07 2003-03-27 Basf Ag Polyisobuten als Austauschstoff für Wollfett in Fettungsmitteln für die Ledererzeugung, die Fettungsmittel, ihre Verwendung und die erzeugten Leder
EP1437125A1 (de) * 2003-01-03 2004-07-14 L'oreal Öl-in-Wasser Emulsionzusammensetzung enthaltend Wachse und deren kosmetische Verwendung
DE10321734A1 (de) * 2003-05-14 2004-12-02 Basf Ag Blockcopolymere auf Basis von Polyisobutensuccinanhydrid mit definierter Struktur und deren Einsatz als Emulgatoren
FR2841139B1 (fr) * 2003-05-27 2008-03-28 Oreal Composition cosmetique et/ou dermatologique contenant au moins un actif hydrophile sensible a l'oxydation stabilise par au moins un polymere amphiphile choisi parmi les oligomeres ou polymeres derives de polyolefines
AR045605A1 (es) * 2003-09-26 2005-11-02 Basf Ag Dispersiones acuosas de copolimerizados, su preparacion y uso
FR2873573B1 (fr) * 2004-08-02 2006-11-17 Oreal Emulsion eau-dans-huile comprenant une huile non-volatile non-siliconee, un tensioactif cationique, une polyolefine a partie's) polaire(s), et un alkylmonoglycoside ou alkylpolyglycoside

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007039029A1 (de) * 2007-08-17 2009-02-19 Beiersdorf Ag Rasierhilfsmittel III

Also Published As

Publication number Publication date
WO2006106112A3 (de) 2007-05-10
WO2006106112A2 (de) 2006-10-12

Similar Documents

Publication Publication Date Title
EP1868690A2 (de) Verwendung von polyisobuten enthaltenden copolymerisaten in kosmetischen zusammensetzungen
EP1843742A1 (de) Verwendung von wasser-in-wasser-emulsionspolymerisaten als verdicker in kosmetischen zubereitungen
JP5308155B2 (ja) 両性コポリマー、その製造、及び使用
US8173583B2 (en) Use of cationic copolymers of amine-containing acrylates and N-vinylimidazolium salts in hair cosmetic preparations
WO2007014939A1 (de) Verwendung von blockcopolymeren auf basis von polyisobutensuccinanhydrid in kosmetischen zubereitungen
US20110158929A1 (en) Method for producing cross-linked acrylic acid polymers
WO2009007339A2 (de) Kosmetische mittel auf basis von vinylimidazol-polymeren
WO2005095479A1 (de) Diallylamine enthaltende polymerisate
DE102005015632A1 (de) Verwendung von Polyisobuten enthaltenden Copolymerisaten in Lichtschutzmitteln
WO2007017441A1 (de) Vernetzte methylmethacrylat-copolymere für kosmetische anwendungen
EP1919565A1 (de) Anionische, ampholytische copolymere für low-voc-zusammensetzungen
US20130236397A1 (en) Hair setting compositions based on t-butyl acrylate and hydroxyalkyl methacrylate
DE102004051647A1 (de) Kosmetische Zubereitungen enthaltend Ethylmethacrylat-Copolymere
DE102005015634A1 (de) Verwendung von Polyisobuten enthaltenden Copolymerisaten in Wasch-, Dusch- und Badepräparaten
EP1915124B1 (de) Festigerpolymere auf basis von polyesteracrylaten
DE102005015633A1 (de) Verwendung von Polysobuten enthaltenden Copolymerisaten in Shampoos und Haarpflegemitteln
RU2481099C2 (ru) Применение катионных сополимеров на основе содержащих аминогруппы акрилатов и солей n-винилимидазолия в косметических препаратах для волос

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee