DE102004062429A1 - Wirkstoffgemische zur Restrukturierung keratinischer Fasern - Google Patents

Wirkstoffgemische zur Restrukturierung keratinischer Fasern Download PDF

Info

Publication number
DE102004062429A1
DE102004062429A1 DE200410062429 DE102004062429A DE102004062429A1 DE 102004062429 A1 DE102004062429 A1 DE 102004062429A1 DE 200410062429 DE200410062429 DE 200410062429 DE 102004062429 A DE102004062429 A DE 102004062429A DE 102004062429 A1 DE102004062429 A1 DE 102004062429A1
Authority
DE
Germany
Prior art keywords
acid
und
group
derivatives
active ingredient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200410062429
Other languages
English (en)
Inventor
Jens Delowsky
Elisabeth Dr. Poppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE200410062429 priority Critical patent/DE102004062429A1/de
Priority to EP05809984A priority patent/EP1827369A1/de
Priority to PCT/EP2005/012420 priority patent/WO2006066674A1/de
Publication of DE102004062429A1 publication Critical patent/DE102004062429A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/362Polycarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/04Preparations for permanent waving or straightening the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • A61Q5/065Preparations for temporary colouring the hair, e.g. direct dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Cosmetics (AREA)

Abstract

Durch die Verwendung einer Wirkstoffkombination in kosmetischen Mitteln zur Restrukturierung keratinischer Fasern, dadurch gekennzeichnet, dass diese Wirkstoffkombination mindestens zwei Wirkstoffe aus mindestens zwei unterschiedlichen Wirkstoffgruppen enthält, wobei die Wirkstoffgruppen ausgewählt sind aus der Gruppe der Proteinhydrolysate und/oder deren Derivaten (A), der Gruppe der kurzkettigen Carbonsäuren (B) und/oder der Gruppe der Polyhydroxyverbindungen (C), wird die Restrukturierung von Fasern, insbesondere von keratinischen Fasern, deutlich verbessert.

Description

  • Die Erfindung betrifft die Verwendung einer Wirkstoffkombination in kosmetischen Mitteln zur Restrukturierung keratinischer Fasern, dadurch gekennzeichnet, dass diese Wirkstoffkombination mindestens zwei Wirkstoffe aus mindestens zwei unterschiedlichen Wirkstoffgruppen enthält, wobei die Wirkstoffgruppen ausgewählt sind aus der Gruppe der Proteinhydrolysate und/oder deren Derivaten (A), der Gruppe der kurzkettigen Carbonsäuren (B) und/oder der Gruppe der Gruppe der Polyhydroxyverbindungen (C).
  • Die kosmetische Behandlung von Haut und Haaren ist ein wichtiger Bestandteil der menschlichen Körperpflege. So wird menschliches Haar heute in vielfältiger Weise mit haarkosmetischen Zubereitungen behandelt. Dazu gehören etwa die Reinigung der Haare mit Shampoos, die Pflege und Regeneration mit Spülungen und Kuren sowie das Bleichen, Färben und Verformen der Haare mit Färbemitteln, Tönungsmitteln, Wellmitteln und Stylingpräparaten. Dabei spielen Mittel zur Veränderung oder Nuancierung der Farbe des Kopfhaares eine herausragende Rolle. Sieht man von den Blondiermitteln, die eine oxidative Aufhellung der Haare durch Abbau der natürlichen Haarfarbstoffe bewirken, ab, so sind im Bereich der Haarfärbung im wesentlichen drei Typen von Haarfärbemitteln von Bedeutung:
    Für dauerhafte, intensive Färbungen mit entsprechenden Echtheitseigenschaften werden sogenannte Oxidationsfärbemittel verwendet. Solche Färbemittel enthalten üblicherweise Oxidationsfarbstoffvorprodukte, sogenannte Entwicklerkomponenten und Kupplerkomponenten. Die Entwicklerkomponenten bilden unter dem Einfluß von Oxidationsmitteln oder von Luftsauerstoff untereinander oder unter Kupplung mit einer oder mehreren Kupplerkomponenten die eigentlichen Farbstoffe aus. Die Oxidationsfärbemittel zeichnen sich zwar durch hervorragende, lang anhaltende Färbeergebnisse aus. Für natürlich wirkende Färbungen muß aber üblicherweise eine Mischung aus einer größeren Zahl von Oxidationsfarbstoffvorprodukten eingesetzt werden; in vielen Fällen werden weiterhin direktziehende Farbstoffe zur Nuancierung verwendet. Weisen die im Verlauf der Farbausbildung gebildeten bzw. direkt eingesetzten Farbstoffe deutlich unterschiedliche Echtheiten (z. B. UV-Stabilität, Schweißechtheit, Waschechtheit etc.) auf, so kann es mit der Zeit zu einer erkennbaren und daher unerwünschten Farbverschiebung kommen. Dieses Phänomen tritt verstärkt auf, wenn die Frisur Haare oder Haarzonen unterschiedlichen Schädigungsgrades aufweist. Ein Beispiel dafür sind lange Haare, bei denen die lange Zeit allen möglichen Umwelteinflüssen ausgesetzten Haarspitzen in der Regel deutlich stärker geschädigt sind als die relativ frisch nachgewachsenen Haarzonen.
  • Für temporäre Färbungen werden üblicherweise Färbe- oder Tönungsmittel verwendet, die als färbende Komponente sogenannte Direktzieher enthalten. Hierbei handelt es sich um Farbstoffmoleküle, die direkt auf das Haar aufziehen und keinen oxidativen Prozeß zur Ausbildung der Farbe benötigen. Zu diesen Farbstoffen gehört beispielsweise das bereits aus dem Altertum zur Färbung von Körper und Haaren bekannte Henna. Diese Färbungen sind gegen Shampoonieren in der Regel deutlich empfindlicher als die oxidativen Färbungen, so daß dann sehr viel schneller eine vielfach unerwünschte Nuancenverschiebung oder gar eine sichtbare "Entfärbung" eintritt.
  • Schließlich hat in jüngster Zeit ein neuartiges Färbeverfahren große Beachtung gefunden. Bei diesem Verfahren werden Vorstufen des natürlichen Haarfarbstoffes Melanin auf das Haar aufgebracht; diese bilden dann im Rahmen oxidativer Prozesse im Haar naturanaloge Farbstoffe aus. Ein solches Verfahren mit 5,6-Dihydroxyindolin als Farbstoffvorprodukt wurde in der EP-B1-530 229 beschrieben. Bei, insbesondere mehrfacher, Anwendung von Mitteln mit 5,6-Dihydroxyindolin ist es möglich, Menschen mit ergrauten Haaren die natürliche Haarfarbe wiederzugeben. Die Ausfärbung kann dabei mit Luftsauerstoff als einzigem Oxidationsmittel erfolgen, so daß auf keine weiteren Oxidationsmittel zurückgegriffen werden muß. Bei Personen mit ursprünglich mittelblondem bis braunem Haar kann das Indolin als alleinige Farbstoffvorstufe eingesetzt werden. Für die Anwendung bei Personen mit ursprünglich roter und insbesondere dunkler bis schwarzer Haarfarbe können dagegen befriedigende Ergebnisse häufig nur durch Mitverwendung weiterer Farbstoffkomponenten, insbesondere spezieller Oxidationsfarbstoffvorprodukte, erzielt werden.
  • Nicht zuletzt durch die starke Beanspruchung der Haare, beispielsweise durch das Färben oder Dauerwellen als auch durch die Reinigung der Haare mit Shampoos und durch Umweltbelastungen, nimmt die Bedeutung von Pflegeprodukten mit möglichst langanhaltender Wirkung zu. Derartige Pflegemittel beeinflussen die natürliche Struktur und die Eigenschaften der Haare. So können anschließend an solche Behandlungen beispielsweise die Naß- und Trockenkämmbarkeit des Haares, der Halt und die Fülle des Haares optimiert sein oder die Haare vor einer erhöhten Splißrate geschützt sein.
  • Es ist daher seit langem üblich, die Haare einer speziellen Nachbehandlung zu unterziehen. Dabei werden, üblicherweise in Form einer Spülung, die Haare mit speziellen Wirkstoffen, beispielsweise quaternären Ammoniumsalzen oder speziellen Polymeren, behandelt. Durch diese Behandlung werden je nach Formulierung die Kämmbarkeit, der Halt und die Fülle der Haare verbessert und die Splißrate verringert.
  • Weiterhin wurden in jüngster Zeit sogenannte Kombinationspräparate entwickelt, um den Aufwand der üblichen mehrstufigen Verfahren, insbesondere bei der direkten Anwendung durch Verbraucher, zu verringern.
  • Diese Präparate enthalten neben den üblichen Komponenten, beispielsweise zur Reinigung der Haare, zusätzlich Wirkstoffe, die früher den Haarnachbehandlungsmitteln vorbehalten waren. Der Konsument spart somit einen Anwendungsschritt; gleichzeitig wird der Verpackungsaufwand verringert, da ein Produkt weniger gebraucht wird.
  • Die zur Verfügung stehenden Wirkstoffe sowohl für separate Nachbehandlungsmittel als auch für Kombinationspräparate wirken im allgemeinen bevorzugt an der Haaroberfläche. So sind Haarpflegemittel bekannt, welche dem Haar Glanz, Halt, Fülle, bessere Naß- oder Trockenkämmbarkeiten verleihen oder dem Spliß vorbeugen. Genauso bedeutend wie das äußere Erscheinungsbild der Haare ist jedoch der innere strukturelle Zusammenhalt der Haarfasern, der insbesondere bei oxidativen und reduktiven Prozessen wie Färbung und Dauerwellen stark beeinflußt werden kann.
  • Es besteht daher weiterhin ein Bedarf nach Wirkstoffen bzw. Wirkstoffkombinationen für kosmetische Mittel mit guten pflegenden Eigenschaften und guter biologischer Abbaubarkeit. Insbesondere in farbstoff- und/oder elektrolythaltigen Formulierungen besteht Bedarf an zusätzlichen pflegenden Wirkstoffen, die sich problemlos in bekannte Formulierungen einarbeiten lassen.
  • Überraschenderweise wurde nun gefunden, daß durch die Verwendung einer Wirkstoffkombination in kosmetischen Mitteln zur Restrukturierung kaeratinischer Fasern, dadurch gekennzeichnet, dass diese Wirkstoffkombination mindestens zwei Wirkstoffe aus mindestens zwei unterschiedlichen Wirkstoffgruppen enthält, wobei die Wirkstoffgruppen ausgewählt sind aus der Gruppe der Proteinhydrolysate und/oder deren Derivaten (A), der Gruppe der kurzkettigen Carbonsäuren (B) und/oder der Gruppe der Gruppe der Polyhydroxyverbindungen (C), die innere Struktur von Fasern, insbesondere keratinischer Fasern, signifikant restrukturiert werden kann. Unter Strukturstärkung, also Restrukturierung im Sinne der Erfindung, ist eine Verringerung der durch verschiedenartigste Einflüsse entstandenen Schädigungen keratinischer Fasern zu verstehen. Hierbei spielt beispielsweise die Wiederherstellung der natürlichen Festigkeit eine wesentliche Rolle. Restrukturierte Fasern zeichnen sich beispielsweise durch einen verbesserten Glanz, durch einen verbesserten Griff und durch eine leichtere Kämmbarkeit aus. Zusätzlich weisen sie eine optimierte Festigkeit und Elastizität auf. Eine erfolgreiche Restrukturierung läßt sich physikalisch als Schmelzpunktserhöhung im Vergleich zur geschädigten Faser nachweisen. Je höher der Schmelzpunkt des Haares ist, desto fester ist die Struktur der Faser. Eine genaue Beschreibung der Bestimmung des Schmelzbereiches von Haaren findet sich in der DE 196 173 95 A1 .
  • Proteinhydrolysate sind bereits seit langem bekannt und werden vielfach in kosmetischen Mitteln eingesetzt. Hierzu sei auf die einschlägige Fachliteratur verwiesen, beispielsweise in A. Domsch, "Die kosmetischen Präparate", Band II, Seite 205 und folgende, Verlag für die chemische Industrie, H. Ziolkowsky. Es ist jedoch kein Hinweis auf eine Restrukturierung, welche sich durch eine erhöhte Festigkeit und Elastizität auszeichnet, zu finden. Die Restrukturierung mit Hilfe von Proteinhydrolysaten wird in der WO 02/45666 A2 beschrieben. Es findet sich jedoch nicht der geringste Hinweis auf die erfindungsgemäße Wirkstoffkombination.
  • Carbonsäuren sind bereits seit langem bekannt und werden vielfach in kosmetischen Mitteln zur Einstellung des pH-Wertes oder in Peelingmitteln als Wirkstoff zur Reinigung der Haut eingesetzt. Weiterhin werden beispielsweise Salicylsäure oder Benzoesäure zur Stabilisierung kosmetischer Mittel gegen mikrobiellen Befall eingesetzt. In der DE 197 20 366 A1 werden Haarreinigungsmittel beschrieben, welche Fruchtsäuren enthalten und den Glanz des Haares verbessern. Es findet sich jedoch kein Hinweis auf eine Restrukturierung keratinischer Fasern. Die DE 195 25 821 A1 offenbart Haarbehandlungsmittel, welche Benzoesäure oder deren physiologisch verträgliche Salze enthalten. Die Benzoesäure wird gemäß der Lehre dieser Schrift jedoch zur Erzielung einer stabilen Viskosität bei der Herstellung einer Emulsion zur Haarbehandlung auf kaltem Wege verwendet. Hinweise auf eine Verwendung zur Restrukturierung der Haare finden sich nicht. Die DE 31 01 011 A1 offenbart Haarbehandlungsmittel enthaltend aliphatische organische Säuren als haarkonditionierenden Bestandteil. Weiterhin wird die Verwendung organischer Säuren in der DE 36 02 746 A1 sowie der DE 41 13 675 A1 zur Haarbehandlung offenbart. Beide Schriften lehren die Verwendung dieser Mittel für schnell nachfettendes Haar. Es fehlt jeglicher Hinweis auf eine Restrukturierung keratinischer Fasern. Schließlich offenbart die DE 197 28 832 A1 Mittel zur Erhöhung des Glanzes von Haaren enthaltend freie Carbonsäuren mit einem Schmelzpunkt zwischen –5°C und +42°C. Auch in dieser Schrift findet sich nicht der geringste Hinweis auf eine Restrukturierung keratinischer Fasern.
  • Die WO 02/32383 beschreibt zwar kurzkettige Carbonsäuren zur Restrukturierung keratinischer Fasern. Es findet sich jedoch nicht der geringste Hinweis auf die erfindungsgemäße Wirkungstoffkombination.
  • Polyhydroxyverbindungen sind bereits seit langem bekannt und werden in den unterschiedlichsten technischen Anwendungen eingesetzt. So ist beispielsweise die Verwendung von Glucose als Strukturant zur Erhöhung der Trockenkämmbarkeit von feinem Haar bekannt (Manuskript von H. Hensen und J. Kahre zur Fortbildungsveranstaltung der deutschen Gesellschaft für angewandte und wissenschaftliche Kosmetik 1998 in Aachen). Weitere Polyhydroxyverbindungen wie Cellulosederivate werden zur Reduzierung der Naß- und Trockenkämmarbeiten eingesetzt. Zur Einstellung von Viskositäten in kosmetischen Mitteln werden beispielsweise Xanthane verwendet. Diole und Triole wie Glykol, Glycerin, Propandiole etc. werden als Feuchtigkeitsspender (siehe hierzu A. Domsch, "Die kosmetischen Präparate", 4. Auflage, 1992, Band II, Seite 8 folgende, Verlag für die chemische Industrie, H. Ziolkowsky, Augsburg) oder Penetrationshilfsmittel vielfach verwendet. In der EP 0 287 876 B1 wird eine Wirkstoffkombination aus Panthenol und Mono- oder Disacchariden als Haar regenerierende Zubereitung offenbart. Hinweise auf eine Restrukturierung des Haares im Sinne der vorliegenden Erfindung finden sich jedoch in keiner der aufgeführten Schriften. Die DE 100 61 420 A1 beschreibt die Restrukturierung mit Hilfe von Polyhydroxyverbindungen. Es findet sich jedoch nicht der geringste Hinweis auf die vorliegende erfindungsgemäße Wirkstoffkombination.
  • Ein erster Gegenstand der vorliegenden Erfindung sind daher kosmetische Mittel enthaltend eine Wirkstoffkombination zur Restrukturierung keratinischer Fasern, dadurch gekennzeichnet, dass diese Wirkstoffkombination mindestens zwei Wirkstoffe aus mindestens zwei unterschiedlichen Wirkstoffgruppen enthält, wobei die Wirkstoffgruppen ausgewählt sind aus der Gruppe der Proteinhydrolysate und/oder deren Derivaten (A), der Gruppe der kurzkettigen Carbonsäuren (B) und/oder der Gruppe der Gruppe der Polyhydroxyverbindungen (C).
  • Unter keratinischen Fasern werden erfindungsgemäß Pelze, Wolle, Federn und insbesondere menschliche Haare verstanden.
  • Die erste Gruppe der erfindungsgemäß zu verwendenden Verbindungen sind die Proteinhydrolysate (A). Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Unter dem Begriff Proteinhydrolysate werden erfindungsgemäß auch Totalhydrolysate sowie einzelne Aminosäuren und deren Derivate sowie Gemische aus verschiedenen Aminosäuren verstanden. Weiterhin werden erfindungsgemäß aus Aminosäuren und Aminosäurederivaten aufgebaute Polymere unter dem Begriff Proteinhydrolysate verstanden. Zu letzteren sind beispielsweise Polyalanin, Polyasparagin, Polyserin etc. zu zählen. Weitere Beispiele für erfindungsgemäß einsetzbare Verbindungen sind L-Alanyl-L-prolin, Polyglycin, Glycyl-L-glutamin oder D/L-Methionin-S-Methylsulfoniumchlorid. Selbstverständlich können erfindungsgemäß auch β-Aminosäuren und deren Derivate wie β-Alanin, Anthranilsäure oder Hippursäure eingesetzt werden. Das Molgewicht der erfindungsgemäß einsetzbaren Proteinhydrolysate liegt zwischen 75, dem Molgewicht für Glycin, und 200000, bevorzugt beträgt das Molgewicht 75 bis 50000 und ganz besonders bevorzugt 75 bis 20000 Dalton. Selbstverständlich umfasst die vorliegende erfindungsgemäße Lehre auch, dass im Falle der Aminosäuren diese in Form von Derivaten, wie beispielsweise der N-Acylderivate, der N-Alkyl oder der O-Ester vorliegen können. Im Falle der N-acylderivate ist die Acylgruppe eine Formylrest, ein Acetylrest, ein Propionylrest, ein Butyrylrest oder der Rest einer geradkettigen, verzweigten oder unverzweigten, gesättigten oder ungesättigten Fettsäure mit einer Kettenlänge von 8 bis 30C-Atomen. Im Falle einer N-Alkylderivate kann die Alkylgruppe linear, verzweigt, gesättigt oder ungesättigt sein und hat eine C-Kettenlänge von 1 bis 30C-Atomen. Im Falle der O-Ester sind die der Veresterung zugrunde liegenden Alkohole Methanol, Ethanol, Isopropanol, Propanol, Butanol, Isobutanol, Pentanol, Neopentanol, Isopentanol, Hexanole, Heptanole, Capryl- oder Capronalkohol, Octanole, Nonanole, Decanole, Dodecanole, Lauranole, insbesondere gesättigte oder ungesättigte, lineare oder verzweigte Alkohole mit einer C-Kettenlänge von 1 bis 30C-Atomen. Selbstverständlich können die Aminosäuren sowohl am N-Atom als auch am O-Atom gleichzeitig derivatisiert sein. Selbstverständlich können die Aminosäuren auch in Salzform, insbesondere als Mischsalze zusammen mit Genusssäuren verwendet werden. Dies kann erfindungsgemäß bevorzugt sein.
  • Als Beispiele für Aminosäuren und deren Derivaten als erfindungsgemäße Proteinhydrolysate werden genannt: Alanin, Arginin, Cystathionin, Cystein, Cystin, Cystinsäure, Glycin, Histidin, Homocystein, Homoserin, Isoleucin, Lanthionin, Leucin, Lysin, Methionin, Norleucin, Norvalin, Ornithin, Phenylalanin, Prolin, Hydroxyprolin, Sarcosin, Serin, Threonin, Tryptophan, Thyronin, Tyrosin, Valin, Asparaginsäure, Asparagin, Glutaminsäure und Glutamin. Bevorzugte Aminosäuren sind Alanin, Arginin, Glycin, Histidin, Lanthionin, Leucin, Lysin, Prolin, Hydroxyprolin Serin und Asparagin. Ganz besonders bevorzugt werden verwendet Alanin, Glycin, Histidin, Lysin, Serin und Arginin. Am bevorzugtesten werden Glycin, Histidin, Lysin und Serin verwendet.
  • Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen oder marinen oder synthetischen Ursprungs eingesetzt werden.
  • Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Solche Produkte werden beispielsweise unter den Warenzeichen Dehylan® (Cognis), Promois® (Interorgana), Collapuron® (Cognis), Nutrilan® (Cognis), Gelita-Sol® (Deutsche Gelatine Fabriken Stoess & Co), Lexein® (Inolex) und Kerasol® (Croda) vertrieben.
  • Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Solche Produkte sind beispielsweise unter den Warenzeichen Gluadin® (Cognis), DiaMin® (Diamalt), Lexein® (Inolex), Hydrosoy® (Croda), Hydrolupin® (Croda), Hydrosesame® (Croda), Hydrotritium® (Croda) und Crotein® (Croda) erhältlich.
  • Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte. Solche Produkte werden beispielsweise unter den Bezeichnungen Lamepon® (Cognis), Lexein® (Inolex), Crolastin® (Croda) oder Crotein® (Croda) vertrieben.
  • Selbstverständlich umfaßt die erfindungsgemäße Lehre alle isomeren Formen, wie cis-trans-Isomere, Diastereomere und chirale Isomere.
  • Erfindungsgemäß ist es auch möglich, eine Mischung aus mehreren Proteinhydrolysaten (A) einzusetzen.
  • Die erfindungsgemäßen Proteinhydrolysate (A) sind in den Mitteln in Konzentrationen von 0,01 Gew.-% bis zu 20 Gew.-%, vorzugsweise von 0,05 Gew.-% bis zu 15 Gew.-% und ganz besonders bevorzugt in Mengen von 0,05 Gew.-% bis zu 5 Gew.-% enthalten.
  • Unter kurzkettigen Carbonsäuren und deren Derivaten (B) im Sinne der Erfindung werden Carbonsäuren verstanden, welche gesättigt oder ungesättigt und/oder geradkettig oder verzweigt oder cyclisch und/oder aromatisch und/oder heterocyclisch sein können und ein Molekulargewicht kleiner 750 aufweisen. Bevorzugt im Sinne der Erfindung können gesättigte oder ungesättigte geradkettigte oder verzweigte Carbonsäuren mit einer Kettenlänge von 1 bis zu 16C-Atomen in der Kette sein, ganz besonders bevorzugt sind solche mit einer Kettenlänge von 1 bis zu 12C-Atomen in der Kette.
  • Die kurzkettigen Carbonsäuren im Sinne der Erfindung können ein, zwei, drei oder mehr Carboxygruppen aufweisen. Bevorzugt im Sinne der Erfindung sind Carbonsäuren mit mehreren Carboxygruppen, insbesondere Di- und Tricarbonsäuren. Die Carboxygruppen können ganz oder teilweise als Ester, Säureanhydrid, Lacton, Amid, Imidsäure, Lactam, Lactim, Dicarboximid, Carbohydrazid, Hydrazon, Hydroxam, Hydroxim, Amidin, Amidoxim, Nitril, Phosphon- oder Phosphatester vorliegen. Die erfindungsgemäßen Carbonsäuren können selbstverständlich entlang der Kohlenstoffkette oder des Ringgerüstes substituiert sein. Zu den Substituenten der erfindungsgemäßen Carbonsäuren sind beispielsweise zu zählen C1-C8-Alkyl-, C2-C8-Alkenyl-, Aryl-, Aralkyl- und Aralkenyl-, Hydroxymethyl-, C2-C8-Hydroxyalkyl-, C2-C8-Hydroxyalkenyl-, Aminomethyl-, C2-C8-Aminoalkyl-, Cyano-, Formyl-, Oxo-, Thioxo-, Hydroxy-, Mercapto-, Amino-, Carboxy- oder Iminogruppen. Bevorzugte Substituenten sind C1-C8-Alkyl-, Hydroxymethyl-, Hydroxy-, Amino- und Carboxygruppen. Besonders bevorzugt sind Substituenten in α-Stellung. Ganz besonders bevorzugte Substituenten sind Hydroxy-, Alkoxy- und Aminogruppen, wobei die Aminofunktion gegebenenfalls durch Alkyl-, Aryl-, Aralkyl- und/oder Alkenylreste weiter substituiert sein kann. Weiterhin sind ebenfalls bevorzugte Carbonsäurederivate die Phosphon- und Phosphatester.
  • Als Beispiele für erfindungsgemäße Wirkstoffe seien genannt Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Pivalinsäure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Glycerinsäure, Glyoxylsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Propiolsäure, Crotonsäure, Isocrotonsäure, Elaidinsäure, Maleinsäure, Fumarsäure, Muconsäure, Citraconsäure, Mesaconsäure, Camphersäure, Benzoesäure, o,m,p-Phthalsäure, Naphthoesäure, Toluoylsäure, Hydratropasäure, Atropasäure, Zimtsäure, Isonicotinsäure, Nicotinsäure, Bicarbaminsäure, 4,4'-Dicyano-6,6'-binicotinsäure, 8-Carbamoyloctansäure, 1,2,4-Pentantricarbonsäure, 2-Pyrrolcarbonsäure, 1,2,4,6,7-Napthahnpentaessigsäure, Malonaldehydsäure, 4-Hydroxy-phthalamidsäure, 1-Pyrazolcarbonsäure, Gallussäure oder Propantricarbonsäure, eine Dicarbonsäure ausgewählt aus der Gruppe, die gebildet wird durch Verbindungen der allgemeinen Formel (I),
    Figure 00100001
    in der Z steht für eine lineare oder verzweigte Alkyl- oder Alkenylgruppe mit 4 bis 12 Kohlenstoffatomen, n für eine Zahl von 4 bis 12 sowie eine der beiden Gruppen X und Y für eine COOH-Gruppe und die andere für Wasserstoff oder einen Methyl- oder Ethylrest, Dicarbonsäuren der allgemeinen Formel (I), die zusätzlich noch 1 bis 3 Methyl- oder Ethylsubstituenten am Cyclohexenring tragen sowie Dicarbonsäuren, die aus den Dicarbonsäuren gemäß Formel (I) formal durch Anlagerung eines Moleküls Wasser an die Doppelbindung im Cyclohexenring entstehen.
  • Dicarbonsäuren der Formel (I) sind in der Literatur bekannt.
  • Ein Herstellungsverfahren ist beispielsweise der US-Patentschrift 3,753,968 zu entnehmen. Die deutsche Patentschrift 22 50 055 offenbart die Verwendung dieser Dicarbonsäuren in flüssigen Seifenmassen. Aus der deutschen Offenlegungsschrift 28 33 291 sind deodorierende Mittel bekannt, die Zink- oder Magnesiumsalze dieser Dicarbonsäuren enthalten. Schließlich sind aus der deutschen Offenlegungsschrift 35 03 618 Mittel zum Waschen und Spülen der Haare bekannt, bei denen durch Zusatz dieser Dicarbonsäuren eine merklich verbesserte haarkosmetische Wirkung der im Mittel enthaltenen wasserlöslichen ionischen Polymeren erhalten wird. Schließlich sind aus der deutschen Offenlegungsschrift 197 54 053 Mittel zur Haarbehandlung bekannt, welche pflegende Effekte aufweisen.
  • Keiner dieser Druckschriften ist aber der geringste Hinweis auf die erfindungsgemäße Wirkstoffkombination und die überraschenden Effekte in bezog auf die restrukturierende Wirkung zu entnehmen.
  • Die Dicarbonsäuren der Formel (I) können beispielsweise durch Umsetzung von mehrfach ungesättigten Dicarbonsäuren mit ungesättigten Monocarbonsäuren in Form einer Diels-Alder-Cyclisierung hergestellt werden. Üblicherweise wird man von einer mehrfach ungesättigten Fettsäure als Dicarbonsäurekomponente ausgehen. Bevorzugt ist die aus natürlichen Fetten und Ölen zugängliche Linolsäure. Als Monocarbonsäurekomponente sind insbesondere Acrylsäure, aber auch z. B. Methacrylsäure und Crotonsäure bevorzugt. Üblicherweise entstehen bei Reaktionen nach Diels-Alder Isomerengemische, bei denen eine Komponente im Überschuß vorliegt. Diese Isomerengemische können erfindungsgemäß ebenso wie die reinen Verbindungen eingesetzt werden.
  • Es sind solche Dicarbonsäuren der Formel (I) bevorzugt, bei denen R1 steht für eine lineare oder methylverzweigte, gesättigte Alkylgruppe mit 4 bis 8 Kohlenstoffatomen und n für eine Zahl von 6 bis 10.
  • Erfindungsgemäß einsetzbar neben den bevorzugten Dicarbonsäuren gemäß Formel (I) sind auch solche Dicarbonsäuren, die sich von den Verbindungen gemäß Formel (I) durch 1 bis 3 Methyl- oder Ethyl-Substituenten am Cyclohexylring unterscheiden oder aus diesen Verbindungen formal durch Anlagerung von einem Molekül Wasser an die Doppelbildung des Cyclohexenrings gebildet werden.
  • Als erfindungsgemäß besonders wirksam hat sich die Dicarbonsäure(-mischung) erwiesen, die durch Umsetzung von Linolsäure mit Acrylsäure entsteht. Es handelt sich dabei um eine Mischung aus 5- und 6-Carboxy-4-hexyl-2-cyclohexen-1-octansäure. Solche Verbindungen sind kommerziell unter den Bezeichnungen Westvaco Diacid® 1550 und Westvaco Diacid® 1595 (Hersteller: Westvaco) erhältlich.
  • Neben den zuvor beispielhaft aufgeführten erfindungsgemäßen kurzkettigen Carbonsäuren selbst können auch deren physiologisch verträgliche Salze erfindungsgemäß eingesetzt werden. Beispiele für solche Salze sind die Alkali-, Erdalkali-, Zinksalze sowie Ammoniumsalze, worunter im Rahmen der vorliegenden Anmeldung auch die Mono-, Di- und Trimethyl-, -ethyl- und -hydroxyethyl-Ammoniumsalze zu verstehen sind. Daneben können jedoch auch mit alkalisch reagierenden Aminosäuren, wie beispielsweise Arginin, Lysin, Ornithin und Histidin, neutralisierte Säuren eingesetzt werden. Die Natrium-, Kalium-, Ammonium- sowie Argininsalze sind bevorzugte Salze. Weiterhin kann es aus Formulierungsgründen bevorzugt sein, die Carbonsäure als Wirkstoff (B) aus den wasserlöslichen Vertretern, insbesondere den wasserlöslichen Salzen, auszuwählen.
  • Zu den erfindungsgemäß ganz besonders bevorzugten Wirkstoffen (B) zählen die Hydroxycarbonsäuren und hierbei wiederum insbesondere die Dihydroxy-, Trihydroxy- und Polyhydroxycarbonsäuren sowie die Dihydroxy-, Trihydroxy- und Polyhydroxy- di-, tri- und polycarbonsäuren.
  • Beispiele für besonders geeignete Hydroxycarbonsäuren sind Glycolsäure, Glycerinsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Selbstverständlich umfasst die erfindungsgemäße Lehre auch, dass diese Säuren in Form von Mischsalzen beispielsweise mit Aminosäuren, verwendet werden. Dies kann erfindungsgemäß bevorzugt sein.
  • Hierbei hat sich gezeigt, daß neben den Hydroxycarbonsäuren auch die Hydroxycarbonsäureester sowie die Mischungen aus Hydroxycarbonsäuren und deren Estern als auch polymere Hydroxycarbonsäuren und deren Ester ganz besonders bevorzugt sein können. Bevorzugte Hydroxycarbonsäureester sind beispielsweise Vollester der Glycerinsäure, Glycolsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Weitere grundsätzlich geeigneten Hydroxycarbonsäureester sind Ester der β-Hydroxypropionsäure, der Tartronsäure, der D-Gluconsäure, der Zuckersäure, der Schleimsäure oder der Glucuronsäure. Als Alkoholkomponente dieser Ester eignen sich primäre, lineare oder verzweigte aliphatische Alkohole mit 8-22C-Atomen, also z. B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von C12-C15-Fettalkoholen besonders bevorzugt. Ester dieses Typs sind im Handel erhältlich, z. B. unter dem Warenzeichen Cosmacol® der EniChem, Augusta Industriale. Besonders bevorzugte Polyhydroxypolycarbonsäuren sind Polymilchsäure und Polyweinsäure sowie deren Ester.
  • Selbstverständlich umfaßt die erfindungsgemäße Lehre alle isomeren Formen, wie cis-trans-Isomere, Diastereomere und chirale Isomere.
  • Erfindungsgemäß ist es auch möglich eine Mischung aus mehreren Wirkstoffen (B) einzusetzen.
  • Die erfindungsgemäßen Wirkstoffe (B) sind in den Mitteln in Konzentrationen von 0,01 Gew.-% bis zu 20 Gew.-%, vorzugsweise von 0,05 Gew.-% bis zu 15 Gew.-% und ganz besonders bevorzugt in Mengen von 0,1 Gew.-% bis zu 5 Gew.-% enthalten.
  • Unter Polyhydroxyverbindungen (C) im Sinne der Erfindung werden alle Substanzen verstanden, welche die Definition in Römpp's Lexikon der Chemie, Version 2.0 der CD-ROM Ausgabe von 1999, Verlag Georg Thieme, erfüllen. Demnach sind unter Polyhydroxyverbindungen organische Verbindungen mit mindestens zwei Hydroxygruppen zu verstehen. Insbesondere sind im Sinne der vorliegenden Erfindung hierunter zu verstehen:
    • – Polyole mit mindestens zwei Hydroxygruppen, wie beispielsweise Trimethylolpropan,
    • – Kohlenhydrate, Zuckeralkohole und Zucker sowie deren Salze,
    • – insbesondere Monosaccharide, Disaccharide, Trisaccharide und Oligosaccharide, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen, sowie geschützt durch übliche und in der Literatur bekannte -OH- und NH-Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können,
    • – Aminodesoxyzucker, Desoxyzucker, Thiozucker, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen, sowie geschützt durch übliche und in der Literatur bekannte -OH- und NH- Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können, Ganz besonders bevorzugt sind hierunter Monosaccharide mit 3 bis 8C-Atomen, wie beispielsweise Triosen, Tetrosen, Pentosen, Hexosen, Heptosen und Octosen, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen sowie geschützt durch übliche und in der Literatur bekannte -OH- und -NH- Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können, Weiterhin sind ganz besonders bevorzugt Oligosaccharide mit bis zu 50 Monomereinheiten, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen sowie geschützt durch übliche und in der Literatur bekannte -OH- und -NHSchutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können.
  • Beispielhaft für die erfindungsgemäßen Polyole seien erwähnt Sorbit, Inosit, Mannit, Tetrite, Pentite, Hexite, Threit, Erythrit, Adonit, Arabit, Xylit, Dulcit, Erythrose, Threose, Arabinose, Ribose, Xylose, Lyxose, Glucose, Galactose, Mannose, Allose, Altrose, Gulose, Idose, Talose, Fructose, Sorbose, Psicose, Tegatose, Desoxyribose, Glucosamin, Galaktosamin, Rhamnose, Digitoxose, Thioglucose, Saccharose, Lactose, Trehalose, Maltose, Cellobiose, Melibiose, Gestiobiose, Rutinose, Raffinose sowie Cellotriose. Weiterhin sei auf die einschlägige Fachliteratur wie beispielsweise Beyer-Walter, Lehrbuch der organischen Chemie, S. Hirzel Verlag Stuttgart, 19. Auflage, Abschnitt III, Seiten 393 und folgende verwiesen.
  • Bevorzugte Polyhydroxyverbindungen sind Sorbit, Inosit, Mannit, Threit, Erythreit, Erythrose, Threose, Arabinose, Ribose, Xylose, Glucose, Galactose, Mannose, Allose, Fructose, Sorbose, Desoxyribose, Glucosamin, Galaktosamin, Saccharose, Lactose, Trehalose, Maltose und Cellobiose. Besonders bevorzugt werden Glucose, Galactose, Mannose, Fructose, Desoxyribose, Glucosamin, Saccharose, Lactose, Maltose und Cellobiose verwendet. Ganz besonders bevorzugt ist jedoch die Verwendung von Glucose, Galactose, Mannose, Fructose, Saccharose, Lactose, Maltose oder Cellobiose.
  • Selbstverständlich umfaßt die erfindungsgemäße Lehre alle isomeren Formen, wie cis-trans-Isomere, Diastereomere, Epimere, Anomere und chirale Isomere.
  • Erfindungsgemäß ist es auch möglich, eine Mischung aus mehreren Wirkstoffen (C) einzusetzen.
  • Die erfindungsgemäßen Wirkstoffe (C) sind in den Mitteln in Konzentrationen von 0,01 Gew.-% bis zu 20 Gew.-%, vorzugsweise von 0,05 Gew.-% bis zu 15 Gew.-% und ganz besonders bevorzugt in Mengen von 0,1 Gew.-% bis zu 10 Gew.-% enthalten.
  • Die erfindungsgemäße Wirkstoffkombination enthält mindestens jeweils einen Wirkstoff aus einer der zuvor beschriebenen Gruppen der Proteinhydrolysate (A), der kurzkettigen Carbonsäuren (B) und/oder der Polyhydroxyverbindungen (C). Wenngleich alle daraus resultierenden binären als auch die ternäre Wirkstoffkombination erfindungsgemäß wirksam sind, so kann es erfindungsgemäß besonders vorteilhaft sein, die bei den jeweiligen Gruppen beschriebenen bevorzugten Komponenten in der erfindungsgemäßen Wirkstoffkombination zu verwenden. So werden beispielsweise ganz besonders bevorzugte Wirkstoffkombinationen erhalten, wenn aus der Gruppe der Proteinhydrolysate (A) Glycin, Histidin, Lysin, Serin und dessen Derivate wie bereits zuvor beschrieben verwendet werden. Aus der Gruppe der kurzkettigen Carbonsäuren (B) werden in diesen ganz besonders bevorzugten Wirkstoffkombinationen mindestens Glycolsäure, Glycerinsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure verwendet. Aus der Gruppe der Polyhydroxyverbindungen (C) werden in diesen bevorzugten Wirkstoffkombinationen Glucose, Galactose, Mannose, Fructose, Saccharose, Lactose, Maltose oder Cellobiose verwendet. Bevorzugteste Wirkstoffkombinationen enthalten aus der Gruppe (A) Glycin und/oder Serin, aus der Gruppe (B) Glycerinsäure, Milchsäure, Weinsäure oder Citronensäure oder deren Mischungen und/oder aus der Gruppe (C) Glucose, Fructose oder Saccharose oder deren Mischungen.
  • Gemäß einer ersten Ausführungsform der erfindungsgemäßen Lehre kann es bevorzugt sein, die restrukturierende Wirkstoffkombination direkt in Färbe- oder Tönungsmittel einzuarbeiten, das bedeutet, die erfindungsgemäße Wirkstoffkombination in Kombination mit Farbstoffen und/oder Farbstoffvorprodukten einzusetzen.
  • Als solche können Oxidationsfarbstoffvorprodukte vom Entwickler- und Kuppler-Typ, natürliche und synthetische direktziehende Farbstoffe und Vorstufen naturanaloger Farbstoffe, wie Indol- und Indolin-Derivate, sowie Mischungen von Vertretern einer oder mehrerer dieser Gruppen eingesetzt werden.
  • Als Oxidationsfarbstoffvorprodukte vom Entwickler-Typ werden üblicherweise primäre aromatische Amine mit einer weiteren, in para- oder ortho-Position befindlichen, freien oder substituierten Hydroxy- oder Aminogruppe, Diaminopyridinderivate, heterocyclische Hydrazone, 4-Aminopyrazolderivate sowie 2,4,5,6-Tetraaminopyrimidin und dessen Derivate eingesetzt. Geeignete Entwicklerkomponenten sind beispielsweise p-Phenylendiamin, p-Toluylendiamin, p-Aminophenol, o-Aminophenol, 1-(2'-Hydroxyethyl)-2,5-diaminobenzol, N,N-Bis-(2-hydroxy-ethyl)-p-phenylendiamin, 2-(2,5-Diaminophenoxy)-ethanol, 4-Amino-3-methylphenol, 2,4,5,6-Tetraaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin, 2,4-Dihydroxy-5,6-diaminopyrimidin, 2-Dimethylamino-4,5,6-triaminopyrimidin, 2-Hydroxymethylamino-4- amino-phenol, Bis-(4-aminophenyl)amin, 4-Amino-3-fluorphenol, 2-Aminomethyl-4-aminophenol, 2-Hydroxymethyl-4-aminophenol, 4-Amino-2-((diethylamino)-methyl)-phenol, Bis-(2-hydroxy-5-aminophenyl)-methan, 1,4-Bis-(4-aminophenyl)-diazacycloheptan, 1,3-Bis(N(2-hydroxyethyl)-N(4-aminophenylamino))-2-propanol, 4-Amino-2-(2-hydroxyethoxy)-phenol, 1,10-Bis-(2,5-diaminophenyl)-1,4,7,10-tetraoxadecan sowie 4,5-Diaminopyrazol-Derivate nach EP 0 740 741 bzw. WO 94/08970 wie z. B. 4,5-Diamino-1-(2'-hydroxyethyl)-pyrazol. Besonders vorteilhafte Entwicklerkomponenten sind p-Phenylendiamin, p-Toluylendiamin, p-Aminophenol, 1-(2'-Hydroxyethyl)-2,5-diaminobenzol, 4-Amino-3-methylphenol, 2-Aminomethyl-4-aminophenol, 2,4,5,6-Tetraaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin.
  • Als Oxidationsfarbstoffvorprodukte vom Kuppler-Typ werden in der Regel m-Phenylendiaminderivate, Naphthole, Resorcin und Resorcinderivate, Pyrazolone und m-Aminophenolderivate verwendet. Beispiele für solche Kupplerkomponenten sind m-Aminophenol und dessen Derivate wie beispielsweise 5-Amino-2-methylphenol, 5-(3-Hydroxypropylamino)-2-methylphenol, 3-Amino-2-chlor-6-methylphenol, 2-Hydroxy-4-aminophenoxyethanol, 2,6-Dimethyl-3-aminophenol, 3-Trifluoroacetylamino-2-chlor-6-methylphenol, 5-Amino-4-chlor-2-methylphenol, 5-Amino-4-methoxy-2-methylphenol, 5-(2'-Hydroxyethyl)-amino-2-methylphenol, 3-(Diethylamino)-phenol, N-Cyclopentyl-3-aminophenol, 1,3-Dihydroxy-5-(methylamino)-benzol, 3-(Ethylamino)-4-methylphenol und 2,4-Dichlor-3-aminophenol, o-Aminophenol und dessen Derivate, m-Diaminobenzol und dessen Derivate wie beispielsweise 2,4-Diaminophenoxyethanol, 1,3-Bis-(2,4-diaminophenoxy)-propan, 1-Methoxy-2-amino-4-(2'-hydroxyethylamino)benzol, 1,3-Bis-(2,4-diaminophenyl)-propan, 2,6-Bis-(2-hydroxyethylamino)-1-methylbenzol und 1-Amino-3-bis-(2'-hydroxyethyl)-aminopenzol, o-Diaminobenzol und dessen Derivate wie beispielsweise 3,4-Diaminobenzoesäure und 2,3-Diamino-1-methylpenzol, Di- beziehungsweise Trihydroxybenzolderivate wie beispielsweise Resorcin, Resorcin-monomethylether, 2-Methylresorcin, 5-Methylresorcin, 2,5-Dimethylresorcin, 2-Chlorresorcin, 4-Chlorresorcin, Pyrogallol und 1,2,4-Trihydroxybenzol, Pyridinderivate wie beispielsweise 2,6-Dihydroxypyridin, 2-Amino-3-hydroxypyridin, 2-Amino-5-chlor-3-hydroxypyridin, 3-Amino-2-methylamino-6-methoxypyridin, 2,6-Dihydroxy-3,4- dimethylpyridin, 2,6-Dihydroxy-4-methylpyridin, 2,6-Diaminopyridin, 2,3-Diamino-6-methoxypyridin und 3,5-Diamino-2,6-dimethoxypyridin, Naphthalinderivate wie beispielsweise 1-Naphthol, 2-Methyl-1-naphthol, 2-Hydroxymethyl-1-naphthol, 2-Hydroxyethyl-1-naphthol, 1,5-Dihydroxynaphthalin, 1,6-Dihydroxynaphthalin, 1,7-Dihydroxynaphthalin, 1,8-Dihydroxynaphthalin, 2,7-Dihydroxynaphthalin und 2,3-Dihydroxynaphthalin, Morpholinderivate wie beispielsweise 6-Hydroxybenzomorpholin und 6-Amino-benzomorpholin, Chinoxalinderivate wie beispielsweise 6-Methyl-1,2,3,4-tetrahydrochinoxalin, Pyrazolderivate wie beispielsweise 1-Phenyl-3-methylpyrazol-5-on, Indolderivate wie beispielsweise 4-Hydroxyindol, 6-Hydroxyindol und 7-Hydroxyindol, Methylendioxybenzolderivate wie beispielsweise 1-Hydroxy-3,4-methylendioxybenzol, 1-Amino-3,4-methylendioxybenzol und 1-(2'-Hydroxyethyl)-amino-3,4-methylendioxybenzol.
  • Besonders geeignete Kupplerkomponenten sind 1-Naphthol, 1,5-, 2,7- und 1,7-Dihydroxynaphthalin, 3-Aminophenol, 5-Amino-2-methylphenol, 2-Amino-3-hydroxypyridin, Resorcin, 4-Chlorresorcin, 2-Chlor-6-methyl-3-aminophenol, 2-Methylresorcin, 5-Methylresorcin, 2,5-Dimethylresorcin und 2,6-Dihydroxy-3,4-dimethylpyridin.
  • Direktziehende Farbstoffe sind üblicherweise Nitrophenylendiamine, Nitroaminophenole, Azofarbstoffe, Anthrachinone oder Indophenole. Besonders geeignete direktziehende Farbstoffe sind die unter den internationalen Bezeichnungen bzw. Handelsnamen HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, Basic Yellow 57, Disperse Orange 3, HC Red 3, HC Red BN, Basic Red 76, HC Blue 2, HC Blue 12, Disperse Blue 3, Basic Blue 99, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9, Basic Brown 16 und Basic Brown 17 bekannten Verbindungen sowie 1,4-Bis-(β-hydroxyethyl)-amino-2-nitrobenzol, 4-Amino-2-nitrodiphenylamin-2'-carbonsäure, 6-Nitro-1,2,3,4-tetrahydrochinoxalin, Hydroxyethyl-2-nitro-toluidin, Pikraminsäure, 2-Amino-6-chloro-4-nitrophenol, 4-Ethylamino-3-nitrobenzoesäure und 2-Chloro-6-ethylamino-1-hydroxy-4-nitrobenzol.
  • In der Natur vorkommende direktziehende Farbstoffe sind beispielsweise Henna rot, Henna neutral, Kamillenblüte, Sandelholz, schwarzen Tee, Faulbaumrinde, Salbei, Blauholz, Krappwurzel, Catechu, Sedre und Alkannawurzel enthalten.
  • Es ist nicht erforderlich, daß die Oxidationsfarbstoffvorprodukte oder die direktziehenden Farbstoffe jeweils einheitliche Verbindungen darstellen. Vielmehr können in den erfindungsgemäßen Haarfärbemitteln, bedingt durch die Herstellungsverfahren für die einzelnen Farbstoffe, in untergeordneten Mengen noch weitere Komponenten enthalten sein, soweit diese nicht das Färbeergebnis nachteilig beeinflussen oder aus anderen Gründen, z. B. toxikologischen, ausgeschlossen werden müssen.
  • Bezüglich der in den erfindungsgemäßen Haarfärbe- und -tönungsmitteln einsetzbaren Farbstoffe wird weiterhin ausdrücklich auf die Monographie Ch. Zviak, The Science of Hair Care, Kapitel 7 (Seiten 248–250; direktziehende Farbstoffe) sowie Kapitel 8, Seiten 264–267; Oxidationsfarbstoffvorprodukte), erschienen als Band 7 der Reihe "Dermatology" (Hrg.: Ch., Culnan und H. Maibach), Verlag Marcel Dekker Inc., New York, Basel, 1986, sowie das "Europäische Inventar der Kosmetik-Rohstoffe", herausgegeben von der Europäischen Gemeinschaft, erhältlich in Diskettenform vom Bundesverband Deutscher Industrie- und Handelsunternehmen für Arzneimittel, Reformwaren und Körperpflegemittel e.V., Mannheim, Bezug genommen.
  • Als Vorstufen naturanaloger Farbstoffe werden beispielsweise Indole und Indoline sowie deren physiologisch verträgliche Salze verwendet. Bevorzugt werden solche Indole und Indoline eingesetzt, die mindestens eine Hydroxy- oder Aminogruppe, bevorzugt als Substituent am Sechsring, aufweisen. Diese Gruppen können weitere Substituenten tragen, z. B. in Form einer Veretherung oder Veresterung der Hydroxygruppe oder eine Alkylierung der Aminogruppe. Besonders vorteilhafte Eigenschaften haben 5,6-Dihydroxyindolin, N-Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxyindolin, N-Butyl-5,6-dihydroxyindolin, 5,6-Dihydroxyindolin-2-carbonsäure, 6-Hydroxyindolin, 6-Aminoindolin und 4-Aminoindolin sowie 5,6-Dihydroxyindol, N-Methyl-5,6-dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl- 5,6-dihydroxyindol, N-Butyl-5,6-dihydroxyindol, 5,6-Dihydroxyindol-2-carbonsäure, 6-Hydroxyindol, 6-Aminoindol und 4-Aminoindol.
  • Besonders hervorzuheben sind innerhalb dieser Gruppe N-Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxyindolin, N-Butyl-5,6-dihydroxyindolin und insbesondere das 5,6-Dihydroxyindolin sowie N-Methyl-5,6-dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6-dihydroxyindol sowie insbesondere das 5,6-Dihydroxyindol.
  • Die Indolin- und Indol-Derivate in den im Rahmen des erfindungsgemäßen Verfahrens eingesetzten Färbemitteln sowohl als freie Basen als auch in Form ihrer physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, z. B. der Hydrochloride, der Sulfate und Hydrobromide, eingesetzt werden.
  • Bei der Verwendung von Farbstoff-Vorstufen vom Indolin- oder Indol-Typ kann es bevorzugt sein, diese zusammen mit mindestens einer Aminosäure und/oder mindestens einem Oligopeptid einzusetzen. Bevorzugte Aminosäuren sind Aminocarbonsäuren, insbesondere α-Aminocarbonsäuren und ω-Aminocarbonsäuren. Unter den α-Aminocarbonsäuren sind wiederum Arginin, Lysin, Ornithin und Histidin besonders bevorzugt. Eine ganz besonders bevorzugte Aminosäure ist Arginin, insbesondere in freier Form, aber auch als Hydrochlorid eingesetzt.
  • Sowohl die Oxidationsfarbstoffvorprodukte als auch die direktziehenden Farbstoffe und die Vorstufen naturanaloger Farbstoffe sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,1 bis 5 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Haarfärbemittel, insbesondere wenn die Ausfärbung oxidativ, sei es mit Luftsauerstoff oder anderen Oxidationsmitteln wie Wasserstoffperoxid, erfolgt, werden üblicherweise schwach sauer bis alkalisch, d. h. auf pH-Werte im Bereich von etwa 5 bis 11, eingestellt. Zu diesem Zweck enthalten die Färbemittel Alkalisierungsmittel, üblicherweise Alkali- oder Erdalkalihydroxide, Ammoniak oder organische Amine. Bevorzugte Alkalisierungsmittel sind Monoethanolamin, Monoisopropanolamin, 2-Amino-2-methylpropanol, 2-Amino-2-methyl-1,3-propandiol, 2-Amino-2-ethyl-1,3-propandiol, 2-Amino-2-methylbutanol und Triethanolamin sowie Alkali- und Erdalkalimetallhydroxide.
  • Insbesondere Monoethanolamin, Triethanolamin sowie 2-Amino-2-methyl-propanol und 2-Amino-2-methyl-1,3-propandiol sind im Rahmen dieser Gruppe bevorzugt. Auch die Verwendung von ω-Aminosäuren wie ω-Aminocapronsäure als Alkalisierungsmittel ist möglich.
  • Erfolgt die Ausbildung der eigentlichen Haarfarben im Rahmen eines oxidativen Prozesses, so können übliche Oxidationsmittel, wie insbesondere Wasserstoffperoxid oder dessen Anlagerungsprodukte an Harnstoff, Melamin oder Natriumborat verwendet werden. Die Oxidation mit Luftsauerstoff als einzigem Oxidationsmittel kann allerdings bevorzugt sein. Weiterhin ist es möglich, die Oxidation mit Hilfe von Enzymen durchzuführen, wobei die Enzyme sowohl zur Erzeugung von oxidierenden Per-Verbindungen eingesetzt werden als auch zur Verstärkung der Wirkung einer geringen Menge vorhandener Oxidationsmittel, oder auch Enzyme verwendet werden, die Elektronen aus geeigneten Entwickler-komponenten (Reduktionsmittel) auf Luftsauerstoff übertragen. Bevorzugt sind dabei Oxidasen wie Tyrosinase, Ascorbatoxidase und Laccase aber auch Glucoseoxidase, Uricase oder Pyruvatoxidase. Weiterhin sei das Vorgehen genannt, die Wirkung geringer Mengen (z. B. 1% und weniger, bezogen auf das gesamte Mittel) Wasserstoffperoxid durch Peroxidasen zu verstärken.
  • Zweckmäßigerweise wird die Zubereitung des Oxidationsmittels dann unmittelbar vor dem Färben der Haare mit der Zubereitung mit den Farbstoffvorprodukten vermischt. Das dabei entstehende gebrauchsfertige Haarfärbepräparat sollte bevorzugt einen pH-Wert im Bereich von 6 bis 10 aufweisen. Besonders bevorzugt ist die Anwendung der Haarfärbemittel in einem schwach alkalischen Milieu. Die Anwendungstemperaturen können in einem Bereich zwischen 15 und 40°C, bevorzugt bei der Temperatur der Kopfhaut, liegen. Nach einer Einwirkungszeit von ca. 5 bis 45, insbesondere 15 bis 30, Minuten wird das Haarfärbemittel durch Ausspülen von dem zu färbenden Haar entfernt. Das Nachwaschen mit einem Shampoo entfällt, wenn ein stark tensidhaltiger Träger, z. B. ein Färbeshampoo, verwendet wurde.
  • Insbesondere bei schwer färbbarem Haar kann die Zubereitung mit den Farbstoffvorprodukten ohne vorherige Vermischung mit der Oxidationskomponente auf das Haar aufgebracht werden. Nach einer Einwirkdauer von 20 bis 30 Minuten wird dann – gegebenenfalls nach einer Zwischenspülung – die Oxidationskomponente aufgebracht. Nach einer weiteren Einwirkdauer von 10 bis 20 Minuten wird dann gespült und gewünschtenfalls nachshampooniert. Bei dieser Ausführungsform wird gemäß einer ersten Variante, bei der das vorherige Aufbringen der Farbstoffvorprodukte eine bessere Penetration in das Haar bewirken soll, das entsprechende Mittel auf einen pH-Wert von etwa 4 bis 7 eingestellt. Gemäß einer zweiten Variante wird zunächst eine Luftoxidation angestrebt, wobei das aufgebrachte Mittel bevorzugt einen pH-Wert von 7 bis 10 aufweist. Bei der anschließenden beschleunigten Nachoxidation kann die Verwendung von sauer eingestellten Peroxidisulfat-Lösungen als Oxidationsmittel bevorzugt sein.
  • Weiterhin kann die Ausbildung der Färbung dadurch unterstützt und gesteigert werden, daß dem Mittel bestimmte Metallionen zugesetzt werden. Solche Metallionen sind beispielsweise Zn2+, Cu2+, Fe2+, Fe3+, Mn2+, Mn4+, Li+, Mg2+, Ca2+ und Al3+. Besonders geeignet sind dabei Zn2+, Cu2+ und Mn2+. Die Metallionen können prinzipiell in der Form eines beliebigen, physiologisch verträglichen Salzes eingesetzt werden. Bevorzugte Salze sind die Acetate, Sulfate, Halogenide, Lactate und Tartrate. Durch Verwendung dieser Metallsalze kann sowohl die Ausbildung der Färbung beschleunigt als auch die Farbnuance gezielt beeinflußt werden.
  • Weitere erfindungsgemäß ganz besonders bevorzugte Ausgestaltungsformen führen zu Verbraucherprodukten wie Haarreinigungs- und Haarpflegemitteln. In diesen weiteren bevorzugten Ausführungsformen der Erfindung kann die Wirkung der erfindungsgemäßen Wirkstoffkombination durch Fettstoffe (D) weiter gesteigert werden. Unter Fettstoffen sind zu verstehen Fettsäuren, Fettalkohole, natürliche und synthetische Wachse, welche sowohl in fester Form als auch flüssig in wäßriger Dispersion vorliegen können, und natürliche und synthetische kosmetische Ölkomponenten zu verstehen.
  • Als Fettsäuren (D1) können eingesetzt werden lineare und/oder verzweigte, gesättigte und/oder ungesättigte Fettsäuren mit 6–30 Kohlenstoffatomen. Bevorzugt sind Fettsäuren mit 10–22 Kohlenstoffatomen. Hierunter wären beispielsweise zu nennen die Isostearinsäuren, wie die Handelsprodukte Emersol® 871 und Emersol® 875, und Isopalmitinsäuren wie das Handelsprodukt Edenor® IP 95, sowie alle weiteren unter den Handelsbezeichnungen Edenor® (Cognis) vertriebenen Fettsäuren. Weitere typische Beispiele für solche Fettsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Besonders bevorzugt sind üblicherweise die Fettsäureschnitte, welche aus Cocosöl oder Palmöl erhältlich sind; insbesondere bevorzugt ist in der Regel der Einsatz von Stearinsäure.
  • Die Einsatzmenge beträgt dabei 0,1–15 Gew.-%, bezogen auf das gesamte Mittel. Bevorzugt beträgt die Menge 0,5–10 Gew.-%, wobei ganz besonders vorteilhaft Mengen von 1–5 Gew.-% sein können.
  • Als Fettalkohole (D2) können eingesetzt werden gesättigte, ein- oder mehrfach ungesättigte, verzweigte oder unverzweigte Fettalkohole mit C6-C30-, bevorzugt C10-C22-und ganz besonders bevorzugt C12-C22-Kohlenstoffatomen. Einsetzbar im Sinne der Erfindung sind beispielsweise Decanol, Octanol, Octenol, Dodecenol, Decenol, Octadienol, Dodecadienol, Decadienol, Oleylalkohol, Erucaalkohol, Ricinolalkohol, Stearylalkohol, Isostearylalkohol, Cetylalkohol, Laurylalkohol, Myristylalkohol, Arachidylalkohol, Caprylalkohol, Caprinalkohol, Linoleylalkohol, Linolenylalkohol und Behenylalkohol, sowie deren Guerbetalkohole, wobei diese Aufzählung beispielhaften und nicht limitierenden Charakter haben soll. Die Fettalkohole stammen jedoch von bevorzugt natürlichen Fettsäuren ab, wobei üblicherweise von einer Gewinnung aus den Estern der Fettsäuren durch Reduktion ausgegangen werden kann. Erfindungsgemäß einsetzbar sind ebenfalls solche Fettalkoholschnitte, die durch Reduktion natürlich vorkommender Triglyceride wie Rindertalg, Palmöl, Erdnußöl, Rüböl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl und Leinöl oder aus deren Umesterungsprodukten mit entsprechenden Alkoholen entstehenden Fettsäureestern erzeugt werden, und somit ein Gemisch von unterschiedlichen Fettalkoholen darstellen. Solche Substanzen sind beispielsweise unter den Bezeichnungen Stenol®, z.B. Stenol® 1618 oder Lanette®, z.B. Lanette® O oder Lorol®, z.B. Lorol® C8, Lorol® C14, Lorol® C18, Lorol® C8–18, HD-Ocenol®, Crodacol®, z.B. Crodacol® CS, Novol®, Eutanol® G, Guerbitol® 16, Guerbitol® 18, Guerbitol® 20, Isofol® 12, Isofol® 16, Isofol® 24, Isofol® 36, Isocarb® 12, Isocarb® 16 oder Isocarb® 24 käuflich zu erwerben. Selbstverständlich können erfindungsgemäß auch Wollwachsalkohole, wie sie beispielsweise unter den Bezeichnungen Corona®, White Swan®, Coronet® oder Fluilan® käuflich zu erwerben sind, eingesetzt werden. Die Fettalkohole werden in Mengen von 0,1–30 Gew.-%, bezogen auf die gesamte Zubereitung, bevorzugt in Mengen von 0,1–20 Gew.-% eingesetzt.
  • Als natürliche oder synthetische Wachse (D3) können erfindungsgemäß eingesetzt werden feste Paraffine oder Isoparaffine, Carnaubawachse, Bienenwachse, Candelillawachse, Ozokerite, Ceresin, Walrat, Sonnenblumenwachs, Fruchtwachse wie beispielsweise Apfelwachs oder Citruswachs, Microwachse aus PE- oder PP. Derartige Wachse sind beispielsweise erhältlich über die Fa. Kahl & Co., Trittau.
  • Die Einsatzmenge beträgt 0,1–50 Gew.-% bezogen auf das gesamte Mittel, bevorzugt 0,1–20 Gew.-% und besonders bevorzugt 0,1–15 Gew.-% bezogen auf das gesamte Mittel.
  • Zu den natürlichen und synthetischen kosmetischen Ölkörpern (D4), welche die Wirkung des erfindungsgemäßen Wirkstoffes steigern können, sind beispielsweise zu zählen:
    • – pflanzliche Öle. Beispiele für solche Öle sind Sonnenblumenöl, Olivenöl, Sojaöl, Rapsöl, Mandelöl, Jojobaöl, Orangenöl, Weizenkeimöl, Pfirsichkernöl und die flüssigen Anteile des Kokosöls. Geeignet sind aber auch andere Triglyceridöle wie die flüssigen Anteile des Rindertalgs sowie synthetische Triglyceridöle.
    • – flüssige Paraffinöle, Isoparaffinöle und synthetische Kohlenwasserstoffe sowie Di-n-alkylether mit insgesamt zwischen 12 bis 36C-Atomen, insbesondere 12 bis 24C-tomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n- undecylether, Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl-n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert-butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso-Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether. Die als Handelsprodukte erhältlichen Verbindungen 1,3-Di-(2-ethyl-hexyl)-cyclohexan (Cetiol® S) und Di-n-octylether (Cetiol® OE) können bevorzugt sein.
    • – Esteröle. Unter Esterölen sind zu verstehen die Ester von C6-C30-Fettsäuren mit C2-C30-Fettalkoholen. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24C-Atomen. Beispiele für eingesetzte Fettsäurenanteile in den Estern sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Erfindungsgemäß besonders bevorzugt sind Isopropylmyristat (Rilanit® IPM), Isononansäure-C16-18-alkylester (Cetiol® SN, 2-Ethylhexylpalmitat (Cegesoft® 24), Stearinsäure-2-ethylhexylester (Cetiol® 868), Cetyloleat, Glycerintricaprylat, Kokosfettalkohol-caprinat/-caprylat (Cetiol® LC), n-Butylstearat, Oleylerucat (Cetiol® J 600), Isopropylpalmitat (Rilanit® IPP), Oleyl Oleate (Cetiol, Laurinsäurehexylester (Cetiol® A), Di-n-butyladipat (Cetiol® B), Myristylmyristat (Cetiol® MM), Cetearyl Isononanoate (Cetiol® SN, Ölsäuredecylester (Cetiol® V).
    • – Dicarbonsäureester wie Di-n-butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2-ethylhexyl)-succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di(2-ethylhexanoat), Propylenglykol-di-isostearat, Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylglykoldicaprylat,
    • – symmetrische, unsymmetrische oder cyclische Ester der Kohlensäure mit Fettalkoholen, beispielsweise beschrieben in der DE-OS 197 56 454, Glycerincarbonat oder Dicaprylylcarbonat (Cetiol® CC),
    • – Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin,
    • – Fettsäurepartialglyceride, das sind Monoglyceride, Diglyceride und deren technische Gemische. Bei der Verwendung technischer Produkte können herstellungsbedingt noch geringe Mengen Triglyceride enthalten sein. Die Partialglyceride folgen vorzugsweise der Formel (D4-I),
      Figure 00260001
      in der R1, R2 und R3 unabhängig voneinander für Wasserstoff oder für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18, Kohlenstoffatomen stehen mit der Maßgabe, daß mindestens eine dieser Gruppen für einen Acylrest und mindestens eine dieser Gruppen für Wasserstoff steht. Die Summe (m+n+q) steht für 0 oder Zahlen von 1 bis 100, vorzugsweise für 0 oder 5 bis 25. Bevorzugt steht R1 für einen Acylrest und R2 und R3 für Wasserstoff und die Summe (m+n+q) ist 0. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden Ölsäuremonoglyceride eingesetzt.
  • Die Einsatzmenge der natürlichen und synthetischen kosmetischen Ölkörper in den erfindungsgemäß verwendeten Mitteln beträgt üblicherweise 0,1–30 Gew.-%, bezogen auf das gesamte Mittel, bevorzugt 0,1–20 Gew.-%, und insbesondere 0,1–15 Gew.-%.
  • Die Gesamtmenge an Öl- und Fettkomponenten in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,5–75 Gew.-%, bezogen auf das gesamte Mittel. Mengen von 0,5–35 Gew.-% sind erfindungsgemäß bevorzugt.
  • Ebenfalls als besonders vorteilhaft zur Formulierung von Zusammensetzungen mit stärker reinigendem Charakter hat sich die Verwendung der Wirkstoffkombination mit Tensiden (E) erwiesen. In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäß verwendeten Mittel daher Tenside. Unter dem Begriff Tenside werden grenzflächenaktive Substanzen, die an Ober- und Grenzflächen Adsorptionsschichten bilden oder in Volumenphasen zu Mizellkolloiden oder lyotropen Mesophasen aggregieren können, verstanden. Man unterscheidet Aniontenside bestehend aus einem hydrophoben Rest und einer negativ geladenen hydrophilen Kopfgruppe, amphotere Tenside, welche sowohl eine negative als auch eine kompensierende positive Ladung tragen, kationische Tenside, welche neben einem hydrophoben Rest eine positiv geladene hydrophile Gruppe aufweisen, und nichtionische Tenside, welche keine Ladungen sondern starke Dipolmomente aufweisen und in wäßriger Lösung stark hydratisiert sind. Weitergehende Definitionen und Eigenschaften von Tensiden finden sich in "H.-D.Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Die zuvor wiedergegebene Begriffsbestimmung findet sich ab S. 190 in dieser Druckschrift.
  • Als anionische Tenside (E1) eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 8 bis 30C-Atomen. Zusätzlich können im Molekül Glykol- oder Poly-glykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der Natrium-, Kalium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe,
    • – lineare und verzweigte Fettsäuren mit 8 bis 30C-Atomen (Seifen),
    • – Ethercarbonsäuren der Formel R-O-(CH2-CH2O)x-CH2-COOH, in der R eine lineare Alkylgruppe mit 8 bis 30C-Atomen und x = 0 oder 1 bis 16 ist,
    • – Acylsarcoside mit 8 bis 24C-Atomen in der Acylgruppe,
    • – Acyltauride mit 8 bis 24C-Atomen in der Acylgruppe,
    • – Acylisethionate mit 8 bis 24C-Atomen in der Acylgruppe,
    • – Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen,
    • – lineare Alkansulfonate mit 8 bis 24C-Atomen,
    • – lineare Alpha-Olefinsulfonate mit 8 bis 24C-Atomen,
    • – Alpha-Sulfofettsäuremethylester von Fettsäuren mit 8 bis 30C-Atomen,
    • – Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30C-Atomen und x = 0 oder 1 bis 12 ist,
    • – Gemische oberflächenaktiver Hydroxysulfonate gemäß DE-A-37 25 030,
    • – sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether gemäß DE-A-37 23 354,
    • – Sulfonate ungesättigter Fettsäuren mit 8 bis 24C-Atomen und 1 bis 6 Doppelbindungen gemäß DE-A-39 26 344,
    • – Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2–15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,
    • – Alkyl- und/oder Alkenyletherphosphate der Formel (E1-I),
      Figure 00280001
    • – in der R1 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R2 für Wasserstoff, einen Rest (CH2CH2O)nR2 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen C1 bis C4-Kohlenwasserstoffrest, steht,
    • – sulfatierte Fettsäurealkylenglykolester der Formel (E1-II) R7CO(AlkO)nSO3M (E1-II)in der R7CO- für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22C-Atomen, Alk für CH2CH2, CHCH3CH2 und/oder CH2CHCH3, n für Zahlen von 0,5 bis 5 und M für ein Kation steht, wie sie in der DE-OS 197 36 906.5 beschrieben sind,
    • – Monoglyceridsulfate und Monoglyceridethersulfate der Formel (E1-III)
      Figure 00290001
      in der R8CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (E1-III) eingesetzt, in der R8CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht, wie sie beispielsweise in der EP-B1 0 561 825, der EP-B1 0 561 999, der DE-A1 42 04 700 oder von A.K.Biswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) und F.U.Ahmed in J.Am.Oil.Chem.Soc. 67, 8 (1990) beschrieben worden sind,
    • – Amidethercarbonsäuren wie sie in der EP 0 690 044 beschrieben sind,
    • – Kondensationsprodukte aus C8-C30-Fettalkoholen mit Proteinhydrolysaten und/oder Aminosäuren und deren Derivaten, welche dem Fachmann als Eiweissfettsäurekondensate bekannt sind, wie beispielsweise die Lamepon®-Typen, Gluadin®-Typen, Hostapon® KCG oder die Amisoft®-Typen.
  • Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuren mit 10 bis 18C-Atomen in der Alkylgruppe und bis zu 12 Glykolethergruppen im Molekül, Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 18C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 18C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen, Monoglycerdisulfate, Alkyl- und Alkenyletherphosphate sowie Eiweissfettsäurekondensate.
  • Als zwitterionische Tenside (E2) werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO(–)- oder -SO3 (–)-Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl-aminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der INCI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
  • Unter ampholytischen Tensiden (E3) werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8-C24-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12-C18-Acylsarcosin.
  • Nichtionische Tenside (E4) enthalten als hydrophile Gruppe z.B. eine Polyolgruppe, eine Polyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolethergruppe. Solche Verbindungen sind beispielsweise
    • – Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30C-Atomen, an Fettsäuren mit 8 bis 30C-Atomen und an Alkylphenole mit 8 bis 15C-Atomen in der Alkylgruppe,
    • – mit einem Methyl- oder C2-C6-Alkylrest endgruppenverschlossene Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30C-Atomen, an Fettsäuren mit 8 bis 30C-Atomen und an Alkylphenole mit 8 bis 15C-Atomen in der Alkylgruppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol® LS, Dehydol® LT (Cognis) erhältlichen Typen,
    • – C12-C30-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
    • – Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
    • – Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen HSP (Cognis) oder Sovermol-Typen (Cognis),
    • – alkoxilierte Triglyceride,
    • – alkoxilierte Fettsäurealkylester der Formel (E4-I) R1CO-(OCH2CHR2)wOR3 (E4-I)in der R1CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder Methyl, R3 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht,
    • – Aminoxide,
    • – Hydroxymischether, wie sie beipielsweise in der DE-OS 19738866 beschrieben sind,
    • – Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäureester wie beispielsweise die Polysorbate,
    • – Zuckerfettsäureester und Anlagerungsprodukte von Ethylenoxid an Zuckerfettsäureester,
    • – Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine,
    • – Zuckertenside vom Typ der Alkyl- und Alkenyloligoglykoside gemäß Formel (E4-II), R4O-[G]p (E4-II)in der R4 für einen Alkyl- oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Übersichtsarbeit von Biermann et al. in Starch/Stärke 45, 281 (1993), B. Salka in Cosm.Toil. 108, 89 (1993) sowie J. Kahre et al. in SÖFW-Journal Heft 8, 598 (1995) verwiesen. Die Alkyl- und Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise von Glucose, ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (E4-II) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p im einzelnen Molekül stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R4 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R15 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
    • – Zuckertenside vom Typ der Fettsäure-N-alkylpolyhydroxyalkylamide, ein nichtionisches Tensid der Formel (E4-III),
      Figure 00330001
      in der R5CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R6 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Fettsäure-N-alkylpolyhydroxyalkylamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Hinsichtlich der Verfahren zu ihrer Herstellung sei auf die US-Patentschriften US 1,985,424 , US 2,016,962 und US 2,703,798 sowie die Internationale Patentanmeldung WO 92/06984 verwiesen. Eine Übersicht zu diesem Thema von H.Kelkenberg findet sich in Tens. Surf. Det. 25, 8 (1988). Vorzugsweise leiten sich die Fettsäure-N-alkylpolyhydroxyalkylamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Die bevorzugten Fettsäure-N- alkylpolyhydroxyalkylamide stellen daher Fettsäure-N-alkylglucamide dar, wie sie durch die Formel (E4-IV) wiedergegeben werden:
      Figure 00340001
      Vorzugsweise werden als Fettsäure-N-alkylpolyhydroxyalkylamide Glucamide der Formel (E4-IV) eingesetzt, in der R8 für Wasserstoff oder eine Alkylgruppe steht und R7CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Tsostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure bzw. derer technischer Mischungen steht. Besonders bevorzugt sind Fettsäure-N-alkylglucamide der Formel (E4-IV), die durch reduktive Aminierung von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder C12/14-Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden. Weiterhin können sich die Polyhydroxyalkylamide auch von Maltose und Palatinose ableiten.
  • Als bevorzugte nichtionische Tenside haben sich die Alkylenoxid-Anlagerungsprodukte an gesättigte lineare Fettalkohole und Fettsäuren mit jeweils 2 bis 30 Mol Ethylenoxid pro Mol Fettalkohol bzw. Fettsäure erwiesen. Zubereitungen mit hervorragenden Eigenschaften werden ebenfalls erhalten, wenn sie als nichtionische Tenside Fettsäureester von ethoxyliertem Glycerin enthalten.
  • Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet. Der Alkylrest R enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Bevorzugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl, 1-Cetyl und 1-Stearyl. Besonders bevorzugt sind 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl. Bei Verwen dung sogenannter "Oxo-Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit einer ungeraden Anzahl von Kohlenstoffatomen in der Alkylkette.
  • Weiterhin sind ganz besonders bevorzugte nichtionische Tenside die Zuckertenside. Diese können in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1–20 Gew.-%, bezogen auf das gesamte Mittel, enthalten sein. Mengen von 0,5–15 Gew.-% sind bevorzugt, und ganz besonders bevorzugt sind Mengen von 0,5–7,5 Gew.-%.
  • Bei den als Tensid eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkylkettenlängen erhält.
  • Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Produkte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhydroxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homologenverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkalimetallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.
  • Erfindungsgemäß einsetzbar sind ebenfalls kationische Tenside (E5) vom Typ der quarternären Ammoniumverbindungen, der Esterquats, der Imidazoline und der Amidoamine. Bevorzugte quaternäre Ammoniumverbindungen sind Ammoniumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethylammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distea ryldimethylammoniumchlorid, Lauryldimethylammoniumchlorid, Lauryldimethylbenzylammoniumchlorid und Tricetylmethylammoniumchlorid, sowie die unter den INCI-Bezeichnungen Quaternium-27 und Quaternium-83 bekannten Imidazolium-Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 8 bis 30 Kohlenstoffatome auf.
  • Besonders bevorzugt einsetzbar können erfindungsgemäß kationische Verbindungen mit Behenylresten, insbesondere die unter der Bezeichnung Behentrimoniumchlorid bzw. -bromid (Docosanyltrimethylammonium Chlorid bzw. -Bromid) bekannten Substanzen. Andere bevorzugte QAV weisen mindestens zwei Behenylreste auf. Kommerziell erhältlich sind diese Substanzen beispielsweise unter der Bezeichnungen Genamin® KDMP (Clariant).
  • Bei Esterquats handelt es sich um bekannte Stoffe, die sowohl mindestens eine Esterfunktion als auch mindestens eine quartäre Ammoniumgruppe als Strukturelement enthalten. Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Triethanolamin, quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quaternierten Estersalzen von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen. Solche Produkte werden beispielsweise unter den Warenzeichen Stepantex®, Dehyquart® und Armocare® vertrieben. Die Produkte Armocare® VGH-70, ein N,N-Bis(2-Palmitoyloxyethyl)dimethylammoniumchlorid, sowie Dehyquart® F-75, Dehyquart® C-4046, Dehyquart® L80 und Dehyquart® AU-35 sind Beispiele für solche Esterquats.
  • Als weitere kationische Tenside können die erfindungsgemäßen Mittel mindestens eine quartäre Imidazolinverbindung, d.h. eine Verbindung, die einen positiv geladenen Imidazolinring aufweist, enthalten. Die im folgenden dargestellte Formel (E5-V) zeigt die Struktur dieser Verbindungen.
  • Figure 00370001
  • Die Reste R stehen unabhängig voneinander jeweils für einen gesättigten oder ungesättigten, linearen oder verzweigten Kohlenwasserstoffrest mit einer Kettenlänge von 8 bis 30 Kohlenstoffatomen. Die bevorzugten Verbindungen der Formel I enthalten für R jeweils den gleichen Kohlenwasserstoffrest. Die Kettenlänge der Reste R ist bevorzugt 12 Kohlenstoffatome. Besonders bevorzugt sind Verbindungen mit einer Kettenlänge von mindestens 16 Kohlenstoffatomen und ganz besonders bevorzugt mit mindestens 20 Kohlenstoffatomen. Eine ganz besonders bevorzugte Verbindung der Formel I weist eine Kettenlänge von 21 Kohlenstoffatomen auf. Ein Handelsprodukt dieser Kettenlänge ist beispielsweise unter der Bezeichnung Quaternium-91 bekannt. In der Formel (E5-V) ist als Gegenion Methosulfat dargestellt. Erfindungsgemäß umfasst sind jedoch als Gegenionen auch die Halogenide wie Chlorid, Fluorid, Bromid, oder auch Phosphate.
  • Die Imidazoline der Formel (E5-V) sind in den erfindungsgemäßen Zusammensetzungen in Mengen von 0,01 bis 20 Gew.-%, bevorzugt in Mengen von 0,05 bis 10 Gew.-% und ganz besonders bevorzugt in Mengen von 0,1 bis 7,5 Gew.-% enthalten. Die allerbesten Ergebnisse werden dabei mit Mengen von 0,1 bis 5 Gew.-% jeweils bezogen auf die Gesamtzusammensetzung des jeweiligen Mittels erhalten.
  • Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthetischer Fettsäuren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfindungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar.
  • Die kationischen Tenside (E5) sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
  • Anionische, nichtionische, zwitterionische und/oder amphotere Tenside sowie deren Mischungen können erfindungsgemäß bevorzugt sein.
  • Die Tenside (E) werden in Mengen von 0,1–45 Gew.-%, bevorzugt 0,5–30 Gew.-% und ganz besonders bevorzugt von 0,5–25 Gew.-%, bezogen auf das gesamte erfindungsgemäß verwendete Mittel, eingesetzt.
  • In einer weiteren bevorzugten Ausführungsform, insbesondere bei der Formulierung von Haarpflegemitteln, kann die Wirkung der erfindungsgemäßen Wirkstoffkombination durch Emulgatoren (F) gesteigert werden. Emulgatoren bewirken an der Phasengrenzfläche die Ausbildung von wasser- bzw. ölstabilen Adsorptionsschichten, welche die dispergierten Tröpfchen gegen Koaleszenz schützen und damit die Emulsion stabilisieren. Emulgatoren sind daher wie Tenside aus einem hydrophoben und einem hydrophilen Molekülteil aufgebaut. Hydrophile Emulgatoren bilden bevorzugt O/W-Emulsionen und hydrophobe Emulgatoren bilden bevorzugt W/O-Emulsionen. Unter einer Emulsion ist eine tröpfchenförmige Verteilung (Dispersion) einer Flüssigkeit in einer anderen Flüssigkeit unter Aufwand von Energie zur Schaffung von stabilisierenden Phasengrenzflächen mittels Tensiden zu verstehen. Die Auswahl dieser emulgierenden Tenside oder Emulgatoren richtet sich dabei nach den zu dispergierenden Stoffen und der jeweiligen äußeren Phase sowie der Feinteiligkeit der Emulsion. Weiterführende Definitionen und Eigenschaften von Emulgatoren finden sich in "H.-D.Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Erfindungsgemäß verwendbare Emulgatoren sind beispielsweise
    • – Anlagerungsprodukte von 4 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22C-Atomen, an Fettsäuren mit 12 bis 22C-Atomen und an Alkylphenole mit 8 bis 15C-Atomen in der Alkylgruppe,
    • – C12-C22-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Polyole mit 3 bis 6 Kohlenstoffatomen, insbesondere an Glycerin,
    • – Ethylenoxid- und Polyglycerin-Anlagerungsprodukte an Methylglucosid-Fettsäureester, Fettsäurealkanolamide und Fettsäureglucamide,
    • – C8-C22-Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga, wobei Oligomerisierungsgrade von 1,1 bis 5, insbesondere 1,2 bis 2,0, und Glucose als Zuckerkomponente bevorzugt sind,
    • – Gemische aus Alkyl-(oligo)-glucosiden und Fettalkoholen zum Beispiel das im Handel erhältliche Produkt Montanov® 68,
    • – Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
    • – Partialester von Polyolen mit 3–6 Kohlenstoffatomen mit gesättigten Fettsäuren mit 8 bis 22C-Atomen,
    • – Sterine. Als Sterine wird eine Gruppe von Steroiden verstanden, die am C-Atom 3 des Steroid-Gerüstes eine Hydroxylgruppe tragen und sowohl aus tierischem Gewebe (Zoosterine) wie auch aus pflanzlichen Fetten (Phytosterine) isoliert werden. Beispiele für Zoosterine sind das Cholesterin und das Lanosterin. Beispiele geeigneter Phytosterine sind Ergosterin, Stigmasterin und Sitosterin. Auch aus Pilzen und Hefen werden Sterine, die sogenannten Mykosterine, isoliert.
    • – Phospholipide. Hierunter werden vor allem die Glucose-Phospolipide, die z.B. als Lecithine bzw. Phospahtidylcholine aus z.B. Eidotter oder Pflanzensamen (z.B. Sojabohnen) gewonnen werden, verstanden.
    • – Fettsäureester von Zuckern und Zuckeralkoholen, wie Sorbit,
    • – Polyglycerine und Polyglycerinderivate wie beispielsweise Polyglycerinpoly-12-hydroxystearat (Handelsprodukt Dehymuls® PGPH),
    • – Lineare und verzweigte Fettsäuren mit 8 bis 30C-Atomen und deren Na-, K-, Ammonium-, Ca-, Mg- und Zn-Salze.
  • Die erfindungsgemäßen Mittel enthalten die Emulgatoren bevorzugt in Mengen von 0,1–25 Gew.-%, insbesondere 0,5–15 Gew.-%, bezogen auf das gesamte Mittel.
  • Bevorzugt können die erfindungsgemäßen Zusammensetzungen mindestens einen nichtionogenen Emulgator mit einem HLB-Wert von 8 bis 18, gemäß den im Römpp-Lexikon Chemie (Hrg. J. Falbe, M.Regitz), 10. Auflage, Georg Thieme Verlag Stuttgart, New York, (1997), Seite 1764, aufgeführten Definitionen enthalten. Nichtionogene Emulgatoren mit einem HLB-Wert von 10–15 können erfindungsgemäß besonders bevorzugt sein.
  • Als weiterhin vorteilhaft hat es sich gezeigt, daß Polymere (G) die Wirkung der erfindungsgemäßen Wirkstoffkombination unterstützen können. Die Verwendung von Polymeren gemeinsam mit der erfindungsgemäßen Wirkstoffkombination wirkt sich in allen Zusammensetzungen positiv auf die Pflegeeigenschaften, wie beispielsweise dem Glanz, dem Halt, der Fülle, der leichteren Kämmbarkeit, dem Volumen der damit behandelten keratinischen Fasern aus. In einer bevorzugten Ausführungsform werden den erfindungsgemäß verwendeten Mitteln daher Polymere zugesetzt, wobei sich sowohl kationische, anionische, amphotere als auch nichtionische Polymere als wirksam erwiesen haben.
  • Unter kationischen Polymeren (G1) sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette eine Gruppe aufweisen, welche "temporär" oder "permanent" kationisch sein kann. Als "permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH-Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammoniumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine C1-4-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen.
  • Homopolymere der allgemeinen Formel (G1-I),
    Figure 00400001
    in der R1=-H oder -CH3 ist, R2, R3 und R4 unabhängig voneinander ausgewählt sind aus C1-4-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1, 2, 3 oder 4, n eine natürliche Zahl und X ein physiologisch verträgliches organisches oder anorganisches Anion ist, sowie Copolymere, bestehend im wesentlichen aus den in Formel (G1-I) aufgeführten Monomereinheiten sowie nichtionogenen Monomereinheiten, sind besonders bevorzugte kationische Polymere. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt:
    R1 steht für eine Methylgruppe
    R2, R3 und R4 stehen für Methylgruppen
    m hat den Wert 2.
  • Als physiologisch verträgliches Gegenionen X kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat-, Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlorid.
  • Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyloxyethyltrimethylammoniumchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylenbisacrylamid, Diallylether, Polyallylpolyglycerylether, oder Allylethern von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens.
  • Das Homopolymer wird bevorzugt in Form einer nichtwäßrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymerdispersionen sind unter den Bezeichnungen Salcare® SC 95 (ca. 50% Polymeranteil, weitere Komponenten: Mineralöl (INCI-Bezeichnung: Mineral Oil) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-1-Trideceth-6)) und Salcare® SC 96 (ca. 50% Polymeranteil, weitere Komponenten: Mischung von Diestern des Propylenglykols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propylene Glycol Dicaprylate/Dicaprate) und Tridecyl-polyoxypropylen-polyoxyethylenether (INCI-Bezeichnung: PPG-1-Trideceth-6)) im Handel erhältlich.
  • Copolymere mit Monomereinheiten gemäß Formel (G1-I) enthalten als nichtionogene Monomereinheiten bevorzugt Acrylamid, Methacrylamid, Acrylsäure-C1-4-alkylester und Methacrylsäure-C1-4-alkylester. Unter diesen nichtionogenen Monomeren ist das Acrylamid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopolymere oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das vernetzte Acrylamid-Methacryloyloxyethyltrimethylammoniumchlorid-Copolymer. Solche Copolymere, bei denen die Monomere in einem Gewichtsverhältnis von etwa 20:80 vorliegen, sind im Handel als ca. 50%ige nichtwäßrige Polymerdispersion unter der Bezeichnung Salcare® SC 92 erhältlich.
  • Weitere bevorzugte kationische Polymere sind beispielsweise
    • – quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR® 400 sind bevorzugte quaternierte Cellulose-Derivate,
    • – kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686,
    • – kationiserter Honig, beispielsweise das Handelsprodukt Honeyquat® 50,
    • – kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosmedia® Guar und Jaguar® vertriebenen Produkte,
    • – Polysiloxane mit quaternären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethylsilylamodimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-aminomodifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt), diquaternäre Polydimethylsiloxane, Quaternium-80),
    • – polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat® 100 (Po1y(dimethyldiallylammoniumchlorid)) und Merquat® 550 (Dimethyl diallylammoniumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere,
    • – Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoalkylacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinylpyrrolidon-Dimethylaminoethylmethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat® 734 und Gafquat® 755 im Handel erhältlich,
    • – Vinylpyrrolidon-Vinylimidazoliummethochlorid-Copolymere, wie sie unter den Bezeichnungen Luviquat® FC 370, FC 550, FC 905 und HM 552 angeboten werden,
    • – quaternierter Polyvinylalkohol,
    • – sowie die unter den Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette.
  • Gleichfalls als kationische Polymere eingesetzt werden können die unter den Bezeichnungen Polyquaternium-24 (Handelsprodukt z. B. Quatrisoft® LM 200), bekannten Polymere. Ebenfalls erfindungsgemäß verwendbar sind die Copolymere des Vinylpyrrolidons, wie sie als Handelsprodukte Copolymer 845 (Hersteller: ISP), Gaffix® VC 713 (Hersteller: ISP), Gafquat® ASCP 1011, Gafquat® HS 110, Luviquat® 8155 und Luviquat® MS 370 erhältlich sind.
  • Weitere erfindungsgemäße kationische Polymere sind die sogenannten "temporär kationischen" Polymere. Diese Polymere enthalten üblicherweise eine Aminogruppe, die bei bestimmten pH-Werten als quartäre Ammoniumgruppe und somit kationisch vorliegt.
  • Bevorzugt sind beispielsweise Chitosan und dessen Derivate, wie sie beispielsweise unter den Handelsbezeichnungen Hydagen® CMF, Hydagen® HCMF, Kytamer® PC und Chitolam® NB/101 im Handel frei verfügbar sind.
  • Erfindungsgemäß bevorzugte kationische Polymere sind kationische Cellulose-Derivate und Chitosan und dessen Derivate, insbesondere die Handelsprodukte Polymer® JR 400, Hydagen® HCMF und Kytamer® PC, kationische Guar-Derivate, kationische Honig-Derivate, insbesondere das Handelsprodukt Honeyquat® 50, kationische Alkylpolyglycodside gemäß der DE-PS 44 13 686, Polymere vom Typ Polyquaternium-37, die Handelsprodukte mit den Bezeichnungen Structure® 2000, Structure® 3000, Structure® XL oder Structure® ZEA sowie die Merquat®-Typen, insbesondere Merquat® 550, Merquat® 280 und Merquat® 2001.
  • Weiterhin sind kationiserte Proteinhydrolysate zu den kationischen Polymeren zu zählen, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Die den erfindungsgemäßen kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kationischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quarternären Ammoniumsalzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N-(2-hydroxy-3-chloro-n-propyl)-ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI-Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Silk, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Cocodimonium Hydroxypropyl Silk Amino Acids, Hydroxypropyl Arginine Lauryl/Myristyl Ether HCl, Hydroxypropyltrimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimonium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed Keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxyproypltrimonium Hydrolyzed Silk, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein/Siloxysilicate, Laurdimonium Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed Silk, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxypropyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed Silk, Steardimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartrimonium Hydroxyethyl Hydrolyzed Collagen, Quaternium-76 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quaternium-79 Hydrolyzed Silk, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein.
  • Ganz besonders bevorzugt sind die kationischen Proteinhydrolysate und -derivate auf pflanzlicher Basis.
  • Bei den anionischen Polymeren (G2), welche die Wirkung des erfindungsgemäßen Wirkstoffes (A) unterstützen können, handelt es sich um anionische Polymere, welche Carboxylat- und/oder Sulfonatgruppen aufweisen. Beispiele für anionische Monomere, aus denen derartige Polymere bestehen können, sind Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäureanhydrid und 2-Acrylamido-2-methylpropansulfonsäure. Dabei können die sauren Gruppen ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen. Bevorzugte Monomere sind 2-Acrylamido-2-methylpropansulfonsäure und Acrylsäure.
  • Als ganz besonders wirkungsvoll haben sich anionische Polymere erwiesen, die als alleiniges oder Co-Monomer 2-Acrylamido-2-methylpropansulfonsäure enthalten, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen kann.
  • Besonders bevorzugt ist das Homopolymer der 2-Acrylamido-2-methylpropansulfonsäure, das beispielsweise unter der Bezeichnung Rheothik® 11–80 im Handel erhältlich ist.
  • Innerhalb dieser Ausführungsform kann es bevorzugt sein, Copolymere aus mindestens einem anionischen Monomer und mindestens einem nichtionogenen Monomer einzusetzen. Bezüglich der anionischen Monomere wird auf die oben aufgeführten Substanzen verwiesen. Bevorzugte nichtionogene Monomere sind Acrylamid, Methacrylamid, Acrylsäureester, Methacrylsäureester, Vinylpyrrolidon, Vinylether und Vinylester.
  • Bevorzugte anionische Copolymere sind Acrylsäure-Acrylamid-Copolymere sowie insbesondere Polyacrylamidcopolymere mit Sulfonsäuregruppen-haltigen Monomeren. Ein besonders bevorzugtes anionisches Copolymer besteht aus 70 bis 55 Mol-% Acrylamid und 30 bis 45 Mol-% 2-Acrylamido-2-methylpropansulfonsäure, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegt. Dieses Copolymer kann auch vernetzt vorliegen, wobei als Vernetzungsagentien bevorzugt polyolefinisch ungesättigte Verbindungen wie Tetraallyloxyethan, Allylsucrose, Allylpentaerythrit und Methylen-bisacrylamid zum Einsatz kommen. Ein solches Polymer ist in dem Handelsprodukt Sepigel® 305 der Firma SEPPIC enthalten. Die Verwendung dieses Compounds, das neben der Polymerkomponente eine Kohlenwasserstoffmischung (C13-C14-Isoparaffin) und einen nichtionogenen Emulgator (Laureth-7) enthält, hat sich im Rahmen der erfindungsgemäßen Lehre als besonders vorteilhaft erwiesen.
  • Auch die unter der Bezeichnung Simulgel® 600 als Compound mit Isohexadecan und Polysorbat-80 vertriebenen Natriumacryloyldimethyltaurat-Copolymere haben sich als erfindungsgemäß besonders wirksam erwiesen.
  • Ebenfalls bevorzugte anionische Homopolymere sind unvernetzte und vernetzte Polyacrylsäuren. Dabei können Allylether von Pentaerythrit, von Sucrose und von Propylen bevorzugte Vernetzungsagentien sein. Solche Verbindungen sind beispielsweise unter dem Warenzeichen Carbopol® im Handel erhältlich. Als Beispiele hierfür sind zu nennen Carbopol® 940, Carbopol® 941, Carbopol® 980, Carbopol® ETD 2001, Carbopol® 2050, Carbopol® 2020, Pemulen® TR1 oder Pemnulen® TR2.
  • Copolymere aus Maleinsäureanhydrid und Methylvinylether, insbesondere solche mit Vernetzungen, sind ebenfalls farberhaltende Polymere. Ein mit 1,9-Decadiene vernetztes Maleinsäure-Methylvinylether-Copolymer ist unter der Bezeichnungg Stabileze® QM im Handel erhältlich.
  • Weiterhin können als Polymere zur Steigerung der Wirkung der erfindungsgemäßen Wirkstoffkombination amphotere Polymere (G3) verwendet werden. Unter dem Begriff amphotere Polymere werden sowohl solche Polymere, die im Molekül sowohl freie Aminogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, als auch zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO- oder -SO3 -Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO3H-Gruppen und quartäre Ammoniumgruppen enthalten.
  • Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer® erhältliche Acrylharz, das ein Copolymeres aus tert.-Butylaminoethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt.
  • Weitere erfindungsgemäß einsetzbare amphotere Polymere sind die in der britischen Offenlegungsschrift 2 104 091, der europäischen Offenlegungsschrift 47 714, der europäischen Offenlegungsschrift 217 274, der europäischen Offenlegungsschrift 283 817 und der deutschen Offenlegungsschrift 28 17 369 genannten Verbindungen.
  • Bevorzugt eingesetzte amphotere Polymere sind solche Polymerisate, die sich im wesentlichen zusammensetzen aus
    • (a) Monomeren mit quartären Ammoniumgruppen der allgemeinen Formel (G3-I), R1-CH=CR2-CO-Z-(CnH2n)-N(+)R3R4R5 A(–) (G3-I)in der R1 und R2 unabhängig voneinander stehen für Wasserstoff oder eine Methylgruppe und R3, R4 und R5 unabhängig voneinander für Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, Z eine NH-Gruppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und A(–) das Anion einer organischen oder anorganischen Säure ist, und
    • (b) monomeren Carbonsäuren der allgemeinen Formel (G3-II), R6-CH=CR7-COOH (G3-II)in denen R6 und R7 unabhängig voneinander Wasserstoff oder Methylgruppen sind.
  • Diese Verbindungen können sowohl direkt als auch in Salzform, die durch Neutralisation der Polymerisate, beispielsweise mit einem Alkalihydroxid, erhalten wird, erfindungsgemäß eingesetzt werden. Bezüglich der Einzelheiten der Herstellung dieser Polymerisate wird ausdrücklich auf den Inhalt der deutschen Offenlegungsschrift 39 29 973 Bezug genommen. Ganz besonders bevorzugt sind solche Polymerisate, bei denen Monomere des Typs (a) eingesetzt werden, bei denen R3, R4 und R5 Methylgruppen sind, Z eine NH-Gruppe und A(–) ein Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ion ist; Acrylamidopropyl-trimethyl-ammoniumchlorid ist ein besonders bevorzugtes Monomeres (a). Als Monomeres (b) für die genannten Polymerisate wird bevorzugt Acrylsäure verwendet.
  • Die erfindungsgemäßen Mittel können in einer weiteren Ausführungsform nichtionogene Polymere (G4) enthalten.
  • Geeignete nichtionogene Polymere sind beispielsweise:
    • – Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind ebenfalls bevorzugte nichtionische Polymere.
    • – Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylhydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden.
    • – Schellack
    • – Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden.
    • – Siloxane. Diese Siloxane können sowohl wasserlöslich als auch wasserunlöslich sein. Geeignet sind sowohl flüchtige als auch nichtflüchtige Siloxane, wobei als nichtflüchtige Siloxane solche Verbindungen verstanden werden, deren Siedepunkt bei Normaldruck oberhalb von 200°C liegt. Bevorzugte Siloxane sind Polydialkylsiloxane, wie beispielsweise Polydimethylsiloxan, Polyalkylarylsiloxane, wie beispielsweise Polyphenylmethylsiloxan, ethoxylierte Polydialkylsiloxane sowie Polydialkylsiloxane, die Amin- und/oder Hydroxy-Gruppen enthalten.
    • – Glycosidisch substituierte Silicone gemäß der EP 0612759 B1 .
  • Es ist erfindungsgemäß auch möglich, daß die verwendeten Zubereitungen mehrere, insbesondere zwei verschiedene Polymere gleicher Ladung und/oder jeweils ein ionisches und ein amphoteres und/oder nicht ionisches Polymer enthalten.
  • Die Polymere (G) sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5, insbesondere von 0,1 bis 3 Gew.-%, sind besonders bevorzugt.
  • Weiterhin kann in einer bevorzugten Ausführungsform der Erfindung die Wirkung der Wirkstoffkombination durch UV-Filter (I) gesteigert werden. Die erfindungsgemäß zu verwendenden UV-Filter unterliegen hinsichtlich ihrer Struktur und ihrer physikalischen Eigenschaften keinen generellen Einschränkungen. Vielmehr eignen sich alle im Kosmetikbereich einsetzbaren UV-Filter, deren Absorptionsmaximum im UVA(315–400 nm)-, im UVB(280–315 nm)- oder im UVC(<280 nm)-Bereich liegt. UV-Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
  • Die erfindungsgemäß verwendeten UV-Filter können beispielsweise ausgewählt werden aus substituierten Benzophenonen, p-Aminobenzoesäureestern, Diphenylacrylsäureestern, Zimtsäureestern, Salicylsäureestern, Benzimidazolen und o-Aminobenzoesäureestern.
  • Beispiele für erfindungsgemäß verwendbar UV-Filter sind 4-Amino-benzoesäure, N,N,N-Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexylsalicylat (Homosalate), 2-Hydroxy-4-methoxy-benzophenon (Benzophenone-3; Uvinul® M 40, Uvasorb® MET, Neo Heliopan® BB, Eusolex® 4360), 2-Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze (Phenylbenzimidazole sulfonic acid; Parsol® HS; Neo Heliopan® Hydro), 3,3'-(1,4-Phenylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]hept-1-yl-methan-sulfonsäure) und deren Salze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-1,3-dion (Butyl methoxydibenzoylmethane; Parsol® 1789, Eusolex® 9020), α-(2-Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester (PEG-25 PABA; Uvinul® P25), 4-Dimethylaminobenzoesäure-2-ethylhexylester (Octyl Dimethyl PABA; Uvasorb® DMO, Escalol® 507, Eusolex® 6007), Salicylsäure-2-ethylhexylester (Octyl Salicylat; Escalol® 587, Neo Heliopan® OS, Uvinul® O18), 4-Methoxyzimtsäure-isopentylester (Isoamyl p-Methoxycinnamate; Neo Heliopan® E 1000), 4-Methoxyzimtsäure-2-ethylhexyl-ester (Octyl Methoxycinnamate; Parsol® MCX, Escalol® 557, Neo Heliopan® AV), 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz (Benzophenone-4; Uvinul® MS 40; Uvasorb® S 5), 3-(4'-Methylbenzyliden)-D,L-Campher (4-Methylbenzyliene camphor; Parsol® 5000, Eusolex® 6300), 3-Benzyliden-campher (3-Benzylidene camphor), 4-Isopropylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin, 3-Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3-ylidenmethyl]benzyl}-acrylamids, 2,4-Dihydroxybenzophenon (Benzophenone-1; Uvasorb® 20 H, Uvinul® 400), 1,1'-Diphenylacrylonitrilsäure-2-ethylhexyl-ester (Octocrylene; Eusolex® OCR, Neo Heliopan® Type 303, Uvinul® N 539 SG), o-Aminobenzoesäure-menthylester (Menthyl Anthranilate; Neo Heliopan® MA), 2,2',4,4'-Tetrahydroxybenzophenon (Benzophenone-2; Uvinul® D-50), 2,2'-Dihydroxy-4,4'-dimethoxy benzophenon (Benzophenone-6), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon-5-natriumsulfonat und 2-Cyano-3,3-diphenylacrylsäure-2'-ethylhexylester. Bevorzugt sind 4-Amino-benzoesäure, N,N,N-Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexylsalicylat, 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 3,3'-(1,4-Phenylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]hept-1-yl-methan-sulfonsäure) und deren Salze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-1,3-dion, α-(2-Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester, 4-Dimethylaminobenzoesäure-2-ethylhexylester, Salicylsäure-2-ethylhexylester, 4-Methoxyzimtsäure-isopentylester, 4-Methoxyzimtsäure-2-ethylhexylester, 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz, 3-(4'-Methylbenzyliden)-D,L-Campher, 3-Benzyliden-campher, 4-Isopropylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin, 3-Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3-ylidenmethyl]benzyl}-acrylamid. Erfindungsgemäß ganz besonders bevorzugt sind 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-1,3-dion, 4-Methoxyzimtsäure-2-ethylhexyl-ester und 3-(4'-Methylbenzyliden)-D,L-Campher.
  • Bevorzugt sind solche UV-Filter, deren molarer Extinktionskoeffizient am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.
  • Weiterhin wurde gefunden, daß bei strukturell ähnlichen UV-Filtern in vielen Fällen die wasserunlösliche Verbindung im Rahmen der erfindungsgemäßen Lehre die höhere Wirkung gegenüber solchen wasserlöslichen Verbindungen aufweist, die sich von ihr durch eine oder mehrere zusätzlich ionische Gruppen unterscheiden. Als wasserunlöslich sind im Rahmen der Erfindung solche UV-Filter zu verstehen, die sich bei 20°C zu nicht mehr als 1 Gew.-%, insbesondere zu nicht mehr als 0,1 Gew.-%, in Wasser lösen. Weiterhin sollten diese Verbindungen in üblichen kosmetischen Ölkomponenten bei Raumtemperatur zu mindestens 0,1, insbesondere zu mindestens 1 Gew.-% löslich sein). Die Verwendung wasserunlöslicher UV-Filter kann daher erfindungsgemäß bevorzugt sein.
  • Gemäß einer weiteren Ausführungsform der Erfindung sind solche UV-Filter bevorzugt, die eine kationische Gruppe, insbesondere eine quartäre Ammoniumgruppe, aufweisen.
  • Diese UV-Filter weisen die allgemeine Struktur U–Q auf.
  • Der Strukturteil U steht dabei für eine UV-Strahlen absorbierende Gruppe. Diese Gruppe kann sich im Prinzip von den bekannten, im Kosmetikbereich einsetzbaren, oben genannten UV-Filtern ableiten, in dem eine Gruppe, in der Regel ein Wasserstoffatom, des UV-Filters durch eine kationische Gruppe Q, insbesondere mit einer quartären Aminofunktion, ersetzt wird.
  • Verbindungen, von denen sich der Strukturteil U ableiten kann, sind beispielsweise
    • – substituierte Benzophenone,
    • – p-Aminobenzoesäureester,
    • – Diphenylacrylsäureester,
    • – Zimtsäureester,
    • – Salicylsäureester,
    • – Benzimidazole und
    • – o-Aminobenzoesäureester.
  • Strukturteile U, die sich vom Zimtsäureamid oder vom N,N-Dimethylamino-benzoesäureamid ableiten, sind erfindungsgemäß bevorzugt.
  • Die Strukturteile U können prinzipiell so gewählt werden, daß das Absorptionsmaximum der UV-Filter sowohl im UVA(315–400 nm)-, als auch im UVB(280–315 nm)- oder im UVC(<280 nm)-Bereich liegen kann. UV-Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
  • Weiterhin wird der Strukturteil U, auch in Abhängigkeit von Strukturteil Q, bevorzugt so gewählt, daß der molare Extinktionskoeffizient des UV-Filters am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.
  • Der Strukturteil Q enthält als kationische Gruppe bevorzugt eine quartäre Ammoniumgruppe. Diese quartäre Ammoniumgruppe kann prinzipiell direkt mit dem Strukturteil U verbunden sein, so daß der Strukturteil U einen der vier Substituenten des positiv geladenen Stickstoffatomes darstellt. Bevorzugt ist jedoch einer der vier Substituenten am positiv geladenen Stickstoffatom eine Gruppe, insbesondere eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen, die als Verbindung zwischen dem Strukturteil U und dem positiv geladenen Stickstoffatom fungiert.
  • Vorteilhafterweise hat die Gruppe Q die allgemeine Struktur -(CH2)x-N+R1R2R3 X, in der x steht für eine ganze Zahl von 1 bis 4, R1 und R2 unabhängig voneinander stehen für C1-4-Alkylgruppen, R3 steht für eine C1-22-Alkylgruppe oder eine Benzylgruppe und X für ein physiologisch verträgliches Anion. Im Rahmen dieser allgemeinen Struktur steht x bevorzugt für die die Zahl 3, R1 und R2 jeweils für eine Methylgruppe und R3 entweder für eine Methylgruppe oder eine gesättigte oder ungesättigte, lineare oder verzweigte Kohlenwasserstoffkette mit 8 bis 22, insbesondere 10 bis 18, Kohlenstoffatomen.
  • Physiologisch verträgliche Anionen sind beispielsweise anorganische Anionen wie Halogenide, insbesondere Chlorid, Bromid und Fluorid, Sulfationen und Phosphationen sowie organische Anionen wie Lactat, Citrat, Acetat, Tartrat, Methosulfat und Tosylat.
  • Zwei bevorzugte UV-Filter mit kationischen Gruppen sind die als Handelsprodukte erhältlichen Verbindungen Zimtsäureamidopropyl-trimethylammoniumchlorid (Incroquat® UV-283) und Dodecyl-dimethylaminobenzamidopropyl-dimethylammoniumtosylat (Escalol® HP 610).
  • Selbstverständlich umfaßt die erfindungsgemäße Lehre auch die Verwendung einer Kombination von mehreren UV-Filtern. Im Rahmen dieser Ausführungsform ist die Kombination mindestens eines wasserunlöslichen UV-Filters mit mindestens einem UV-Filter mit einer kationischen Gruppe bevorzugt.
  • Die UV-Filter (I) sind in den erfindungsgemäß verwendeten Mitteln üblicherweise in Mengen 0,1–5 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,4–2,5 Gew.-% sind bevorzugt.
  • Die Wirkung der erfindungsgemäßen Wirkstoffkombination kann weiterhin durch eine 2-Pyrrolidinon-5-carbonsäure und deren Derivate (J) gesteigert werden. Ein weiterer Gegenstand der Erfindung ist daher die Verwendung der Wirkstoffkombination in Kombination mit Derivaten der 2-Pyrrolidinon-5-carbonsäure. Bevorzugt sind die Natrium-, Kalium-, Calcium-, Magnesium- oder Ammoniumsalze, bei denen das Ammoniumion neben Wasserstoff eine bis drei C1- bis C4-Alkylgruppen trägt. Das Natriumsalz ist ganz besonders bevorzugt. Die eingesetzten Mengen in den erfindungsgemäßen Mitteln betragen 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, besonders bevorzugt 0,1 bis 5, und insbesondere 0,1 bis 3 Gew.-%.
  • Ebenfalls als ganz besonders vorteilhaft hat sich in allen Mitteln die Kombination der Wirkstoffkombination mit Vitaminen, Provitaminen und Vitaminvorstufen sowie deren Derivaten (K) erwiesen. Sowohl die Haut als auch die keratinischen Fasern hinterlassen nach der Behandlung mit dieser ganz besonders bevorzugten Kombination einen wesentlich gepflegteren, vitaleren, kräftigeren Eindruch mit deutlich verbessertem Glanz und einem sehr guten Griff auch der trockenen keratinischen Fasern.
  • Dabei sind erfindungsgemäß solche Vitamine, Pro-Vitamine und Vitaminvorstufen bevorzugt, die üblicherweise den Gruppen A, B, C, E, F und H zugeordnet werden.
  • Zur Gruppe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin A1) sowie das 3,4-Didehydroretinol (Vitamin A2). Das β-Carotin ist das Provitamin des Retinols. Als Vitamin A-Komponente kommen erfindungsgemäß beispielsweise Vitamin A-Säure und deren Ester, Vitamin A-Aldehyd und Vitamin A-Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die erfindungsgemäß verwendeten Zubereitungen enthalten die Vitamin A-Komponente bevorzugt in Mengen von 0,05–1 Gew.-%, bezogen auf die gesamte Zubereitung.
  • Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a.
    • – Vitamin B1 (Thiamin)
    • – Vitamin B2 (Riboflavin)
    • – Vitamin B3. Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nicotinsäureamid, das in den erfindungsgemäß verwendetenen Mitteln bevorzugt in Mengen von 0,05 bis 1 Gew.-%, bezogen auf das gesamte Mittel, enthalten ist.
    • – Vitamin B5 (Pantothensäure, Panthenol und Pantolacton). Im Rahmen dieser Gruppe wird bevorzugt das Panthenol und/oder Pantolacton eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthenolmonoethylether und dessen Monoacetat sowie die in der WO 92/13829 offenbarten kationischen Panthenolderivate. Die genannten Verbindungen des Vitamin B5-Typs sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05–10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1–5 Gew.-% sind besonders bevorzugt.
    • – Vitamin B6 (Pyridoxin sowie Pyridoxamin und Pyridoxal).
  • Vitamin C (Ascorbinsäure). Vitamin C wird in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf das gesamte Mittel eingesetzt. Die Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann bevorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein.
  • Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05–1 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
  • Vitamin F. Unter dem Begriff "Vitamin F" werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden.
  • Vitamin H. Als Vitamin H wird die Verbindung (3aS,4S, 6aR)-2-Oxohexahydrothienol[3,4-d]-imidazol-4-valeriansäure bezeichnet, für die sich aber inzwischen der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,0001 bis 1,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.-% enthalten.
  • Bevorzugt enthalten die erfindungsgemäß verwendeten Mittel Vitamine, Provitamine und Vitaminvorstufen aus den Gruppen A, B, E und H.
  • Panthenol, Pantolacton, Pyridoxin und seine Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt.
  • Schließlich läßt sich die Wirkung der Wirkstoffkombination auch durch den kombinierten Einsatz mit Pflanzenextrakten (L) steigern.
  • Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.
  • Hinsichtlich der erfindungsgemäß verwendbaren Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhaltsstoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Körperpflege- und Waschmittel e.V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.
  • Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Baldrian, Hamamelis, Hopfen, Henna, Kamille, Klettenwurzel, Schachtelhalm, Weißdorn, Lindenblüten, Mandel, Aloe Vera, Fichtennadel, Roßkastanie, Sandelholz, Wacholder, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Malve, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng und Ingwerwurzel bevorzugt.
  • Besonders bevorzugt sind die Extrakte aus Grünem Tee, Eichenrinde, Baldrian, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Lindenblüten, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Wiesenschaumkraut, Quendel, Schafgarbe, Hauhechel, Meristem, Ginseng und Ingwerwurzel.
  • Ganz besonders für die erfindungsgemäße Verwendung geeignet sind die Extrakte aus Grünem Tee, Baldrian, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi und Melone.
  • Als Extraktionsmittel zur Herstellung der genannten Pflanzenextrakte können Wasser, Alkohole sowie deren Mischungen verwendet werden. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Pflanzenextrakte auf Basis von Wasser/Propylenglykol im Verhältnis 1:10 bis 10:1 haben sich als besonders geeignet erwiesen.
  • Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2–80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei ihrer Gewinnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
  • Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln Mischungen aus mehreren, insbesondere aus zwei, verschiedenen Pflanzenextrakten einzusetzen.
  • Zusätzlich kann es sich als vorteilhaft erweisen, wenn neben der erfindungsgemäßen Wirkstoffkombination Penetrationshilfsstoffe und/oder Quellmittel (M) enthalten sind. Hierzu sind beispielsweise zu zählen Harnstoff und Harnstoffderivate, Guanidin und dessen Derivate, Arginin und dessen Derivate, Wasserglas, Imidazol und Dessen Derivate, Histidin und dessen Derivate, Benzylalkohol, Glycerin, Glykol und Glykolether, Propylenglykol und Propylenglykolether, beispielsweise Propylenglykolmonoethylether, Carbonate, Hydrogencarbonate, Diole und Triole, und insbesondere 1,2-Diole und 1,3-Diole wie beispielsweise 1,2-Propandiol, 1,2-Pentandiol, 1,2-Hexandiol, 1,2-Dodecandiol, 1,3-Propandiol, 1,6-Hexandiol, 1,5-Pentandiol, 1,4-Butandiol.
  • Eine ganz besonders bevorzugte Gruppe von Wirkstoffen sind die Silikonöle (S). Daher werden sie besonders bevorzugt in den erfindungsgemäßen Zusammensetzungen verwendet. Silikonöle bewirken die unterschiedlichsten Effekte. So beeinflussen sie beispielsweise gleichzeitig die Trocken- und Naßkämmbarkeiten, den Griff des trockenen und nassen Haares sowie den Glanz. Zusätzlich zur erfindungsgemäßen Wirkstoffkombination verwendet, ergänzen sich die Vorteile der erfindungsgemäßen Wirkstoffkombination und der Silikonöle in herrausragender Weise. Daher ist die Verwendung von Silikonölen zusammen mit der erfindungsgemäßen Wirkstoffkombination ganz besonders bevorzugt. Unter dem Begriff Silikonöle versteht der Fachmann mehrere Strukturen Siliciumorganischer Verbindungen. Zunächst werden hierunter die Dimethiconole (S1) verstanden. Dimethiconole bilden die erste Gruppe der Silikone, welche erfindungsgemäß besonders bevorzugt sind. Die erfindungsgemäßen Dimethiconole können sowohl linear als auch verzweigt als auch cyclisch oder cyclisch und verzweigt sein. Lineare Dimethiconole können durch die folgende Strukturformel (S1-I) dargestellt werden: (SiOHR1 2)-O-(SiR22-O-)x-(SiOHR1 2) (S1-I)
  • Verzweigte Dimethiconole können durch die Strukturformel (S1-II) dargestellt werden:
    Figure 00580001
  • Die Reste R1 und R2 stehen unabhängig voneinander jeweils für Wasserstoff, einen Methylrest, einen C2 bis C30 linearen, gesättigten oder ungesättigten Kohlenwasserstoffrest, einen Phenylrest und/oder eine Arylrest. Nicht einschränkende Beispiele der durch R1 und R2 repräsentierten Reste schließen Alkylreste, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Pentyl, Isopentyl, Neopentyl, Amyl, Isoamyl, Hexyl, Isohexyl und ähnliche; Alkenylreste, wie Vinyl, Halogenvinyl, Alkylvinyl, Allyl, Halogenallyl, Alkylallyl; Cycloalkylreste, wie Cyclobutyl, Cyclopentyl, Cyclohexyl und ähnliche; Phenylreste, Benzylreste, Halogenkohlenwasserstoffreste, wie 3-Chlorpropyl, 4-Brombutyl, 3,3,3-Trifluorpropyl, Chlorcyclohexyl, Bromphenyl, Chlorphenyl und ähnliche sowie schwefelhaltige Reste, wie Mercaptoethyl, Mercaptopropyl, Mercaptohexyl, Mercaptophenyl und ähnliche ein; vorzugsweise ist R1 und R2 ein Alkylrest, der 1 bis etwa 6 Kohlenstoffatomen enthält, und am bevorzugtesten ist R1 und R2 Methyl. Beispiele von R1 schließen Methylen, Ethylen, Propylen, Hexamethylen, Decamethylen, -CH2CH(CH3)CH2-, Phenylen, Naphthylen, -CH2CH2SCH2CH2-, -CH2CH2OCH2-, -OCH2CH2-, -OCHCH2CH2-, -CH2CH(CH3)C(O)OCH2-, -(CH2)3CC(O)OCH2CH2-, -C6H4C6H4-, -C6H4CH2C6H4-; und -(CH2)3C(O)SCH2CH2- ein. Bevorzugt als R1 und R2 sind Methyl, Phenyl und C2 bis C22-Alkylreste. Bei den C2 bis C22 Alkylresten sind ganz besonders Lauryl-, Stearyl-, und Behenylreste bevorzugt. Die Zahlen x, y und z sind ganze Zahlen und laufen jeweils unabhängig voneinander von 0 bis 50.000. Die Molgewichte der Dimethicone liegen zwischen 1000 D und 10000000 D. Die Viskositäten liegen zwischen 100 und 10000000 cPs gemessen bei 25°C mit Hilfe eines Glaskapiliarviskosimeters nach der Dow Corning Corporate Testmethode CTM 0004 vom 20. Juli 1970. Bevorzugte Viskositäten liegen zwischen 1000 und 5000000 cPs, banz besonders bevorzugte Viskositäten liegen zwischen 10000 und 3000000 cPs. Der bevorzugteste Bereich liegt zwischen 50000 und 2000000 cPs.
  • Selbstverständlich umfasst die erfindungsgemäße Lehre auch, dass die Dimethiconole bereits als Emulsion vorliegen können. Dabei kann die entsprechende Emulsion der Dimethiconole sowohl nach der Herstellung der entsprechenden Dimethiconole aus diesen und den dem Fachmann bekannten üblichen Verfahren zur Emulgierung hergestellt werden. Hierzu können als Hilfsmittel zur Herstellung der entsprechenden Emulsionen sowohl kationische, anionische, nichtionische oder zwitterionische Tenside und Emulgatoren als Hilfsstoffe verwendet werden. Selbstverständlich können die Emulsionen der Dimethiconole auch direkt durch ein Emulsionspolymerisationsverfahren hergestellt werden. Auch derartige Verfahren sind dem Fachmann wohl bekannt. Hierzu sei beispielsweise verwiesen auf die „Encyclopedia of Polymer Science and Engineering, Volume 15, Second Edition, Seiten 204 bis 308, John Wiley & Sons, Inc. 1989. Auf dieses Standardwerk wird ausdrücklich Bezug genommen.
  • Wenn die erfindungsgemäßen Dimethiconole als Emulsion verwendet werden, dann beträgt die Tröpfchengröße der emulgierten Teilchen erfindungsgemäß 0,01 μm bis 10000 μm, bevorzugt 0,01 bis 100 μm, ganz besonders bevorzugt 0,01 bis 20 μm und am bevorzugtesten 0,01 bis 10 μm. Die Teilchengröße wird dabei nach der Methode der Lichtstreuung bestimmt.
  • Werden verzweigte Dimethiconole verwendet, so ist darunter zu verstehen, dass die Verzweigung größer ist, als eine zufällige Verzweigung, welche durch Verunreinigungen der jeweiligen Monomere zufällig entsteht. Im Sinne der vorliegenden Verbindung ist daher unter verzweigten Dimethiconolen zu verstehen, dass der Verzweigungsgrad größer als 0,01% ist. Bevorzugt ist ein Verzweigungsgrad größer als 0,1% und ganz besonders bevorzugt von größer als 0,5%. Der Grad der Verzweigung wird dabei aus dem Verhältnis der unverzweigten Monomeren, das heißt der Menge des monofunktionalen Siloxanes, zu den verzweigenden Monomeren, das heißt der Menge an tri- und tetrafunktionalen Siloxanen, bestimmt. Erfindungsgemäß können sowohl niedrigverzweigte als auch hochverzweigte Dimethiconole ganz besonders bevorzugt sein.
  • Als Beispiele für derartige Produkte werden die folgenden Handelsprodukte genannt: Botanisil NU-150M (Botanigenics), Dow Corning 1-1254 Fluid, Dow Corning 2-9023 Fluid, Dow Corning 2-9026 Fluid, Ultrapure Dimethiconol (Ultra Chemical), Unisil SF-R (Universal Preserve), X-21-5619 (Shin-Etsu Chemical Co.), Abil OSW 5 (Degussa Care Specialties), ACC DL-9430 Emulsion (Taylor Chemical Company), AEC Dimethiconol & Sodium Dodecylbenzenesulfonate (A & E Connock (Perfumery & Cosmetics) Ltd.), BC Dimethiconol Emulsion 95 (Basildon Chemical Company, Ltd.), Cosmetic Fluid 1401, Cosmetic Fluid 1403, Cosmetic Fluid 1501, Cosmetic Fluid 1401 DC (alle zuvor genannten Chemsil Silicones, Inc.), Dow Corning 1401 Fluid, Dow Corning 1403 Fluid, Dow Corning 1501 Fluid, Dow Corning 1784 HVF Emulsion, Dow Corning 9546 Silicone Elastomer Blend (alle zuvor genannten Dow Corning Corporation), Dub Gel SI 1400 (Stearinerie Dubois Fils), HVM 4852 Emulsion (Crompton Corporation), Jeesilc 6056 (Jeen International Corporation), Lubrasil, Lubrasil DS (beide Guardian Laboratories), Nonychosine E, Nonychosine V (beide Exsymol), SanSurf Petrolatum-25, Satin Finish (beide Collaborative Laboratories, Inc.), Silatex-D30 (Cosmetic Ingredient Resources), Silsoft 148, Silsoft E-50, Silsoft E-623 (alle zuvor genannten Crompton Corporation), SM555, SM2725, SM2765, SM2785 (alle zuvor genannten GE Silicones), Taylor T-Sil CD-1, Taylor TME-4050E (alle Taylor Chemical Company), TH V 148 (Crompton Corporation), Tixogel CYD-1429 (Sud-Chemie Performance Additives), Wacker-Belsil CM 1000, Wacker-Belsil CM 3092, Wacker-Belsil CM 5040, Wacker-Belsil DM 3096, Wacker-Belsil DM 3112 VP, Wacker-Belsil DM 8005 VP, Wacker-Belsil DM 60081 VP (alle zuvor genannten Wacker-Chemie GmbH).
  • Wenn die Dimethiconole (S1) in der Zusammensetzung enthalten sind, so enthalten diese Zusammensetzungen 0,01 bis 10 Gew.-%, vorzugsweise 0,1 bis 8 Gew.-%, besonders bevorzugt 0,25 bis 7,5 Gew.-% und insbesondere 0,5 bis 5 Gew.-% an Dimethiconol bezogen auf die Zusammensetzung.
  • Dimethicone (S2) bilden die zweite Gruppe der Silikone, welche erfindungsgemäß besonders bevorzugt sind. Die erfindungsgemäßen Dimethicone können sowohl linear als auch verzweigt als auch cyclisch oder cyclisch und verzweigt sein. Lineare Dimethicone können durch die folgende Strukturformel (S2-I) dargestellt werden: (SiR1 3)-O-(SiR2 2-O-)x-(SiR1 3) (S2-I)
  • Verzweigte Dimethicone können durch die Strukturformel (S2-II) dargestellt werden:
    Figure 00610001
  • Die Reste R1 und R2 stehen unabhängig voneinander jeweils für Wasserstoff, einen Methylrest, einen C2 bis C30 linearen, gesättigten oder ungesättigten Kohlenwasserstoffrest, einen Phenylrest und/oder eine Arylrest. Nicht einschränkende Beispiele der durch R1 und R2 repräsentierten Reste schließen Alkylreste, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Pentyl, Isopentyl, Neopentyl, Amyl, Isoamyl, Hexyl, Isohexyl und ähnliche; Alkenylreste, wie Vinyl, Halogenvinyl, Alkylvinyl, Allyl, Halogenallyl, Alkylallyl; Cycloalkylreste, wie Cyclobutyl, Cyclopentyl, Cyclohexyl und ähnliche; Phenylreste, Benzylreste, Halogenkohlenwasserstoffreste, wie 3-Chlorpropyl, 4-Brombutyl, 3,3,3-Trifluorpropyl, Chlorcyclohexyl, Bromphenyl, Chlorphenyl und ähnliche sowie schwefelhaltige Reste, wie Mercaptoethyl, Mercaptopropyl, Mercaptohexyl, Mercaptophenyl und ähnliche ein; vorzugsweise ist R1 und R2 ein Alkylrest, der 1 bis etwa 6 Kohlenstoffatomen enthält, und am bevorzugtesten ist R1 und R2 Methyl. Beispiele von R1 schließen Methylen, Ethylen, Propylen, Hexamethylen, Decamethylen, -CH2CH(CH3)CH2-, Phenylen, Naphthylen, -CH2CH2SCH2CH2-, -CH2CH2OCH2-, -OCH2CH2-, -OCH2CH2CH2-, -CH2CH(CH3)C(O)OCH2-, -(CH2)3CC(O)OCH2CH2-, -C6H4C6H4-, -C6H4CH2C6H4-; und -(CH2)3C(O)SCH2CH2- ein.
  • Bevorzugt als R1 und R2 sind Methyl, Phenyl und C2 bis C22-Alkylreste. Bei den C2 bis C22 Alkylresten sind ganz besonders Lauryl-, Stearyl-, und Behenylreste bevorzugt. Die Zahlen x, y und z sind ganze Zahlen und laufen jeweils unabhängig voneinander von 0 bis 50.000. Die Molgewichte der Dimethicone liegen zwischen 1000 D und 10000000 D. Die Viskositäten liegen zwischen 100 und 10000000 cPs gemessen bei 25°C mit Hilfe eines Glaskapillarviskosimeters nach der Dow Corning Corporate Testmethode CTM 0004 vom 20. Juli 1970. Bevorzugte Viskositäten liegen zwischen 1000 und 5000000 cPs, banz besonders bevorzugte Vsikositäten liegen zwischen 10000 und 3000000 cPs. Der bevorzugteste Bereich liegt zwischen 50000 und 2000000 cPs.
  • Selbstverständlich umfasst die erfindungsgemäße Lehre auch, dass die Dimethicone bereits als Emulsion vorliegen können. Dabei kann die entsprechende Emulsion der Dimethicone sowohl nach der Herstellung der entsprechenden Dimethicone aus diesen und den dem Fachmann bekannten üblichen Verfahren zur Emulgierung hergestellt werden. Hierzu können als Hilfsmittel zur Herstellung der entsprechenden Emulsionen sowohl kationische, anionische, nichtionische oder zwitterionische Tenside und Emulgatoren als Hilfsstoffe verwendet werden. Selbstverständlich können die Emulsionen der Dimethicone auch direkt durch ein Emulsionspolymerisationsverfahren hergestellt werden. Auch derartige Verfahren sind dem Fachmann wohl bekannt. Hierzu sei beispielsweise verwiesen auf die „Encyclopedia of Polymer Science and Engineering, Volume 15, Second Edition, Seiten 204 bis 308, John Wiley & Sons, Inc. 1989. Auf dieses Standardwerk wird ausdrücklich Bezug genommen.
  • Wenn die erfindungsgemäßen Dimethicone als Emulsion verwendet werden, dann beträgt die Tröpfchengröße der emulgierten Teilchen erfindungsgemäß 0,01 μm bis 10000 μm, bevorzugt 0,01 bis 100 μm, ganz besonders bevorzugt 0,01 bis 20 μm und am bevorzugtesten 0,01 bis 10 μm. Die Teilchengröße wird dabei nach der Methode der Lichtstreuung bestimmt.
  • Werden verzweigte Dimethicone verwendet, so ist darunter zu verstehen, dass die Verzweigung größer ist, als eine zufällige Verzweigung, welche durch Verunreinigungen der jeweiligen Monomere zufällig entsteht. Im Sinne der vorliegenden Verbindung ist daher unter verzweigten Dimethiconen zu verstehen, dass der Verzweigungsgrad größer als 0,01% ist. Bevorzugt ist ein Verzweigungsgrad größer als 0,1% und ganz besonders bevorzugt von größer als 0,5%. Der Grad der Verzweigung wird dabei aus dem Verhältnis der unverzweigten Monomeren, das heißt der Menge des monofunktionalen Siloxanes, zu den verzweigenden Monomeren, das heißt der Menge an tri- und tetrafunktionalen Siloxanen, bestimmt. Erfindungsgemäß können sowohl niedrigverzweigte als auch hochverzweigte Dimethicone ganz besonders bevorzugt sein.
  • Wenn die Dimethicone (S2) in der erfindungsgemäßen Zusammensetzung enthalten sind, so enthalten diese Zusammensetzungen 0,01 bis 10 Gew.-%, vorzugsweise 0,1 bis 8 Gew.-%, besonders bevorzugt 0,25 bis 7,5 Gew.-% und insbesondere 0,5 bis 5 Gew.-% an Dimethiconol bezogen auf die Zusammensetzung.
  • Dimethiconcopolyole (S3) bilden eine weitere Gruppe bevorzugter Silikone. Dimethiconole können durch die folgende Strukturformeln dargestellt werden: (SiR1 3)-O-(SiR2 2-O-)x-(SiRPE-O-)y-(SiR1 3) (S3-I)oder durch die nachfolgende Strukturformel: PE-(SiR1 2)-O-(SiR2 2-O-)x-(SiR1 2)-PE (S3-II)
  • Verzweigte Dimethiconcopolyole können durch die Strukturformel (S3-III) dargestellt werden:
    Figure 00640001
    oder durch die Strukturformel (S3-IV):
    Figure 00640002
  • Die Reste R1 und R2 stehen unabhängig voneinander jeweils für Wasserstoff, einen Methylrest, einen C2 bis C30 linearen, gesättigten oder ungesättigten Kohlenwasserstoffrest, einen Phenylrest und/oder eine Arylrest. Nicht einschränkende Beispiele der durch R1 und R2 repräsentierten Reste schließen Alkylreste, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Pentyl, Isopentyl, Neopentyl, Amyl, Isoamyl, Hexyl, Isohexyl und ähnliche; Alkenylreste, wie Vinyl, Halogenvinyl, Alkylvinyl, Allyl, Halogenallyl, Alkylallyl; Cycloalkylreste, wie Cyclobutyl, Cyclopentyl, Cyclohexyl und ähnliche; Phenylreste, Benzylreste, Halogenkohlenwasserstoffreste, wie 3-Chlorpropyl, 4-Brombutyl, 3,3,3-Trifluorpropyl, Chlorcyclohexyl, Bromphenyl, Chlorphenyl und ähnliche sowie schwefelhaltige Reste, wie Mercaptoethyl, Mercaptopropyl, Mercaptohexyl, Mercaptophenyl und ähnliche ein; vorzugsweise ist R1 und R2 ein Alkylrest, der 1 bis etwa 6 Kohlenstoffatomen enthält, und am bevorzugtesten ist R1 und R2 Methyl. Beispiele von R1 schließen Methylen, Ethylen, Propylen, Hexamethylen, Decamethylen, -CH2CH(CH3)CH2-, Phenylen, Naphthylen, -CH2CH2SCH2CH2-, -CH2CH2OCH2-, -OCH2CH2-, -OCH2CH2CH2-, -CH2CH(CH3)C(O)OCH2-, -(CH2)3CC(O)OCH2CH2-, -C6H4C6H4-, -C6H4CH2C6H4-; und -(CH2)3C(O)SCH2CH2- ein. Bevorzugt als R1 und R2 sind Methyl, Phenyl und C2 bis C22-Alkylreste. Bei den C2 bis C22 Alkylresten sind ganz besonders Lauryl-, Stearyl-, und Behenylreste bevorzugt. PE steht für einen Polyoxyalkylenrest. Bevorzugte Polyoxyalkylenreste leiten sich ab von Ethylenoxid, Propylenoxid und Glycerin. Die Zahlen x, y und z sind ganze Zahlen und laufen jeweils unabhängig voneinander von 0 bis 50.000. Die Molgewichte der Dimethicone liegen zwischen 1000 D und 10000000 D. Die Viskositäten liegen zwischen 100 und 10000000 cPs gemessen bei 25°C mit Hilfe eines Glaskapillarviskosimeters nach der Dow Corning Corporate Testmethode CTM 0004 vom 20. Juli 1970. Bevorzugte Viskositäten liegen zwischen 1000 und 5000000 cPs, banz besonders bevorzugte Vsikositäten liegen zwischen 10000 und 3000000 cPs. Der bevorzugteste Bereich liegt zwischen 50000 und 2000000 cPs.
  • Selbstverständlich umfasst die erfindungsgemäße Lehre auch, dass die Dimethiconcopolymere bereits als Emulsion vorliegen können. Dabei kann die entsprechende Emulsion der Dimethiconcopolyole sowohl nach der Herstellung der entsprechenden Dimethiconcopolyole aus diesen und den dem Fachmann bekannten üblichen Verfahren zur Emulgierung hergestellt werden. Hierzu können als Hilfsmittel zur Herstellung der entsprechenden Emulsionen sowohl kationische, anionische, nichtionische oder zwitterionische Tenside und Emulgatoren als Hilfsstoffe verwendet werden. Selbstverständlich können die Emulsionen der Dimethiconcopolyole auch direkt durch ein Emulsionspolymerisationsverfahren hergestellt werden. Auch derartige Verfahren sind dem Fachmann wohl bekannt. Hierzu sei beispielsweise verwiesen auf die „Encyclopedia of Polymer Science and Engineering, Volume 15, Second Edition, Seiten 204 bis 308, John Wiley & Sons, Inc. 1989. Auf dieses Standardwerk wird ausdrücklich Bezug genommen.
  • Wenn die erfindungsgemäßen Dimethiconcopolyole als Emulsion verwendet werden, dann beträgt die Tröpfchengröße der emulgierten Teilchen erfindungsgemäß 0,01 μm bis 10000 μm, bevorzugt 0,01 bis 100 μm, ganz besonders bevorzugt 0,01 bis 20 μm und am bevorzugtesten 0,01 bis 10 μm. Die Teilchengröße wird dabei nach der Methode der Lichtstreuung bestimmt.
  • Werden verzweigte Dimethiconcopolyole verwendet, so ist darunter zu verstehen, dass die Verzweigung größer ist, als eine zufällige Verzweigung, welche durch Verunreinigungen der jeweiligen Monomere zufällig entsteht. Im Sinne der vorliegenden Verbindung ist daher unter verzweigten Dimethiconcopolyolen zu verstehen, dass der Verzweigungsgrad größer als 0,01% ist. Bevorzugt ist ein Verzweigungsgrad größer als 0,1% und ganz besonders bevorzugt von größer als 0,5%. Der Grad der Verzweigung wird dabei aus dem Verhältnis der unverzweigten Monomeren, das heißt der Menge des monofunktionalen Siloxanes, zu den verzweigenden Monomeren, das heißt der Menge an tri- und tetrafunktionalen Siloxanen, bestimmt. Erfindungsgemäß können sowohl niedrigverzweigte als auch hochverzweigte Dimethiconcopolyole ganz besonders bevorzugt sein.
  • Wenn die Dimethiconcopolyole (S3) in der Zusammensetzung enthalten sind, so enthalten diese Zusammensetzungen 0,01 bis 10 Gew.-%, vorzugsweise 0,1 bis 8 Gew.-%, besonders bevorzugt 0,25 bis 7,5 Gew.-% und insbesondere 0,5 bis 5 Gew.-% an Dimethiconcopolyol bezogen auf die Zusammensetzung.
  • Aminofunktionelle Silikone oder auch Amodimethicone (S4) genannt, sind Silicone, welche mindestens eine (gegebenenfalls substituierte) Aminogruppe aufweisen.
  • Solche Silicone können z.B. durch die Formel (S4-I) M(RaQbSiO(4-a-b)/2)x(RcSiO(4-c)/2)yM (S4-I)
  • Beschreiben werden, wobei in der obigen Formel R ein Kohlenwasserstoff oder ein Kohlenwasserstoffrest mit 1 bis etwa 6 Kohlenstoffatomen ist, Q ein polarer Rest der allgemeinen Formel -R1HZ ist, worin R1 eine zweiwertige, verbindende Gruppe ist, die an Wasserstoff und den Rest Z gebunden ist, zusammengesetzt aus Kohlenstoff- und Wasserstoffatomen, Kohlenstoff-, Wasserstoff- und Sauerstoffatomen oder Kohlenstoff-, Wasserstoff- und Stickstoffatomen, und Z ein organischer, aminofunktioneller Rest ist, der mindestens eine aminofunktionelle Gruppe enthält; "a" Werte im Bereich von etwa 0 bis etwa 2 annimmt, "b" Werte im Bereich von etwa 1 bis etwa 3 annimmt, "a" + "b" kleiner als oder gleich 3 ist, und "c" eine Zahl im Bereich von etwa 1 bis etwa 3 ist, und x eine Zahl im Bereich von 1 bis etwa 2.000, vorzugsweise von etwa 3 bis etwa 50 und am bevorzugtesten von etwa 3 bis etwa 25 ist, und y eine Zahl im Bereich von etwa 20 bis etwa 10.000, vorzugsweise von etwa 125 bis etwa 10.000 und am bevorzugtesten von etwa 150 bis etwa 1.000 ist, und M eine geeignete Silicon-Endgruppe ist, wie sie im Stande der Technik bekannt ist, vorzugsweise Trimethylsiloxy. Nicht einschränkende Beispiele der durch R repräsentierten Reste schließen Alkylreste, wie Methyl, Ethyl, Propyl, Isopropyl, Isopropyl, Butyl, Isobutyl, Amyl, Isoamyl, Hexyl, Isohexyl und ähnliche; Alkenylreste, wie Vinyl, Halogenvinyl, Alkylvinyl, Allyl, Halogenallyl, Alkylallyl; Cycloalkylreste, wie Cyclobutyl, Cyclopentyl, Cyclohexyl und ähnliche; Phenylreste, Benzylreste, Halogenkohlenwasserstoffreste, wie 3-Chlorpropyl, 4-Brombutyl, 3,3,3-Trifluorpropyl, Chlorcyclohexyl, Bromphenyl, Chlorphenyl und ähnliche sowie schwefelhaltige Reste, wie Mercaptoethyl, Mercaptopropyl, Mercaptohexyl, Mercaptophenyl und ähnliche ein; vorzugsweise ist R ein Alkylrest, der 1 bis etwa 6 Kohlenstoffatomen enthält, und am bevorzugtesten ist R Methyl. Beispiele von R1 schließen Methylen, Ethylen, Propylen, Hexamethylen, Decamethylen, -CH2CH(CH3)CH2-, Phenylen, Naphthylen, -CH2CH2SCH2CH2-, -CH2CH2OCH2-, -OCH2CH2-, -OCH2CH2CH2-, -CH2CH(CH3)C(O)OCH2-, -(CH2)3CC(O)OCH2CH2-, -C6H4C6H4-, -C6H4CH2C6H4-; und -(CH2)3C(O)SCH2CH2- ein.
  • Z ist ein organischer, aminofunktioneller Rest, enthaltend mindestens eine funktionelle Aminogruppe. Eine mögliche Formel für Z ist NH(CH2)zNH2, worin z 1 oder mehr ist. Eine andere mögliche Formel für Z ist -NH(CH2)z(CH2)zzNH, worin sowohl z als auch zz unabhängig 1 oder mehr sind, wobei diese Struktur Diamino-Ringstrukturen umfaßt, wie Piperazinyl. Z ist am bevorzugtesten ein -NHCH2CH2NH2-Rest. Eine andere mögliche Formel für Z ist -(CH2)z(CH2)zzNX2 oder -NX2, worin jedes X von X2 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff und Alkylgruppen mit 1 bis 12 Kohlenstoffatomen, und zz 0 ist.
  • Q ist am bevorzugtesten ein polarer, aminofunktioneller Rest der Formel -CH2CH2CH2NHCH2CH2NH2. In den Formeln nimmt "a" Werte im Bereich von etwa 0 bis etwa 2 an, "b" nimmt Werte im Bereich von etwa 2 bis etwa 3 an, "a" + "b" ist kleiner als oder gleich 3, und "c" ist eine Zahl im Bereich von etwa 1 bis etwa 3. Das molare Verhältnis der RaQb SiO(4-a-b)/2-Einheiten zu den RcSiO(4-c)/2-Einheiten liegt im Bereich von etwa 1:2 bis 1:65, vorzugsweise von etwa 1:5 bis etwa 1:65 und am bevorzugtesten von etwa 1:15 bis etwa 1:20. Werden ein oder mehrere Silicone der obigen Formel eingesetzt, dann können die verschiedenen variablen Substituenten in der obigen Formel bei den verschiedenen Siliconkomponenten, die in der Siliconmischung vorhanden sind, verschieden sein.
  • Bevorzugte erfindungsgemäße Mittel sind dadurch gekennzeichnet, daß sie ein aminofunktionelles Silikon der Formel (S4-II) R'aG3-a-Si(OSiG2)n-(OSiGbR'2-b)m-O-SiG3-a-R'a (S4-II),enthalten, worin bedeutet:
    • – G ist-H, eine Phenylgruppe, -OH, -O-CH3, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2, -CH2CH2CH2H3, -CH2CH(CH3)2, -CH(CH3)CH2CH3, -C(CH3)3;
    • – a steht für eine Zahl zwischen 0 und 3, insbesondere 0;
    • – b steht für eine Zahl zwischen 0 und 1, insbesondere 1,
    • – m und n sind Zahlen, deren Summe (m + n) zwischen 1 und 2000, vorzugsweise zwischen 50 und 150 beträgt, wobei n vorzugsweise Werte von 0 bis 1999 und insbesondere von 49 bis 149 und m vorzugsweise Werte von 1 bis 2000, insbesondere von 1 bis 10 annimmt,
    • – R' ist ein monovalenter Rest ausgewählt aus • -N(R'')-CH2-CH2-N(R'')2 • -N(R'')2 • -N+(R'')3A • -N+H(R'')2A • -N+H2(R'')A • -N(R'')-CH2-CH2-N+R''H2A,
    wobei jedes R'' für gleiche oder verschiedene Reste aus der Gruppe -H, -Phenyl, -Benzyl, der C1-20-Alkylreste, vorzugsweise -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2, -CH2CH2CH2H3, -CH2CH(CH3)2, -CH(CH3)CH2CH3, -C(CH3)3, steht und A ein Anion repräsentiert, welches vorzugsweise ausgewählt ist aus Chlorid, Bromid, Iodid oder Methosulfat.
  • Besonders bevorzugte erfindungsgemäße Mittel sind dadurch gekennzeichnet, daß sie ein aminofunktionelles Silikon der Formel (S4-III)
    Figure 00690001
    enthalten, worin m und n Zahlen sind, deren Summe (m + n) zwischen 1 und 2000, vorzugsweise zwischen 50 und 150 beträgt, wobei n vorzugsweise Werte von 0 bis 1999 und insbesondere von 49 bis 149 und m vorzugsweise Werte von 1 bis 2000, insbesondere von 1 bis 10 annimmt.
  • Diese Silicone werden nach der INCI-Deklaration als Trimethylsilylamodimethicone bezeichnet.
  • Besonders bevorzugt sind auch erfindungsgemäße Mittel, die dadurch gekennzeichnet sind, daß sie ein aminofunktionelles Silikon der Formel (S4-IV)
    Figure 00690002
    enthalten, worin R für -OH, -O-CH3 oder eine -CH3-Gruppe steht und m, n1 und n2 Zahlen sind, deren Summe (m + n1 + n2) zwischen 1 und 2000, vorzugsweise zwischen 50 und 150 beträgt, wobei die Summe (n1 + n2) vorzugsweise Werte von 0 bis 1999 und insbesondere von 49 bis 149 und m vorzugsweise Werte von 1 bis 2000, insbesondere von 1 bis 10 annimmt.
  • Diese Silicone werden nach der INCI-Deklaration als Amodimethicone bezeichnet.
  • Unabhängig davon, welche aminofunktionellen Silicone eingesetzt werden, sind erfindungsgemäße Mittel bevorzugt, bei denen das aminofunktionelle Silikon eine Aminzahl oberhalb von 0,25 meq/g, vorzugsweise oberhalb von 0,3 meq/g und insbesondere oberhalb von 0,4 meq/g aufweist. Die Aminzahl steht dabei für die Milli-Äquivalente Amin pro Gramm des aminofunktionellen Silicons. Sie kann durch Titration ermittelt und auch in der Einheit mg KOH/g angegeben werden.
  • Wenn die Amodimethicone (S4) in der Zusammensetzung enthalten sind, so enthalten diese Zusammensetzungen 0,01 bis 10 Gew.-%, vorzugsweise 0,1 bis 8 Gew.-%, besonders bevorzugt 0,25 bis 7,5 Gew.-% und insbesondere 0,5 bis 5 Gew.-% an Amodimethicon bezogen auf die Zusammensetzung.
  • Die Erfindung umfasst selbstverständlich auch die Erkenntnis, dass in den erfindungsgemäßen Zusammensetzungen eine Mischung aus mindestens 2 unterschiedlichen Silikonen verwendet werden kann. Bevorzugte Mischungen verschiedener Silikone sind beispielsweise Dimethicone und Dimethiconole, lineare Dimethicone und cylische Dimethiconole. Ganz besonders bevorzugte Mischungen von Silikonen enthalten mindestens ein cyclisches Dimethiconol und/oder mindestens ein Dimethicon, mindestens ein weiteres nicht cylischen Dimethicon und/oder mindestens ein weiteres Dimethiconol. Bevorzugteste Mischungen enthalten mindestens ein aminofunktionelles Silikon sowie mindestens eine der zuvor beschriebenen Mischungen. Werden unterschiedliche Silikone als Mischung verwendet, so ist das Mischungsverhältnis weitgehend variabel. Bevorzugt werden jedoch alle zur Mischung verwendeten Silikone in einem Verhältnis von 5:1 bis 1:5 im Falle einer binären Mischung verwendet. Ein Verhältnis von 3:1 bis 1:3 ist besonders bevorzugt. Ganz besonders bevorzugte Mischungen enthalten alle in der Mischung enthaltenen Silikone weitestgehend in einem Verhältnis von etwa 1:1, jeweils bezogen auf die eingesetzten Mengen in Gew.-%.
  • Wenn Silikonmischungen in der Zusammensetzung enthalten sind, so enthalten diese Zusammensetzungen 0,01 bis 10 Gew.-%, vorzugsweise 0,1 bis 8 Gew.-%, besonders bevorzugt 0,25 bis 7,5 Gew.-% und insbesondere 0,5 bis 5 Gew.-% an Silikonmischung bezogen auf die Zusammensetzung.
  • Weitere ganz besonders bevorzugter Inhaltsstoffe der erfindungsgemäßen Mittel sind Polyhydroxyverbindungen. In einer besonders bevorzugten Ausführungsform ist daher mindestens eine Polyhydroxyverbindung mit mindestens 2 OH-Gruppen enthalten. Unter diesen Verbindungen sind diejenigen mit 2 bis 12 OH-Gruppen und insbesondere diejenigen mit 2, 3, 4, 5, 6 oder 10 OH-Gruppen bevorzugt.
  • Polyhydroxyverbindungen mit 2 OH-Gruppen sind beispielsweise Glycol (CH2(OH)CH2OH) und andere 1,2-Diole wie H-(CH2)n-CH(OH)CH2OH mit n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. Auch 1,3-Diole wie H-(CH2)n-CH(OH)CH2CH2OH mit n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 sind erfindungsgemäß einsetzbar. Die (n,n+1)- bzw. (n,n+2)-Diole mit nicht endständigen OH-Gruppen können ebenfalls eingesetzt werden.
  • Wichtige Vertreter von Polyhydroxyverbindungen mit 2 OH-Gruppen sind auch die Polyethylen- und Polypropylenglycole.
  • Unter den Polyhydroxyverbindungen mit 3 OH-Gruppen hat das Gylcerin eine herausragende Bedeutung.
  • Zusammenfassend sind erfindungsgemäße Mittel bevorzugt, bei denen die Polyhydroxyverbindung ausgewählt ist aus Ethylenglycol, Propylenglycol, Polyethylenglycol, Polypropylenglycol, Glycerin, Glucose, Fructose, Pentaerythrit, Sorbit, Mannit, Xylit und ihren Mischungen.
  • Unabhängig vom Typ der eingesetzten Polyhydroxyverbindung mit mindestens 2 OH-Gruppen sind erfindungsgemäße Mittel bevorzugt, die, bezogen auf das Gewicht des Mittels, 0,01 bis 5 Gew.-%, vorzugsweise 0,05 bis 4 Gew.-%, besonders bevorzugt 0,05 bis 3,5 Gew.-% und insbesondere 0,1 bis 2,5 Gew.-% Polyhydroxyverbindung(en) enthalten.
  • Mit besonderem Vorzug können die erfindungsgemäßen Mittel zusätzlich Polyethylenglycolether der Formel (IV) H(CH2)k(OCH2CH2)nOH (IV)enthalten, worin k eine Zahl zwischen 1 und 18 unterbesonderer Bevorzugung der Werte 0, 10, 12, 16 und 18 und n eine Zahl zwischen 2 und 20 unter besonderer Bevorzugung der Werte 2, 4, 5, 6, 7, 8, 9, 10, 12 und 14 bedeutet. Bevorzugt sind unter diesen die Alkylderivate des Diethylenglycols, des Triethylenglycols, des Tetraethylenglycols, des Pentathylenglycols, des Hexaethylenglycols, des Heptaethylenglycols, des Octtethylenglycols, des Nonaethylenglycols, des Decaethylenglycols, des Dodecaethylenglycols und des Tetradecaethylenglycols sowie die Alkylderivate des Dipropylenglycols, des Tripropylenglycols, des Tetrapropylenglycols, des Pentapropylenglycols, des Hexapropylenglycols, des Heptapropylenglycols, des Octapropylenglycols, des Nonapropylenglycols, des Decapropylenglycols, des Dodecapropylenglycols und des Tetradecapropyolenglycols, wobei unter diesen die Methyl-, Ehyl-, Propyl-, n-Butyl, n-Pentyl, n-Hexyl-, n-Heptyl-, n-Octyl-, n-Nonyl, n-Decyl-, n-Undecyl-, n-Dodecyl- und n-Tetradecyl-Derivate bevorzugt sind.
  • Es hat sich gezeigt, daß Mischungen „kurzkettiger" Polyalkylenglycolether mit solchen „langkettiger" Polyalkylenglycolether Vorteile besitzen. „Kurz- bzw. langkettig" bezieht sich in diesem Zusammenhang auf den Polymerisationsgrad des Polyalkylenglycols. Besonders bevorzugt sind Mischungen von Polyalkylenglycolethern mit einem Oligomerisierungsgrad von 5 oder weniger mit Polyalkylenglycolethern mit einem Oligomerisierungsgrad von 7 oder mehr. Bevorzugt sind Mischungen von Alkylderivaten des Diethylenglycols, des Triethylenglycols, des Tetraethylenglycols, des Pentathylenglycols, des Dipropylenglycols, des Tripropylenglycols, des Tetrapropylenglycols oder des Pentapropylenglycols mit Alkylderivaten des Hexaethylenglycols, des Heptaethylenglycols, des Octaethylenglycols, des Nonaethylenglycols, des Decaethylenglycols, des Dodecaethylenglycols, des Hexapropylenglycols, des Heptapropylenglycols, des Octapropylenglycols, des Nonapropylenglycols, des Decapropylenglycols, des Dodecapropylenglycols oder des Tetradecapropyolenglycols, wobei in beiden Fällen die n-Octyl-, n-Decyl-, n-Dodecyl- und n-Tetradecyl-Derivate bevorzugt sind.
  • Besonders bevorzugte erfindungsgemäße Mittel sind dadurch gekennzeichnet, daß es mindestens einen Polyalkylenglycolether (IVa) der Formel (IV), in der n für die Zahlen 2, 3, 4 oder 5 steht und mindestens einen Polyalkylenglycolether (IVb) der Formel (IV) enthält, in der n für die Zahlen 10, 12, 14 oder 16 steht, wobei das Gewichtsverhältnis (IVb) zu (IVa) 10:1 bis 1:10, vorzugsweise 7,5:1 bis 1:5 und insbesondere 5:1 bis 1:1 beträgt.
  • Die erfindungsgemäße Wirkstoffkombination kann prinzipiell direkt dem Färbemittel, dem Wellmittel oder der Fixierung zugegeben werden. Das Aufbringen der restrukturierenden Wirkstoffkombination auf die keratinische Faser kann aber auch in einem getrennten Schritt, entweder vor oder im Anschluß an den eigentlichen Färbe- oder Wellvorgang erfolgen. Auch getrennte Behandlungen, gegebenenfalls auch Tage oder Wochen vor oder nach der Haarbehandlung, beispielsweise durch Färben oder Wellen, werden von der erfindungsgemäßen Lehre umfaßt. Bevorzugt kann jedoch die Anwendung des erfindungsgemäßen Wirkstoffes nach der entsprechenden Haarbehandlung wie Färben oder Wellen insbesondere in den entsprechenden Haarbehandlungsmitteln erfolgen.
  • Der Begriff Färbevorgang umfaßt dabei alle dem Fachmann bekannten Verfahren, bei denen auf das, gegebenenfalls angefeuchtete, Haar ein Färbemittel aufgebracht wird und dieses entweder für eine Zeit zwischen wenigen Minuten und ca. 45 Minuten auf dem Haar belassen und anschließend mit Wasser oder einem tensidhaltigen Mittel ausgespült wird oder ganz auf dem Haar belassen wird. Es wird in diesem Zusammenhang ausdrücklich auf die bekannten Monographien, z. B. K. H. Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Hüthig Buch Verlag, Heidelberg, 1989, verwiesen, die das entsprechende Wissen des Fachmannes wiedergeben.
  • Der Begriff Wellvorgang umfaßt dabei alle dem Fachmann bekannten Verfahren, bei denen auf das, gegebenenfalls angefeuchtete, und auf Wickler gedrehte Haar ein Wellmittel aufgebracht wird und dieses entweder für eine Zeit zwischen wenigen Minuten und ca. 45 Minuten auf dem Haar belassen und anschließend mit Wasser oder einem tensidhaltigen Mittel ausgespült wird, anschließend auf das Haar eine Dauerwellfixierung aufgebracht wird und diese für eine Zeit zwischen wenigen Minuten und ca. 45 Minuten auf dem Haar belassen und anschließend mit Wasser oder einem tensidhaltigen Mittel ausgespült wird. Es wird in diesem Zusammenhang ausdrücklich auf die bekannten Monographien, z. B. K. H. Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Hüthig Buch Verlag, Heidelberg, 1989, verwiesen, die das entsprechende Wissen des Fachmannes wiedergeben.
  • Hinsichtlich der Art, gemäß welcher die erfindungsgemäße Wirkstoffkombination auf die keratinische Faser, insbesondere das menschliche Haar, aufgebracht wird, bestehen keine prinzipiellen Einschränkungen. Als Konfektionierung dieser Zubereitungen sind beispielsweise Cremes, Lotionen, Lösungen, Wässer, Emulsionen wie W/O-, O/W-, PIT-Emulsionen (Emulsionen nach der Lehre der Phaseninversion, PIT genannt), Mikroemulsionen und multiple Emulsionen, Gele, Sprays, Aerosole und Schaumaerosole geeignet. Der pH-Wert dieser Zubereitungen kann prinzipiell bei Werten von 2–11 liegen. Er liegt je nach der gewünschten Verwendung in einem bestimmten bevorzugten, dem Fachmann für diese Verwendung bekannten Bereich. Beispielsweise liegt der bevorzugte pH-Wert für Färbemittel bevorzugt zwischen 5 und 11, wobei Werte von 6 bis 10 besonders bevorzugt sind. Im Falle von Haarreinigungs- oder Haarpflegemitteln sowie Haarstylingmitteln liegt der bevorzugte pH-Wert im Bereich von 2 bis 8, wobei Werte von 2 bis 6 besonders bevorzugt sind.
  • Zur Einstellung dieses pH-Wertes kann praktisch jede für kosmetische Zwecke verwendbare Säure oder Base verwendet werden. Im Rahmen der Erfindung ist die Verwendung der erfindungsgemäßen Wirkstoffkombination auch zur Einstellung des pH-Wertes besonders bevorzugt. Bevorzugte Basen sind Ammoniak, Alkalihydroxide, Monoethanolamin, Triethanolamin sowie N,N,N',N'-Tetrakis-(2-hydroxypropyl)ethylendiamin.
  • Üblicherweise werden als Säuren Genußsäuren verwendet. Unter Genußsäuren werden solche Säuren verstanden, die im Rahmen der üblichen Nahrungsaufnahme aufgenommen werden und positive Auswirkungen auf den menschlichen Organismus haben. Genußsäuren sind beispielsweise Essigsäure, Milchsäure, Weinsäure, Zitronensäure, Äpfelsäure, Ascorbinsäure und Gluconsäure. Im Rahmen der Erfindung ist die Verwendung von Zitronensäure und Milchsäure besonders bevorzugt.
  • Auf dem Haar verbleibende Zubereitungen haben sich als wirksam erwiesen und können daher bevorzugte Ausführungsformen der erfindungsgemäßen Lehre darstellen. Unter auf dem Haar verbleibend werden erfindungsgemäß solche Zubereitungen verstanden, die nicht im Rahmen der Behandlung nach einem Zeitraum von wenigen Sekunden bis zu einer Stunde mit Hilfe von Wasser oder einer wäßrigen Lösung wieder aus dem Haar ausgespült werden. Vielmehr verbleiben die Zubereitungen bis zur nächsten Haarwäsche, d.h. in der Regel mehr als 12 Stunden, auf dem Haar.
  • Gemäß einer zweiten bevorzugten Ausführungsform werden diese Zubereitungen als Haarkur oder Haar-Conditioner formuliert. Die erfindungsgemäßen Zubereitungen gemäß dieser Ausführungsform können nach Ablauf dieser Einwirkzeit mit Wasser oder einem zumindest überwiegend wasserhaltigen Mittel ausgespült werden; sie können jedoch, wie oben ausgeführt, auf dem Haar belassen werden. Dabei kann es bevorzugt sein, die erfindungsgemäße Zubereitung vor der Anwendung eines reinigenden Mittels, eines Wellmittels oder anderen Haarbehandlungsmitteln auf das Haar aufzubringen. In diesem Falle dient die erfindungsgemäße Zubereitung als Strukturschutz für die nachfolgenden Anwendungen.
  • Gemäß weiteren bevorzugten Ausführungsformen kann es sich bei den erfindungsgemäßen Mitteln aber beispielsweise auch um reinigende Mittel wie Shampoos, pflegende Mittel wie Spülungen, festigende Mittel wie Haarfestiger, Schaumfestiger, Styling Gels und Fönwellen, dauerhafte Verformungsmittel wie Dauerwell- und Fixiermittel sowie insbesondere im Rahmen eines Dauerwellverfahrens oder Färbeverfahrens eingesetzte Vorbehandlungsmittel oder Nachspülungen handeln.
  • Zur Anwendung der erfindungsgemäßen Zusammensetzungen als Aerosolsprays müssen Treibgase verwendet werden. Die erfindungsgemäß bevorzugten Treibgase sind ausgewählt aus den Kohlenwasserstoffen mit 3 bis 5 Kohlenstoffatomen, wie Propan, n-Butan, iso-Butan, n-Pentan und iso-Pentan, Dimethylether, Kohlendioxid, Distickstoffoxid, Fluorkohlenwasserstoffen und Fluorchlorkohlenwasserstoffen sowie Mischungen dieser Substanzen. Ganz besonders bevorzugte Treibgase sind Propan, Butan, Isobutan, Pentan, Isopentan, Dimethylether und die Gemische dieser zuvor ganannten Treibgase jeweils untereinander. Erfindungsgemäß bevorzugteste Treibgase sind die Gemische von Dimethylether mit Kohlenwasserstoffen. Innerhalb der Gruppe der Kohlenwasserstoffe als Treibgasen sind bevorzugt sind n-Butan und Propan.
  • Vorteilhafterweise wird das Treibmittel so ausgewählt, daß es gleichzeitig als Lösungsmittel für weitere Inhaltsstoffe wie beispielsweise Öl- und Wachskomponenten, den Fettstoffen (D) dienen kann. Das Treibmittel kann dann als Lösungsmittel für diese letztgenannten Komponenten dienen, wenn diese bei 20°C zu mindestens 0,5 Gew.-%, bezogen auf das Treibmittel, in diesem löslich sind.
  • Gemäß einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Zubereitungen die genannten Kohlenwasserstoffe oder Mischungen der genannten Kohlenwasserstoffe mit Dimethylether als einziges Treibmittel. Die Erfindung umfaßt aber ausdrücklich auch die Mitverwendung von Treibmittel vom Typ der Fluorchlorkohlenwasserstoffe, insbesondere aber der Fluorkohlenwasserstoffe.
  • Die Treibgase sind in Mengen von 5–98 Gew.-%, bevorzugt 10–98 Gew.-% und besonders bevorzugt 20–98 Gew.-%, ganz besonders bevorzugt von 40 bis 98 Gew.-%, jeweils bezogen auf die gesamte Aerosolzusammensetzung, enthalten.
  • Die erfindungsgemäßen Zusammensetzungen können in handelsüblichen Aerosoldosen verpackt sein. Die Dosen können aus Weißblech oder aus Aluminium sein. Weiterhin können die Dosen innen beschichtet sein, um die Gefahr der Korrosion so gering wie möglich zu halten.
  • Neben der erfindungsgemäß zwingend erforderlichen restrukturierenden Wirkstoffkombination und den weiteren, oben genannten bevorzugten Komponenten können diese Zubereitungen prinzipiell alle weiteren, dem Fachmann für solche kosmetischen Mittel bekannten Komponenten enthalten.
  • Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise
    • – Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi arabicum, Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, Cellulose-Derivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellulose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Polyvinylalkohol,
    • – haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin, Ei-Lecitin und Kephaline,
    • – Parfümöle, Dimethylisosorbid und Cyclodextrine,
    • – Lösungsmittel und -vermittler wie Ethanol, Isopropanol, Ethylenglykol, Propylenglykol, Glycerin und Diethylenglykol,
    • – symmetrische und unsymmetrische, lineare und verzweigte Dialkylether mit insgesamt zwischen 12 bis 36C-Atomen, insbesondere 12 bis 24C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether und Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl-n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert-butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso-Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether,
    • – Monoester von C8 bis C30-Fettsäuren mit Alkoholen mit 6 bis 24C-Atomen,
    • – konditionierende Wirkstoffe wie Paraffinöle, pflanzliche Öle, z. B Sonnenblumenöl, Orangenöl, Mandelöl, Weizenkeimöl und Pfirsichkernöl,
    • – Farbstoffe zum Anfärben des Mittels,
    • – Antischuppenwirkstoffe wie Piroctone Olamine, Zink Omadine und Climbazol,
    • – Wirkstoffe wie Allantoin und Bisabolol,
    • – Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether,
    • – Fette und Wachse wie Walrat, Bienenwachs, Montanwachs und Paraffine,
    • – Fettsäurealkanolamide,
    • – Komplexbildner wie EDTA, NTA, β-Alanindiessigsäure, Iminodibernsteinsäure und deren Salze sowie Phosphonsäuren,
    • – Quell- und Penetrationsstoffe wie primäre, sekundäre und tertiäre Phosphate,
    • – Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere
    • – Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat,
    • – Pigmente,
    • – Reduktionsmittel wie z. B. Thioglykolsäure und deren Derivate, Thiomilchsäure, Cysteamin, Thioäpfelsäure und α-Mercaptoethansulfonsäure,
    • – Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft,
    • – Antioxidantien.
  • Unter den zuvor genannten Hilfsstoffen sind als Komplexbildner Iminodibernsteinsäure und deren Salze ganz besonders bevorzugt.
  • Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Komponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. die oben genannte Monographie von K. H. Schrader verwiesen.
  • Ein zweiter Gegenstand der Erfindung sind Mittel zur Restrukturierung von Fasern, insbesondere keratinischer Fasern, enthaltend
    • a. eine Wirkstoffkombination, dadurch gekennzeichnet, dass diese Wirkstoffkombination mindestens zwei Wirkstoffe aus mindestens zwei unterschiedlichen Wirkstoffgruppen enthält, wobei die Wirkstoffgruppen ausgewählt sind aus der Gruppe der Proteinhydrolysate und/oder deren Derivaten (A), der Gruppe der kurzkettigen Carbonsäuren (B) und/oder der Gruppe der Gruppe der Polyhydroxyverbindungen (C),
    • b. ein Silikon (S) und
    • c. ein kationisches Polymeren (G1).
  • Bezüglich weiterer Komponenten dieser Mittel wird auf das oben gesagte verwiesen.
  • Ein dritter Gegenstand der Erfindung ist ein Verfahren zur Restrukturierung von Fasern, insbesondere keratinischer Fasern, bei dem ein Mittel mit der erfindungsgemäßen Wirkstoffkombination, wie in einem der Ansprüche 1 bis 9 verwendet auf die Fasern aufgetragen wird, wobei das Mittel gewünschtenfalls nach einer Einwirkzeit von 1 bis 45 Minuten wieder ausgespült wird.
  • Alle Mengenangaben sind, soweit nicht anders vermerkt, Gewichtsteile.
  • 1. Wirkungsnachweis
  • a) Vorbehandlung
  • Strähnen der Fa. Alkinco (0,5g, Code 6634) wurden einer herkömmlichen Dauerwellbehandlungen mit dem Handelsprodukt Poly Lock-Normale Dauerwelle unterzogen. Im Rahmen dieser Dauerwellbehandlung wurden die Fasern in einem ersten Schritt für 40 Minuten bei Raumtemperatur der Reduktionslösung (enthaltend 7,9 Gew.-% Thioglykolsäure) ausgesetzt, mit reinem Wasser gespült und anschließend bei Raumtemperatur für 10 Minuten fixiert (Oxidationslösung, enthaltend 2,6 Gew.-% Wasserstoffperoxid). Nach der oxidativen Behandlung wurden die Fasern gespült und getrocknet.
  • b) Nachbehandlung
  • Die Strähnen wurden jeweils bei einer Temperatur von 23°C 10 Minuten in eine 1%ige wäßrige Lösung der jeweiligen Wirkstoffe bei einem pH-Wert von 3, welcher mit Natronlauge oder Salzsäure eingestellt wurde, getaucht. Anschließend wurde jede Haarsträhne 1 Minute mit klarem Wasser gespült, getrocknet und 16 h ruhen gelassen.
  • c) Nachweis der haarstrukturierenden Wirkung mittels HP-DSC
  • Mittels einer DSC-Analyse (Perkin Elmer DSC-7) wurden die folgenden in Tabelle 1 dargestellten Schmelzpunkte ermittelt. Eine genaue Beschreibung der Methode findet sich beispielsweise in der DE 196 173 95 A1 .
  • Tabelle 1: Wirkungsnachweis für einzelne Vertreter aus den jeweiligen Gruppen A bis C:
    Figure 00810001
  • Die Ergebnisse der Untersuchungen zu der erfindungsgemäßen Wirkstoffkombination sind in Tabelle 2 aufgeführt. Die Versuchsdurchführung erfolgte dabei bis auf die im folgenden beschriebene Änderung in identischer Art und Weise.
  • Die Vorbehandlung und die Messung mittels HP-DSC wurden wie zuvor beschrieben durchgeführt. Als einzige Änderung wurden im Falle der Nachbehandlung b) die 1% wässrige Lösung der Einzelkomponenten imn Falle der binären Mischungen ersetzt durch wässrige Lösungen enthaltend jeweils 0,5 Gew.-% der jeweiligen Wirksubstanzen aus den jeweiligen Wirkstoffgruppen und im Falle der ternären Mischung durch eine wässrige Lösung enthaltend jweils 0,33 Gew.-% der jeweiligen Wirksubstanzen aus jeweils einer der drei Wirkstoffgruppen.
  • Tabelle 2: Wirkungsnachweis für die Wirkstoffkombination aus den Wirkstoffgruppen der Proteinhydrolysate (A), der kurzkettigen Carbonsäuren (B) und der Polyhydroxyverbindungen (C):
    Figure 00830001
  • Anwendungsbeispiele
  • 1. Haarspülung
    Eumulgin® B2 0,3
    Cetyl/Stearylalkohol 3,3
    Isopropylmyristat 0,5
    Lamesoft® PO 65 0,5
    Dehyquart® A-CA 2,0
    Salcare® SC 96 1,0
    Glycin 0,5
    Citronensäure 0,4
    Gluadin® W40 2,0
    Pyridoxin 1,0
    Weinsäure 0,7
    Phenonip® 0,8
    Wasser ad 100
  • 2. Haarspülung
    Eumulgin® B2 0,3
    Cetyl/Stearylalkohol 3,3
    Isopropylmyristat 0,5
    Paraffinöl perliquidum 15 cSt. DAB 9 0,3
    Dehyquart® L 80 0,4
    Lamesoft® PO 65 1,5
    Cosmedia Guar® C 261 1,5
    Promois® Milk-CAQ 3,0
    Serin 0,8
    Citronensäure 0,4
    Poly-L-serin 0,5
    Phenonip® 0,8
    Wasser ad 100
  • 3. Haarkur
    Dehyquart® F75 4,0
    Cetyl/Stearylalkohol 4,0
    Paraffinöl perliquidum 15 cSt DAB 9 1,5
    Dehyquart® A-CA 4,0
    Lamesoft® PO 65 1,0
    Salcare® SC 96 1,5
    D/L-Isoleucin 2,5
    Glyoxylsäure 0,5
  • Glucose 0,3
  • Amisafe-LMA-60® 1,0
    Gluadin® W 20 3,0
    Germall® 115 1,0
    Citronensäure 0,15
    Phenonip® 0,8
    Wasser ad 100
  • 4. Haarkur
    Dehyquart® L80 2,0
    Cetyl/Stearylalkohol 6,0
    Paraffinöl perliquidum 15 cSt DAB 9 2,0
    Rewoquat® W 75 2,0
    Cosmedia Guar® C261 0,5
    Lamesoft® PO 65 0,5
    Sepigel® 305 3,5
    Honeyquat® 50 1,0
    Gluadin® WQ 2,5
    Gluadin® W 20 3,0
    L-Alanyl-L-prolin 1,0
    Glutaminsäure 0,5
    Citronensäure 0,15
    Phenonip® 0,8
    Wasser ad 100
  • 5. Haarkur
    Dehyquart® F75 0,3
    Salcare® SC 96 5,0
    Gluadin® WQ 1,5
    Lamesoft® PO 65 0,5
    Dow Corning® 200 Fluid, 5 cSt. 1,5
    Gafquat® 755N 1,5
    D/L-alanin 1,5
    Glutarsäure 0,3
    Biodocarb® 0,02
    Parfümöl 0,25
    Wasser ad 100
  • 6. Haarkur
    Sepigel® 305 5,0
    Dow Corning Q2-5220 1,5
    Promois® Milk Q 3,0
    Lamesoft® PO 65 0,5
    Polymer P1 entsprechend DE 3929173 0,6
  • Genamin® DSAC 0,3
    D/L-Methionin-S-Methylsulfoniumchlorid 1,8
    Fructose 0,4
    Weinsäure 0,2
    Phenonip® 0,8
    Parfümöl 0,25
    Wasser ad 100
  • 7. Shampoo
    Texapon® NSO 40,0
    Dehyton® G 6,0
    Polymer JR 400® 0,5
    Cetiol® HE 0,5
    Ajidew® NL 50 1,0
    Lamesoft® PO 65 3,0
    Gluadin® WQT 2,5
    Gluadin® W 20 0,5
    Panthenol (50%) 0,3
    Arabinose 0,2
    Glycin 0,4
    Casein 2,0
    Vitamin E 0,1
    Vitamin H 0,1
    Glutaminsäure 0,2
    Citronensäure 0,5
    Natriumbenzoat 0,5
  • Parfüm 0,4
    NaCl 0,5
    Wasser ad 100
  • 8. Shampoo
    Texapon® NSO 43,0
    Dehyton® K 10,0
    Plantacare® 1200 UP 4,0
    Lamesoft® PO 65 2,5
    Euperlan® PK 3000 1,6
    Arquad® 316 0,8
    Polymer JR® 400 0,3
    Gluadin® WQ 4,0
    Glycin 0,3
    Milchsäure 0,5
    Serin 0,2
    Hydrolupin® AA 0,5
    Äpfelsäure 0,5
    Glucamate® DOE 120 0,5
    Natriumchlorid 0,2
    Wasser ad 100
  • 9. Shampoo
    Texapon® N 70 21,0
    Plantacare® 1200 UP 8,0
    Lamesoft® PO 65 3,0
    Gluadin® WQ 1,5
    Cutina® EGMS 0,6
    Histidin 0,2
    Glycin 0,3
    Honeyquat® 50 2,0
    Lactose 0,2
    Citronensäure 0,15
    Ajidew® NL 50 2,8
    Antil® 141 1,3
    Crolastin® 1,0
    Natriumchlorid 0,2
    Magnesiumhydroxid ad pH 4,5
    Wasser ad 100
  • 10. Shampoo
    Texapon® K 14 S 50,0
    Dehyton® K 10,0
    Plantacare® 818 UP 4,5
    Lamesoft® PO 65 2,0
    Polymer P1, entsprechend DE 39 29 973 0,6
    Cutina® AGS 2,0
    Lysin 0,3
    Glycin 0,2
    D-Panthenol 0,5
    Glucose 1,0
    Hydrosesame® AA 0,8
    Salicylsäure 0,4
    Natriumchlorid 0,5
    Gluadin® WQ 2,0
    Wasser ad 100
  • 11. Haarkur
    Celquat® L 200 0,6
    Luviskol® K30 0,2
    Alanin 0,2
  • D-Panthenol 0,5
    Polymer P1, entsprechend DE 39 29 973 0,6
    Dehyquart® A-CA 1,0
    Lamesoft® PO 65 0,5
    Hydrosoy® 2000 1,0
    Asparaginsäure 0,3
    Gluadin® W 40 1,0
    Erythrose 0,1
    Natrosol® 250 HR 1,1
    Gluadin® WQ 2,0
    Wasser ad 100
  • 12. Färbecreme
    C12-18-Fettalkohol 1,2
    Lanette® O 4,0
    Eumulgin® B2 0,8
    Cutina® KD 16 2,0
    Lamesoft® PO 65 4,0
    Natriumsulfit 0,5
    Arginin 0,2
    L(+)-Ascorbinsäure 0,5
    Ammoniumsulfat 0,5
    1,2-Propylenglykol 1,2
    Polymer JR® 400 0,3
    p-Aminophenol 0,35
    p-Toluylendiamin 0,85
    2-Methylresorcin 0,14
  • 6-Methyl-m-aminophenol 0,42
    Cetiol® OE 0,5
    Honeyquat® 50 1,0
    Ajidew® NL 50 1,2
    Gluadin® WQ 1,0
    Crosilk Liquid® 0,5
    Ammoniak 1,5
    Wasser ad 100
  • 13. Entwicklerdispersion für Färbecreme 12.
    Texapon® NSO 2,1
    Wasserstoffperoxid (50%ig) 12,0
    Turpinal® SL 1,7
    Latekoll® D 12,0
    Lamesoft® PO 65 2,0
    Gluadin® WQ 0,3
    Salcare® SC 96 1,0
    Asparaginsäure 0,1
    Lysin 0,2
    Crolastin® 0,8
    Wasser ad 100
  • 14. Tönungsshampoo
    Texapon® N 70 14,0
    Dehyton® K 10,0
    Akypo® RLM 45 NV 14,7
    Plantacare® 1200 UP 4,0
    Lamesoft® PO 65 3,0
    Polymer P1, entsprechend DE 39 29 973 0,3
    Cremophor® RH 40 0,8
    L-Serin 0,3
    Benzoesäure 0,3
    L-Prolin 0,3
    Farbstoff C.I. 12 719 0,02
    Farbstoff C.I. 12 251 0,02
    Farbstoff C.I. 12 250 0,04
    Konservierung 0,25
    Parfümöl q.s.
    Eutanol® G 0,3
    Gluadin® WQ 1,0
    Honeyquat® 50 1,0
    Salcare® SC 96 0,5
    Wasser ad 100
  • 15. Cremedauerwelle
    Wellcreme
    Plantacare® 810 UP 5,0
    Thioglykolsäure 8,0
    Turpinal® SL 0,5
  • Ammoniak (25%ig) 7,3
    Ammoniumcarbonat 3,0
    Cetyl/Stearyl-Alkohol 5,0
    Lamesoft® PO 65 0,5
    Lysin 0,5
    Guerbet-Alkohol 4,0
    Salcare® SC 96 3,0
    Gluadin® WQ 2,0
    Glutarsäure 0,2
    Hydrotriticum® 2000 0,5
    Parfümöl q.s.
    Wasser ad 100
  • Fixierlösung
    Plantacare® 810 UP 5,0
    gehärtetes Rizinusöl 2,0
    Lamesoft® PO 65 1,0
    Glycin 0,5
    Lactose 0,2
    Kaliumbromat 3,5
    Nitrilotriessigsäure 0,3
    Zitronensäure 0,2
    Merquat® 550 0,5
    Hydagen® HCMF 0,5
    Weinsäure 0,5
    Gluadin® WQ 0,5
    D/L-Methionin-S-Methylsulfoniumchlorid 0,3
    Parfümöl q.s.
  • Wasser ad 100
  • 16. Haarspülung
    Eumulgin® B2 0,3
    Cetyl/Stearylalkohol 3,3
    Arginin 0,2
    Glycin 0,2
    Serin 0,2
    Isopropylmyristat 0,5
    Lamesoft® PO 65 0,5
    Dehyquart® A-CA 2,0
    Salcare® SC 96 1,0
    Citronensäure 0,4
    Gluadin® WQ 2,0
    Pyridoxin 1,0
    D-Glucose 0,8
    D-Glucose-6-phosphat 0,2
    Weinsäure 0,7
    Phenonip® 0,8
    Wasser ad 100

Claims (14)

  1. Verwendung einer Wirkstoffkombination in kosmetischen Mitteln zur Restrukturierung kaeratinischer Fasern, dadurch gekennzeichnet, dass diese Wirkstoffkombination mindestens zwei Wirkstoffe aus mindestens zwei unterschiedlichen Wirkstoffgruppen enthält, wobei die Wirkstoffgruppen ausgewählt sind aus der Gruppe der Proteinhydrolysate und/oder deren Derivaten (A), der Gruppe der kurzkettigen Carbonsäuren (B) und/oder der Gruppe der Gruppe der Polyhydroxyverbindungen (C).
  2. Verwendung einer Wirkstoffkombination nach Anspruch 1, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zur Wirkstoffkombination Silikone (S) enthalten sind.
  3. Verwendung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zur Wirkstoffkombination Tenside (E) enthalten sind.
  4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zur Wirkstoffkombination Fettstoffe (D) enthalten sind.
  5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zur Wirkstoffkombination W-Filter (J) enthalten sind.
  6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zur Wirkstoffkombination Oxidationsfarbstoffvorprodukte enthalten sind.
  7. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zur Wirkstoffkombination direktziehende Farbstoffe enthalten sind.
  8. Verfahren zur Restrukturierung von Fasern, insbesondere keratinischen Fasern, dadurch gekennzeichnet, daß ein Mittel wie in einem der Ansprüche 1 bis 7 verwendet auf die Fasern aufgetragen wird und das Mittel nach einer Einwirkzeit von 1 bis 45 Minuten wieder ausgespült wird.
  9. Mittel zur Restrukturierung von Fasern, insbesondere keratinischer Fasern, enthaltend b. eine Wirkstoffkombination, dadurch gekennzeichnet, dass diese Wirkstoffkombination mindestens zwei Wirkstoffe aus mindestens zwei unterschiedlichen Wirkstoffgruppen enthält, wobei die Wirkstoffgruppen ausgewählt sind aus der Gruppe der Proteinhydrolysate und/oder deren Derivaten (A), der Gruppe der kurzkettigen Carbonsäuren (B) und/oder der Gruppe der Gruppe der Polyhydroxyverbindungen (C), d. ein Silikon (S) und e. ein kationisches Polymeren (G1).
  10. Verwendung einer Wirkstoffkombination nach Anspruch 1, dadurch gekennzeichnet, dass die Proteinhydrolysate (A) ausgewählt sind aus den Aminosäuren und deren Derivaten.
  11. Verwendung einer Wirkstoffkombination nach Anspruch 10, dadurch gekennzeichnet, dass die Aminosäuren und deren Derivate ausgewählt sind aus Alanin, Arginin, Glycin, Histidin, Lanthionin, Leucin, Lysin, Prolin, Hydroxyprolin Serin und Asparagin und deren Derivaten.
  12. Verwendung einer Wirkstoffkombination nach Anspruch 1, dadurch gekennzeichnet, dass die kurzkettigen Carbonsäuren (B) ausgewählt sind aus Glycolsäure, Glycerinsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure und deren Derivaten.
  13. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Verbindungen (A) in Kombination mit Fettstoffen (D) eingesetzt werden.
  14. Verwendung einer Wirkstoffkombination nach Anspruch 1, dadurch gekennzeichnet, dass die Polyhydroxyvervindungen (C) ausgewählt sind aus Sorbit, Inosit, Mannit, Threit, Erythreit, Erythrose, Threose, Arabinose, Ribose, Xylose, Glucose, Galactose, Mannose, Allose, Fructose, Sorbose, Desoxyribose, Glucosamin, Galaktosamin, Saccharose, Lactose, Trehalose, Maltose und Cellobiose.
DE200410062429 2004-12-20 2004-12-20 Wirkstoffgemische zur Restrukturierung keratinischer Fasern Withdrawn DE102004062429A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE200410062429 DE102004062429A1 (de) 2004-12-20 2004-12-20 Wirkstoffgemische zur Restrukturierung keratinischer Fasern
EP05809984A EP1827369A1 (de) 2004-12-20 2005-11-21 Wirkstoffgemische zur restrukturierung keratinischer fasern
PCT/EP2005/012420 WO2006066674A1 (de) 2004-12-20 2005-11-21 Wirkstoffgemische zur restrukturierung keratinischer fasern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410062429 DE102004062429A1 (de) 2004-12-20 2004-12-20 Wirkstoffgemische zur Restrukturierung keratinischer Fasern

Publications (1)

Publication Number Publication Date
DE102004062429A1 true DE102004062429A1 (de) 2006-06-29

Family

ID=35788132

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200410062429 Withdrawn DE102004062429A1 (de) 2004-12-20 2004-12-20 Wirkstoffgemische zur Restrukturierung keratinischer Fasern

Country Status (3)

Country Link
EP (1) EP1827369A1 (de)
DE (1) DE102004062429A1 (de)
WO (1) WO2006066674A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009074463A2 (de) * 2007-12-13 2009-06-18 Henkel Ag & Co. Kgaa Haarkonditionierende mittel mit imidazolinen und ausgewählten siliconen und/oder kosmetischen ölen
WO2010000645A2 (de) * 2008-07-04 2010-01-07 Henkel Ag & Co. Kgaa Haarkonditionierende mittel mit imidazolinen
WO2023232788A1 (en) * 2022-06-01 2023-12-07 L'oreal Cosmetic hair treatment process, comprising a multi-application of a composition comprising amino acids and specific hydroxy carboxylic acids
WO2023232840A1 (en) * 2022-06-01 2023-12-07 L'oreal Cosmetic composition comprising amino acids, hydroxylated (poly)carboxylic acids and silicones, processes and use
WO2023232845A1 (en) * 2022-06-01 2023-12-07 L'oreal Cosmetic composition comprising amino acids, hydroxylated (poly)carboxylic acids and cationic surfactants, processes and use
WO2023232773A1 (en) * 2022-06-01 2023-12-07 L'oreal Cosmetic hair treatment process, comprising a washing step, a step of applying a cosmetic composition comprising amino acids and hydroxylated (poly)carboxylic acids, and then a conditioning step
FR3136168A1 (fr) * 2022-06-01 2023-12-08 L'oreal Procédé de traitement capillaire pour le renforcement des cheveux sensibilisés, fragilisés et/ou abîmés
FR3136169A1 (fr) * 2022-06-01 2023-12-08 L'oreal Procédé de traitement capillaire pour limiter la perte de brillance des cheveux

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031726A1 (de) * 2008-07-04 2010-01-07 Henkel Ag & Co. Kgaa Haarkonditionierende Mittel mit Imidazolinen
DE102008031748A1 (de) * 2008-07-04 2010-01-07 Henkel Ag & Co. Kgaa Haarkonditionierende Mittel mit Imidazolinen
FR3139719A1 (fr) * 2022-09-21 2024-03-22 L'oreal Compositions et procédés de modification de la couleur des cheveux.
WO2024030362A1 (en) * 2022-07-31 2024-02-08 L'oreal Compositions and methods for altering the color of hair

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740331B1 (fr) * 1995-10-25 1997-12-19 Sederma Sa Nouvelles compositions cosmetiques pour le traitement des cheveux et du cuir chevelu
DE19835330A1 (de) * 1998-08-05 2000-02-10 Cognis Deutschland Gmbh Wirkstoffkomplex für Haarbehandlungsmittel
DE10163860A1 (de) * 2001-12-22 2003-07-10 Henkel Kgaa Verwendung von ausgewählten kurzkettigen Carbonsäuren
DE10230414A1 (de) * 2002-03-01 2003-09-04 Henkel Kgaa Formkörper mit Perlglanzpigment
DE10220867A1 (de) * 2002-05-10 2003-11-20 Henkel Kgaa Kosmetische Zusammensetzungen mit einem Silicon-Elastomer und einem verdickenden Polymerlatex
DE10232774B4 (de) * 2002-07-18 2004-07-15 Cognis Deutschland Gmbh & Co. Kg Kosmetische Zubereitungen mit antibakteriellen Eigenschaften
DE10330247A1 (de) * 2003-05-16 2004-12-02 Henkel Kgaa Kosmetische Zusammensetzung in Einmalportionspackungen
DE602005007188D1 (de) * 2004-03-08 2008-07-10 Unilever Nv Zuckerlacton enthaltende zusammensetzung zur haarbehandlung

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009074463A2 (de) * 2007-12-13 2009-06-18 Henkel Ag & Co. Kgaa Haarkonditionierende mittel mit imidazolinen und ausgewählten siliconen und/oder kosmetischen ölen
WO2009074463A3 (de) * 2007-12-13 2010-07-08 Henkel Ag & Co. Kgaa Haarkonditionierende mittel mit imidazolinen und ausgewählten siliconen und/oder kosmetischen ölen
WO2010000645A2 (de) * 2008-07-04 2010-01-07 Henkel Ag & Co. Kgaa Haarkonditionierende mittel mit imidazolinen
WO2010000645A3 (de) * 2008-07-04 2011-05-12 Henkel Ag & Co. Kgaa Haarkonditionierende mittel mit imidazolinen
WO2023232845A1 (en) * 2022-06-01 2023-12-07 L'oreal Cosmetic composition comprising amino acids, hydroxylated (poly)carboxylic acids and cationic surfactants, processes and use
WO2023232840A1 (en) * 2022-06-01 2023-12-07 L'oreal Cosmetic composition comprising amino acids, hydroxylated (poly)carboxylic acids and silicones, processes and use
WO2023232788A1 (en) * 2022-06-01 2023-12-07 L'oreal Cosmetic hair treatment process, comprising a multi-application of a composition comprising amino acids and specific hydroxy carboxylic acids
WO2023232773A1 (en) * 2022-06-01 2023-12-07 L'oreal Cosmetic hair treatment process, comprising a washing step, a step of applying a cosmetic composition comprising amino acids and hydroxylated (poly)carboxylic acids, and then a conditioning step
FR3136171A1 (fr) * 2022-06-01 2023-12-08 L'oreal Procédé de traitement cosmétique des cheveux, comprenant une étape de lavage, une étape d’application d’une composition cosmétique comprenant des aminoacides et des (poly)acides carboxyliques hydroxylés, puis une étape de conditionnement.
FR3136161A1 (fr) * 2022-06-01 2023-12-08 L'oreal Composition cosmétique comprenant des aminoacides, des (poly)acides carboxyliques hydroxylés et des silicones, et procédé de traitement cosmétique
FR3136164A1 (fr) * 2022-06-01 2023-12-08 L'oreal Composition cosmétique comprenant des aminoacides, des (poly)acides carboxyliques hydroxylés et des tensioactifs cationiques, et procédé de traitement cosmétique
FR3136168A1 (fr) * 2022-06-01 2023-12-08 L'oreal Procédé de traitement capillaire pour le renforcement des cheveux sensibilisés, fragilisés et/ou abîmés
FR3136169A1 (fr) * 2022-06-01 2023-12-08 L'oreal Procédé de traitement capillaire pour limiter la perte de brillance des cheveux
FR3136166A1 (fr) * 2022-06-01 2023-12-08 L'oreal Procédé de traitement cosmétique des cheveux, comprenant une multi-application d’une composition comprenant des aminoacides et des hydroxyacides carboxyliques particuliers

Also Published As

Publication number Publication date
EP1827369A1 (de) 2007-09-05
WO2006066674A1 (de) 2006-06-29

Similar Documents

Publication Publication Date Title
EP1326577B1 (de) Neue verwendung von kurzkettigen carbonsäuren
EP1771144B1 (de) Haarkonditionierende mittel mit aminofunktionellen siliconen
EP1761232B1 (de) Haarreinigungsmittel mit aminofunktionellen siliconen
EP1812118A1 (de) Haarkonditionierende mittel mit imidazolinen und aminofunktionellen siliconen oder dimethiconolen
DE10240757A1 (de) Synergistische Kombination von Seidenproteinen
WO2006066674A1 (de) Wirkstoffgemische zur restrukturierung keratinischer fasern
EP1339379B1 (de) Neue verwendung von proteinhydrolysaten
EP1729853B1 (de) Verwendung kationischer stärkederivate zum farberhalt
EP1232739A1 (de) Wirkstoffkombination aus Kohlenwasserstoffen und Ölen in kosmetischen Mitteln
EP1752138A2 (de) Amaranthsamenöl in Haarbehandlungsmitteln
DE10061420A1 (de) Neue Verwendung von Polyhydroxyverbindungen
WO2006029757A1 (de) Wirkstoffgemisch zur behandlung keratinischer fasern
EP1321124A2 (de) Verwendung von ausgewählten kurzkettigen Carbonsäuren
EP1791515A1 (de) Perlenextrakt in kosmetischen mitteln
WO2007087860A1 (de) Kosmetische mittel enthaltend ein polysiloxan und ein esteröl und weitere wirkstoffe
EP1776077B1 (de) Volumen-haarreinigungsmittel
EP1786382A1 (de) Extrakte als strukturanten

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: HENKEL AG & CO. KGAA, 40589 DUESSELDORF, DE

8139 Disposal/non-payment of the annual fee