DE102004027873A1 - Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit - Google Patents

Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit Download PDF

Info

Publication number
DE102004027873A1
DE102004027873A1 DE200410027873 DE102004027873A DE102004027873A1 DE 102004027873 A1 DE102004027873 A1 DE 102004027873A1 DE 200410027873 DE200410027873 DE 200410027873 DE 102004027873 A DE102004027873 A DE 102004027873A DE 102004027873 A1 DE102004027873 A1 DE 102004027873A1
Authority
DE
Germany
Prior art keywords
weight
parts
bis
copolymer
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200410027873
Other languages
English (en)
Inventor
Detlev Dr. Joachimi
Peter Dipl.-Chem. Dr. Persigehl
Kurt Jeschke
Marcus Dipl.-Chem. Dr. Schäfer
Ralph Dipl.-Chem. Dr. Ulrich
Robert Hubertus van Dr. Mullekom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxess Deutschland GmbH
Original Assignee
Lanxess Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Deutschland GmbH filed Critical Lanxess Deutschland GmbH
Priority to DE200410027873 priority Critical patent/DE102004027873A1/de
Priority to ES05756795T priority patent/ES2315882T3/es
Priority to DE502005010153T priority patent/DE502005010153D1/de
Priority to DE502005005697T priority patent/DE502005005697D1/de
Priority to CN200580026769XA priority patent/CN101001915B/zh
Priority to PCT/EP2005/006135 priority patent/WO2005121245A1/de
Priority to ES08162770T priority patent/ES2349201T3/es
Priority to JP2007526282A priority patent/JP4732457B2/ja
Priority to PL05756795T priority patent/PL1756223T3/pl
Priority to EP05756795A priority patent/EP1756223B1/de
Priority to PL08162770T priority patent/PL1992662T3/pl
Priority to CN2009101510975A priority patent/CN101649107B/zh
Priority to KR1020087019891A priority patent/KR100888532B1/ko
Priority to KR1020067025832A priority patent/KR100874996B1/ko
Priority to AT08162770T priority patent/ATE478924T1/de
Priority to AT05756795T priority patent/ATE411358T1/de
Priority to EP08162770A priority patent/EP1992662B1/de
Priority to US11/291,028 priority patent/US7378470B2/en
Publication of DE102004027873A1 publication Critical patent/DE102004027873A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof

Abstract

Diese Erfindung betrifft Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit und ein Verfahren zur Verbesserung der Fließfähigkeit thermoplastische Polyester enthaltender Formmassen, indem eine deutliche Erhöhung der Schmelzefließfähigkeit durch den Zusatz von Copolymeren erreicht wird.

Description

  • Diese Erfindung betrifft Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit und ein Verfahren zur Verbesserung der Fließfähigkeit thermoplastische Polyester enthaltender Formmassen, indem eine deutliche Erhöhung der Schmelzefließfähigkeit durch den Zusatz von Copolymeren erreicht wird.
  • Hochfließfähige thermoplastische Zusammensetzungen sind für eine Vielzahl von Spritzgussanwendungen interessant. Beispielsweise erfordern Dünnwandbauteile in der Elektro-, Elektronik- und Kfz-Industrie niedrige Viskositäten der Thermoplastzusammensetzung, damit ein Füllen der Form bei möglichst geringen Fülldrücken bzw. Schließkräften der entsprechenden Spritzgießmaschinen möglich ist. Dies trifft auch auf das gleichzeitige Füllen von mehreren Spritzgussbauteilen über ein gemeinsames Angusssystem in sogenannten Vielfachwerkzeugen zu. Des Weiteren können häufig mit niederviskosen thermoplastischen Zusammensetzungen auch kürzere Zykluszeiten realisiert werden. Darüber hinaus sind gute Fließfähigkeiten gerade auch bei hochgefüllten thermoplastischen Zusammensetzungen beispielsweise mit Glasfaser- und/oder Mineralgehaltengehalten von über 40 Gew.-% sehr wichtig.
  • Trotz hoher Fließfähigkeit der thermoplastischen Zusammensetzungen werden jedoch hohe mechanische Anforderungen an die daraus herzustellenden Bauteile selber gestellt, so dass durch die Viskositätserniedrigung keine Beeinträchtigung der mechanischen Eigenschaften verursacht werden darf.
  • Es gibt mehrere Möglichkeiten hochfließfähige, niederviskose thermoplastische Formmassen zu realisieren.
  • Eine Möglichkeit ist der Einsatz von niederviskosen Polymerharzen mit geringerem Molekulargewicht als Basispolymere für die thermoplastischen Formmassen. Der Einsatz niedermolekularer Polymerharze ist aber häufig mit Einbußen bei den mechanischen Eigenschaften, insbesondere der Zähigkeit, verbunden. Außerdem erfordert die Herstellung eines niederviskosen Polymerharzes auf einer bestehenden Polymerisationsanlage oftmals aufwändige und mit Investitionen verbundene Eingriffe.
  • Eine andere Möglichkeit ist der Einsatz von sogenannten Fließhilfsmitteln, auch als Fließmittel. Fließhilfen oder innere Gleitmittel bezeichnet, die dem Polymerharz als Additiv zugegeben werden können.
  • Derartige Fließhilfsmittel sind aus der Literatur wie z.B. in Kunststoffe 2000, 90 (9), S. 116-118 bekannt und können beispielsweise Fettsäureester von Polyolen oder Amide aus Fettsäuren und Amine sein. Derartige Fettsäureester, wie beispielsweise Pentaerithritoltetrastearat oder Ethylenglykoldimontanoat, sind jedoch mit polaren Thermoplasten wie Polyamiden, Polyalkylenterephthalaten oder Polycarbonaten nur begrenzt mischbar und reichern sich daher an der Formteiloberfläche an und werden deshalb auch als Entformungshilfsmittel eingesetzt. Sie können allerdings besonders bei höheren Konzentrationen bei Wärmelagerungen aus diesen Formteilen an die Oberfläche migrieren und sich dort anreichern. Dies kann beispielsweise zu Problemen hinsichtlich Lack- oder Metalllhaftung bei beschichteten Formteilen führen.
  • Alternativ zu den oberflächenaktiven Fließhilfsmitteln können interne Fließhilfsmittel eingesetzt werden, die mit den Polymerharzen verträglich sind. Hierfür eignen sich beispielsweise niedermolekulare Verbindungen oder verzweigte, hochverzweigte oder dendritische Polymere mit einer dem Polymerharz ähnlichen Polarität. Derartige hochverzweigte oder dendritische Systeme sind literaturbekannt und können beispielsweise auf verzweigten Polyestern, Polyamiden, Polyesteramiden, Polyethern oder Polyaminen basieren, wie sie Kunststoffe 2001, 91 (10), S. 179-190, oder in Advances in Polymer Science 1999, 143 (Branched Polymers II), S. 1-34 beschrieben sind.
  • EP 0 682 057 A1 beschreibt den Einsatz des stickstoffhaltigen 4-Kaskadendendrimers der ersten Generation: 1,4-Diaominobutan[4]propylamin (N,N'-tetrabis(3-aminopropyl)-1,4-butandiamin DAB(PA)4 zur Erniedrigung der Viskosität in Polyamid 6, Polyamid 6,6 und Polybutylenterephthalat. Während beim Einsatz von DAB(PA)4 zur Viskositätserniedrigung in Polyamiden die Schlagzähigkeit der erhaltenen Frommassen praktisch unbeeinflusst bleibt (Unterschied < 5%), nimmt die Schlagzähigkeit bei PBT um mehr als 15% ab.
  • Neben der Verbesserung der Fließfähigkeit ist es oft erwünscht die Zähigkeit der Materialien zu verbessern. Dazu können den eingesetzten Thermoplasten zusätzlich weitere Copolymere auf Basis von Ethen und Acrlysäure- oder Methacrylsäureestern zugesetzt werden, die eine Verbesserung der Zähigkeit bewirken.
  • WO 9827159 beschreibt die Zähigkeitsverbesserung von glasfaserverstärkten Polyestern oder Polycarbonaten durch Verwendung von zwei Copolymerisaten aus Ethen und Acrylaten, wobei ein Copolymer zusätzlich eine reaktive Epoxid- oder Oxiranfunktion trägt. Die Fließverbesserung der Formmassen ist ein Ziel der Erfindung, das beschriebene Vergleichssystem aus Polyester und dem Copolymerisat aus Ethen und Methylacrylat hat jedoch eine höhere Schmelzeviskosität als das reine Polyestersystem.
  • JP 01247454 beschreibt tieftemperaturzähe Mischungen von Polyestern mit einem Copolymerisat aus Ethen und einem nichtreaktiven Alkylacrylat mit einem MFI von 5,8 g/10 min (bei 190°C, 2,16 kg) und einem Copolymerisat aus Ethen und einem Acrylat mit zusätzlicher reaktiver Gruppe. Die Fließverbesserung von Formmassen ist nicht Thema dieser Anmeldung.
  • EP-A 1 191 067 beschreibt die Zähmodifizierung von Thermoplasten, unter anderem von Polyamid und Polybutylenterephthalat durch eine Mischung aus einem Copolymerisat aus Ethen mit einem nichtreaktiven Alkylacrylat sowie einem Copolymerisat aus Ethen mit einem Acrylat mit zusätzlicher reaktiver Gruppe. Die Fließfähigkeit der Formmassen wird nicht diskutiert.
  • EP-A 0 838 501 beschreibt tieftemperaturzähe Mischungen von Verstärkungsstoffen und Polyestern mit einem Copolymerisat aus Ethen und einem nichtreaktiven Alkylacrylat sowie einem Copolymerisat aus Ethen und einem Acrylat mit zusätzlicher reaktiver Gruppe. Die beste Ausführungsform der Anmeldung wird dabei mit einem Copolymerisat aus Ethen und Methylacrylat erzielt. Die Fließverbesserung von Formmassen ist nicht Thema dieser Anmeldung.
  • WO-A 2 001 038 437 beschreibt Mischungen aus Polyester mit einem Kern-Schale-Kautschuk und zwei verschiedenen Copolymerisaten aus Ethen und Acrylaten mit und ohne zusätzlichen reaktiven Gruppen. Die Zähigkeit der Formmassen kann verbessert werden, die Fließfähigkeit auch der binären Mischungen aus Polyester und einem der genannten weiteren Bestandteile ist laut Tabelle 4 und Tabelle 9 für die verwendeten Mischungen nicht besser als für die reinen Polyester. Das verwendete Copolymerisat aus Ethen und 2-Ethyl-hexylacrylat hat einen MFI-Wert (MFI = Melt Flow Index) von 2 g/10 min (bei 190°C, 2,16 kg).
  • FR-A 28 19 821 beschreibt die Verwendung von Copolymeren aus Ethen mit 2-Ethylhexylacrylat, die einen MFI kleiner 100 aufweisen als Bestandteil von Schmelzklebermischungen. Hinweise auf Anwendungen zur Elastomermodifizierung und oder Fließfähigkeitsverbesserung von teilkristallinen Thermoplasten finden sich nicht.
  • Die Aufgabe der vorliegenden Erfindung bestand nun darin, eine Erniedrigung der Viskosität von Polykondensatzusammensetzungen auf Basis thermoplastischer Polyester durch Additivierung der Polymerschmelze zu erreichen, ohne dabei Verluste bei den mechanischen Eigenschaften wie Zähigkeit in Kauf nehmen zu müssen. wie dies beim Einsatz niederviskoser linearer Polymerharze oder bei literaturbekannten Additiven auftritt. Bezüglich Steifigkeit und Reißfestigkeit sollten sich die Zusammensetzungen auf Basis thermoplatischer Polyester möglichst nicht signifikant von den nicht additivierten Polykondensatzusammensetzungen auf Basis thermoplastischer Polyesterunterscheiden, damit ein problemloser Austausch der Materialien für Kunststoffkonstruktionen auf Basis von thermoplastischen Polyestern ermöglicht wird.
  • Gegenstand der Erfindung ist ein Verfahren zu Erniedrigung der Schmelzeviskosität von Zusammensetzungen, enthaltend
    • A) 99,9 bis 10 Gew.-Teile, bevorzugt 99,5 bis 40 Gew.-Teile, besonders bevorzugt 99,0 bis 55 Gew.-Teile mindestens eines thermoplastischen Polyesters, vorzugsweise eines Polyalkylenterephthalats
    • B) 0,1 bis 20 Gew.-Teile, vorzugsweise 0,25 bis 15 Gew.-Teile, besonders bevorzugt 1,0 bis 10 Gew.-Teile mindestens eines Copolymerisats aus mindestens einem α-Olefin, vorzugsweise Ethen mit mindestens einem Methacrylsäureester oder Acrylsäureester eines aliphatischen Alkohols vorzugsweise eines aliphatischen Alkohols mit 5-30 Kohlenstoffatomen,
    • C) 0 bis 70 Gew.-Teile, vorzugsweise 5 bis 50 Gew.-Teile, besonders bevorzugt 9 bis 47 Gew.-Teile mindestens eines Füll- und/oder Verstärkungsstoffen,
    • D) 0 bis 30 Gew.-Teile, vorzugsweise 5 bis 25 Gew.-Teile, besonders bevorzugt 9 bis 19 Gew.-Teile mindestens eines Flammschutzadditivs,
    • E) 0 bis 80 Gew.-Teile, besonders bevorzugt 2 bis 19 Gew.-Teile, besonders bevorzugt 9 bis 15 Gew.-Teile mindestens eines Elastomermodifikators,
    • F) 0 bis 80 Gew.-Teile, bevorzugt 10 bis 70 Gew.-Teile, besonders bevorzugt 20 bis 60 Gew.-Teile eines Polycarbonats
    • G) 0 bis 10 Gew.-Teile, bevorzugt 0,05 bis 3 Gew.-Teile, besonders bevorzugt 0,1 bis 0,9 Gew.-Teile weiterer üblicher Additive.
    dadurch gekennzeichnet, dass das Copolymerisat B) keine weiteren reaktiven funktionellen Gruppen enthält und dass der MFI des Copolymerisats B) 100 g/10 min, vorzugsweise 150 g/10 min nicht unterschreitet. Der MFI (Melt Flow Index) wurde im Rahmen der vorliegenden Erfindung einheitlich bei 190°C für 2.16 kg des Copolymerisats B) gemessen bzw. bestimmt.
  • Es wurde überraschend gefunden, dass Formmassen auf Basis thermoplastischer Polyester, die neben dem thermoplastischen Polykondensat Copolymerisate von α-Olefinen mit Methacrylsäureestern oder Acrylsäureestern aliphatischer Alkohole ohne weitere reaktive funktionelle Gruppen enthalten, einen MFI von 100 nicht unterschreiten und somit zur gewünschten Erniedrigung der Schmelzviskosität der erfindungsgemäßen Formmassen führen. Im Vergleich zu reinen thermoplastischen Polykondensaten gleicher Fließfähigkeit zeichnen sich die erfindungsgemäßen Formmassen auf Basis thermoplastischer Polyester daneben durch eine höhere Zähigkeit aus.
  • Als Komponente A enthalten die Zusammensetzungen erfindungsgemäß mindestens einen thermoplastischen Polyester, vorzugsweise teilaromatische Polyester.
  • Die erfindungsgemäß einzusetzenden teilaromatischen Polyester sind ausgewählt aus der Gruppe Derivate der Polyalkylenterephthalate, bevorzugt ausgewählt aus der Gruppe der Polyethylentherephthalate, der Polytrimethylenterephthalate und der Polybutylenterephthalate, besonders bevorzugt der Polybutylenterephthalat und Polyethylenterephthalat, ganz besonders bevorzugt des Polybutylenterephthalats.
  • Unter teilaromatischen Polyestern versteht man Materialien, die neben aromatischen Molekülteilen auch aliphatische Molekülteile enthalten
  • Polyalkylenterephthalate im Sinne der Erfindung sind Reaktionsprodukte aus aromatischen Dicarbonsäure oder ihren reaktionsfähigen Derivaten (z.B. Dimethylestern oder Anhydriden) und aliphatischen, cycloaliphatischen oder araliphatischen Diolen und Mischungen dieser Reaktionsprodukte.
  • Bevorzugte Polyalkylenterephthalate lassen sich aus Terephthalsäure (oder ihren reaktionsfähigen Derivaten) und aliphatischen oder cycloaliphatischen Diolen mit 2 bis 10 C-Atomen nach bekannten Methoden herstellen (Kunststoff-Handbuch, Bd. VIII, S. 695 FF, Karl-Hanser-Verlag, München 1973).
  • Bevorzugte Polyalkylenterephthalate enthalten mindestens 80 Mol-%, vorzugsweise 90 Mol-%, bezogen auf die Dicarbonsäure, Terephthalsäurereste und mindestens 80 Mol-%, vorzugsweise mindestens 90 Mol-%, bezogen auf die Diolkomponente, Ethylenglykol- und/oder Propandiol-l,3- und/oder Butandiol-l,4-reste.
  • Die bevorzugten Polyalkylenterephthalate können neben Terephthalsäureresten bis zu 20 Mol-% Reste anderer aromatischer Dicarbonsäuren mit 8 bis 14 C-Aromen oder Reste aliphatischer Dicarbonsäuren mit 4 bis 12 C-Atomen enthalten, wie Reste von Phthalsäure, Isophthalsäure, Naphthalin-2,6-dicarbonsäure, 4,4'-Diphenyldicarbonsäure, Bernstein-, Adipin-, Sebacinsäure, Azelainsäure, Cyclohexandiessigsäure, Cyclohexandicarbonsäure.
  • Die bevorzugten Polyalkylenterephthalate können neben Ethylen- bzw. Propandiol-1,3- bzw. Butandiol-1,4-glykolresten bis zu 20 Mol-% anderer aliphatischer Diole mit 3 bis 12 C-Atomen oder cycloaliphatischer Diole mit 6 bis 21 C-Atomen enthalten, z.B. Reste von Propandiol-1,3, 2- Ethylpropandiol-1,3, Neopentylglykol, Pentan-diol-1,5, Hexandiol-1.6, Cyclohexan-dimethanol-1,4, 3-Methylpentandiol-2,4, 2-Methylpentandiol-2,4, 2,2,4-Trimethylpentandiol-1,3 und -1,6,2-Ethylhexandiol-1,3 2,2-Diethylpropandiol-1,3, Hexandiol-2,5, 1,4-Di-(β-hydroxyethoxy)-benzol, 2,2-Bis-(4-hydroxycyclohexyl)-propan, 2,4-Dihydroxy-1,1,3,3-tetramethyl-cyclobutan, 2,2-bis-(3-β-hydroxyethoxyphenyl)-propan und 2,2-bis-(4-hydroxypropoxyphenyl)-propan (DE-A 24 07 674, DE-A 24 07 776, DE-A 27 15 932).
  • Die Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4-wertiger Alkohole oder 3- oder 4-basischer Carbonsäure, wie sie z.B. in der DE-A 19 00 270 und der US-A 3 692 744 beschrieben sind, verzweigt werden. Beispiele für bevorzugte Verzweigungsmittel sind Trimesinsäure, Trimellitsäure, Trimethylolethan und -propan und Pentaerythrit.
  • Es ist ratsam, nicht mehr als 1 Mol-% des Verzweigungsmittels, bezogen auf die Säurekomponente, zu verwenden.
  • Besonders bevorzugt sind Polyalkylenterephthalate, die allein aus Terephthalsäure und deren reaktionsfähigen Derivaten (z.B. deren Dialkylestern) und Ethylenglykol und/oder Propandiol-1,3 und/oder Butandiol-1,4 hergestellt werden (Polyethylen- und Polybutylenterephthalat), und Mischungen dieser Polyalkylenterephthalate.
  • Bevorzugte Polyalkylenterephthalate sind auch Copolyester, die aus mindestens zwei der obengenannten Säurekomponenten und/oder aus mindestens zwei der obengenannten Alkoholkomponenten hergestellt werden, besonders bevorzugte Copolyester sind Poly(ethylenglykol/butandiol-1,4)-terephthalate.
  • Die Polyalkylenterephthalate besitzen im allgemeinen eine intrinsische Viskosität von ca.0,3 cm3/g bis 1,5 cm3/g, vorzugsweise 0,4 cm3/g bis 1,3 cm3/g, besonders bevorzugt 0,5 cm3/g bis 1,0 cm3/g jeweils gemessen in Phenol/o-Dichlorbenzol (1:1 Gew.-Teile) bei 25°C.
  • Die erfindungsgemäß einzusetzenden thermoplastischen Polyester können auch im Gemisch mit anderen Polyestern und/oder weiteren Polymeren eingesetzt werden.
  • Den erfindungsgemäß einzusetztenden Polyestern können übliche Additive wie z.B. Entförmungsmittel, Stabilisatoren und/oder Fließhilfsmittel in der Schmelze zugemischt oder auf der Oberfläche aufgebracht werden.
  • Als Komponente B) enthalen die erfindungsgemäßen Zusammensetzungen statistische Copolymerisate aus mindestens einem α-Olefin mit mindestens einem Methacrylsäureester oder Acrylsäureester eines aliphatischen Alkohols ohne weitere funktionelle Gruppen, wodurch der MFI des Copolymerisats 100 g/10 min, vorzugsweise 150 g/10 min nicht unterschreitet.
  • Geeignete α-Olefine als Bestandteil der Copolymerisate B) weisen dabei zwischen 2 und 10 Kohlenstoff-Atomen auf und können unsubstituiert oder mit einer oder mehreren aliphatischen, cycloaliphatischen oder aromatischen Gruppen substituiert sein. Bevorzugte α-Olefine sind dabei ausgewählt aus der Gruppe umfassend Ethen, Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Octen, 3-Methyl-1-penten. Besonders bevorzugte α-Olefine sind Ethen und Propen, ganz besonders bevorzugt ist Ethen. Ebenfalls geeignet sind Mischungen der beschriebenen α-Olefine.
  • Der Gehalt des α-Olefins am Copolymerisat B) liegt zwischen 50 bis 90 Gew.-%, bevorzugt zwischen 55 und 75 Gew.-%.
  • Das Copolymerisat B) wird weiterhin definiert durch den zweiten Bestandteil neben dem α-Olefin. Als zweiter Bestandteil sind Alkyl- oder Arylalkylester der Acrylsäure oder Methacrylsäure geeignet, deren Alkyl- oder Arylalkylgruppe aus 5-30 Kohlenstoffatomen gebildet wird und keine reaktiven Funktionen ausgewählt aus der Gruppe umfassend Epoxide, Oxetane, Anhydride, Imide, Aziridine, Furane, Säuren enthält. Die Alkyl- oder Arylalkylgruppe kann dabei linear oder verzweigt sein sowie cycloaliphatische oder aromatische Gruppen enthalten, daneben auch durch eine oder mehrere Ether- oder Thioetherfunktionen substituiert sein. Geeignete Methacrylsäure- oder Acrylsäureester in diesem Zusammenhang sind auch solche, die aus einer Alkoholkomponente synthetisiert wurden, die auf Oligoethylenglycol oder Oligopropylenglycol mit nur einer Hydroxylgruppe und maximal 30 C-Atomen basieren.
  • Beispielsweise kann die Alkyl- oder Arylalkylgruppe des Methacrylsäure- oder Acrylsäureesters ausgewählt sein aus der Gruppe umfassend 1-Pentyl, 1-Hexyl, 2-Hexyl, 3-Hexyl, 1-Heptyl, 3-Heptyl, 1-Octyl, 1-(2-Ethyl)-hexyl, 1-Nonyl, 1-Decyl, 1-Dodecyl, 1-Lauryl oder 1-Octadecyl. Bevorzugt sind Alkyl- oder Arylalkylgruppen mit 6-20 Kohlenstoffatomen. Bevorzugt sind insbesondere auch verzweigte Alkylgruppen, die im Vergleich zu linearen Alkylgruppen gleicher Anzahl an Kohlenstoffatomen zu einer niedrigeren Glasübergangs-Temperatur TG führen.
  • Erfindungsgemäß besonders bevorzugt wird das α-Olefin mit Acrylsäure-(2-ethyl)-hexylester copolymerisiert.
  • Ebenfalls geeignet sind Mischungen der beschriebenen Acrylsäure- oder Methacrylsäurester.
  • Der Gehalt der Acrylsäure- oder Methacrylsäureester am Copolymerisat B) liegt zwischen 10 bis 50 Gew.-%, bevorzugt zwischen 25 und 45 Gew.-%.
  • Geeignete Copolymerisate B) zeichnen sich neben der Zusammensetzung durch das niedrige Molekulargewicht aus. Dementsprechend sind für die erfindungsgemäßen Formmassen nur Copolymerisate B) geeignet, die einen MFI-Wert gemessen bei 190°C und einer Belastung von 2,16 kg von mindestens 100 g/10 min, bevorzugt von mindestens 150 g/10 min aufweisen.
  • Geeignete Copolymerisate der Komponente B) können beispielsweise ausgewählt sein aus der Gruppe der von der Fa. Atofina unter dem Markennamen Lotryl® EH angebotenen Materialien, die gewöhnlich als Schmelzkleber Verwendung finden.
  • Als Komponente C) können die thermoplastischen Formmassen auf Basis thermoplastischer Polyester einen Füllstoff oder Verstärkungsstoff oder eine Mischung aus zwei oder mehr unterschiedlichen Füllstoffen und/oder Verstärkungsstoffen beispielsweise auf Basis von Talk, Glimmer, Silikat, Quarz, Titandioxid, Wollastonit, Kaolin, amorphe Kieselsäuren, Magnesiumcarbonat, Kreide, Feldspat, Bariumsulfat, Glaskugeln und/oder faserförmige Füllstoffe und/oder Verstärkungsstoffen auf der Basis von Kohlenstofffasern und/oder Glasfasern enthalten. Bevorzugt werden mineralische teilchenförmige Füllstoffe auf der Basis von Talk, Glimmer, Silikat, Quarz, Titandioxid, Wollastonit, Kaolin, amorphe Kieselsäuren, Magnesiumcarbonat, Kreide, Feldspat, Bariumsulfat und/oder Glasfasern eingesetzt. Besonders bevorzugt werden erfindungsgemäß mineralische teilchenförmige Füllstoffe auf der Basis von Talk, Wollastonit, Kaolin und/oder Glasfasern eingesetzt.
  • Insbesondere für Anwendungen, in denen Isotropie bei der Dimensionsstabilität und eine hohe thermische Dimensionsstabilität gefordert wird, wie beispielsweise in Kfz-Anwendungen für Karosserieaußenteile, werden bevorzugt mineralische Füllstoffe eingesetzt, insbesondere Talk, Wollastonit oder Kaolin.
  • Im Falle, dass Komponente F) ein Blockcopolymer ist, enthalten die Blends den mineralischen Füllstoff bevorzugt in einer Menge von 2,5 bis 34, besonders bevorzugt in einer Menge von 3,5 bis 26, am meisten bevorzugt in einer Menge von 5 bis 21 Gew.-%.
  • Besonders bevorzugt werden ferner auch nadelförmige mineralische Füllstoffe als Komponente C) eingesetzt. Unter nadelförmigen mineralischen Füllstoffen wird erfindungsgemäß ein mineralischer Füllstoff mit stark ausgeprägtem nadelförmigen Charakter verstanden. Als Beispiel seien nadelförmige Wollastonite genannt. Bevorzugt weist das Mineral ein Länge : Durchmesser – Verhältnis von 2:1 bis 35:1, besonders bevorzugt von 3:1 bis 19:1, am meisten bevorzugt von 4:1 bis 12:1 auf. Die mittlere Teilchengröße der erfindungsgemäßen nadelförmigen Mineralien liegt bevorzugt bei kleiner 20 μm, besonders bevorzugt bei kleiner 15 μm, insbesondere bevorzugt bei kleiner 10 μm, am meisten bevorzugt bei kleiner 5 μm, bestimmt mit einem CILAS GRANULOMETER.
  • Wie bereits oben beschrieben werden besonders bevorzugt mineralische Füllstoffe auf der Basis von Talk eingesetzt. Als mineralische Füllstoffe auf Basis von Talk im Sinne der vorliegenden Erfindung kommen alle teilchenförmigen Füllstoffe infrage, die der Fachmann mit Talk bzw. Talkum verbindet. Ebenfalls kommen alle teilchenförmigen Füllstoffe, die kommerziell angeboten werden und deren Produktbeschreibungen als charakterisierende Merkmale die Begriffe Talk bzw. Talkum enthalten, in Frage.
  • Die als Komponente C) einzusetztenden mineralischen Füllstoffe auf Basis von Talk haben einen Gehalt an Talk nach DIN 55920 von größer 50 Gew.-%, bevorzugt größer 80 Gew.-%, besonders bevorzugt größer 95 Gew.-% und insbesondere bevorzugt größer 98 Gew.-% bezogen auf die Gesamtmasse an Füllstoff.
  • Die mineralischen Füllstoffe auf Basis von Talk können auch oberflächenbehandelt sein. Sie können beispielsweise mit einem Haftvermittlersystem z.B. auf Silanbasis ausgerüstet sein.
  • Die erfindungsgemäße bevorzugt einzusetzenden mineralischen Füllstoffe auf Basis von Talk haben bevorzugt eine obere Teilchen- bzw. Korngröße d97 kleiner 50 μm, bevorzugt kleiner 10, besonders bevorzugt kleiner 6 und insbesondere bevorzugt kleiner 2,5 μm. Als mittlere Korngröße d550 wird bevorzugt ein Wert kleiner 10, bevorzugt kleiner 6, besonders bevorzugt kleiner 2 und insbesondere bevorzugt kleiner 1 μm gewählt. Die d97- und d50-Werte von den Füllstoffen C werden nach Sedimentationsanalyse SEDIGRAPH D 5000 bzw. nach Siebanalyse DIN 66 165 bestimmt.
  • Das mittlere Aspektverhältnis (Durchmesser zu Dicke) der teilchenförmigen Füllstoffe auf Basis von Talk liegt bevorzugt im Bereich 1 bis 100, besonders bevorzugt 2 bis 25 und insbesondere bevorzugt 5 bis 25, bestimmt an elektronenmikroskopischen Aufnahmen von Ultradünnschnitten der fertigen Produkte und Ausmessen einer repräsentativen Anzahl (ca. 50) von Füllstoffpartikeln.
  • Wie bereits oben beschrieben, kann der Füllstoff und/oder Verstärkungsstoff gegebenenfalls oberflächenmodifiziert sein beispielweise mit einem Haftvermittler bzw. Haftvermittlersystem z.B. auf Silanbasis. Die Vorbehandlung ist jedoch nicht unbedingt erforderlich. Insbesondere bei Verwendung von Glasfasern können zusätzlich zu Silanen auch Polymerdispersionen, Filmbildner, Verzweiger und/oder Glasfaserverarbeitungshilfsmittel verwendet werden.
  • Die ebenfalls erfindungsgemäß besonders bevorzugt einzusetztenden Glasfasern, die im allgemeinen einen Faserdurchmesser zwischen 7 und 18 μm, bevorzugt zwischen 9 und 15 μm haben, werden als Endlosfasern oder als geschnittene oder gemahlene Glasfasern zugesetzt. Die Fasern können mit einem geeigneten Schlichtesystem und einem Haftvermittler bzw. Haftvermittlersystem z.B. auf Silanbasis ausgerüstet sein.
  • Gebräuchliche Haftvermittler auf Silanbasis für die Vorbehandlung sind Silanverbindungen beispielsweise der allgemeinen Formel (I) (X-(CH2)q)k-Si-(O-CrH2r+1)4–k (I)in der die Substituenten folgende Bedeutung haben:
    X für NH2-, HO-,
    Figure 00100001

    q für eine ganze Zahl von 2 bis 10, bevorzugt 3 bis 4 steht,
    r für eine ganze Zahl von 1 bis 5, bevorzugt 1 bis 2 steht,
    k eine ganze Zahl von 1 bis 3, bevorzugt 1 steht.
  • Bevorzugte Haftvermittler sind Silanverbindungen aus der Gruppe Aminopropyltrimethoxysilan, Aminobutyltrimethoxysilan, Aminopropyltriethoxysilan, Aminobutyltriethoxysilan sowie die entsprechenden Silane, welche als Substituent X eine Glycidylgruppe enthalten.
  • Für die Ausrüstung der Füllstoffe werden die Silanverbindungen im Allgemeinen in Mengen von 0,05 bis 2 Gew.-%, vorzugsweise 0,25 bis 1,5 Gew.-% und insbesondere 0,5 bis 1 Gew.-% bezogen auf den mineralischen Füllstoff zur Oberflächenbeschichtung eingesetzt.
  • Die teilchenförmigen Füllstoffe können bedingt durch die Verarbeitung zur Formmasse bzw. Formkörper in der Formmasse bzw. im Formkörper einen kleineren d97- bzw. d50-Wert aufweisen, als die ursprünglich eingesetzten Füllstoffe. Die Glasfasern können bedingt durch die Verarbeitung zur Formmasse bzw. Formkörper in der Formmasse bzw. im Formkörper kürzere Längenverteilungen als ursprünglich eingesetzt aufweisen.
  • Die Teilchendurchmesser- am fertigen Produkt können dabei zum Beispiel dadurch bestimmt werden, dass elektronenmikroskopische Aufnahmen von Dünnschnitten der Polymermischung aufgenommen und mindestens 25, bevorzugt mindestens 50 Füllstoffteilchen für die Auswertung herangezogen werden.
  • Als Flammschutzmittel der Komponente D) können handelsübliche organische Halogenverbindungen mit Synergisten oder handelsübliche organische Stickstoffverbindungen oder orga nisch/anorganische Phosphorverbindungen einzeln oder im Gemisch eingesetzt werden. Auch mineralische Flammschutzadditive wie Magnesiumhydroxid oder Ca-Mg-Carbonat-Hydrate (z.B. DE-A 4 236 122) können eingesetzt werden. Als halogenhaltige, insbesondere bromierte und chlorierte Verbindungen seien beispielhaft genannt: Ethylen-l,2-bistetrabromphthalimid, epoxidiertes Tetrabrombisphenol A-Harz, Tetrabrombisphenol-A-oligocarbonat, Tetrachlorbisphenol-A-oligocarbonat, Pentabrompolyacrylat, bromiertes Polystyrol. Als organische Phosphorverbindungen sind die Phosphorverbindungen gemäß WO-A 98/17720 geeignet, z.B. Triphenylphosphat (TPP), Resorcinol-bis-(diphenylphosphat) einschließlich Oligomere (RDP) sowie Bisphenol-A-bis-diphenylphosphat einschließlich Oligomere (BDP), Melaminphosphat, Melaminpyrophosphat, Melaminpolyphosphat und deren Mischungen. Als Stickstoffverbindungen kommen insbesondere Melamin und Melamincyanurat in Frage. Als Synergisten sind z.B. Antimonverbindungen, insbesondere Antimontrioxid und Antimonpentoxid, Zinkverbindungen, Zinnverbindungen wie z.B. Zinnstannat und Borate geeignet. Auch können dem Flammschutzmittel sogenannte Kohlenstoffbildner und Tetrafluorethylenpolymerisate zugesetzt werden.
  • Die als Komponente E) einzusetzenden Elastomermodifikatoren umfassen ein oder mehrere Pfropfpolymerisate von
    • E.1 5 bis 95 Gew.-%, vorzugsweise 30 bis 90 Gew.-%, wenigstens eines Vinylmonomeren auf
    • E.2 95 bis 5 Gew.-%, vorzugsweise 70 bis 10 Gew.-% einer oder mehrerer Pfropfgrundlagen mit Glasübergangstemperaturen < 10°C, vorzugsweise < 0°C, besonders bevorzugt < –20°C.
  • Die Pfropfgrundlage E.2 hat im Allgemeinen eine mittlere Teilchengröße (d50-Wert) von 0,05 bis 10 μm, vorzugsweise 0,1 bis 5 μm, besonders bevorzugt 0,2 bis 1 μm.
  • Monomere E.1 sind vorzugsweise Gemische aus
    • E.1.1 50 bis 99 Gew.-% Vinylaromaten und/oder kernsubstituierten Vinylaromaten (wie beispielsweise Styrol, α-Methylstyrol, p-Methylstyrol, p-Chlorstyrol) und/oder Methacrylsäure-(C1-C8)-Alkylester (wie z.B. Methylmethacrylat, Ethylmethacrylat) und
    • E.1.2 1 bis 50 Gew.-% Vinylcyanide (ungesättigte Nitrile wie Acrylnitril und Methacrylnitril) und/oder (Meth)Acrylsäure-(C1-C8)-Alkylester (wie z.B. Methylmethacrylat, n-Butylacrylat, t-Butylacrylat) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Maleinsäureanhydrid und N-Phenyl-Maleinimid).
  • Bevorzugte Monomere E.1.1 sind ausgewählt aus mindestens einem der Monomere Styrol, α-Methylstyrol und Methylmethacrylat, bevorzugte Monomere E.1.2 sind ausgewählt aus mindestens einem der Monomere Acrylnitril, Maleinsäureanhydrid und Methylmethacrylat.
  • Besonders bevorzugte Monomere sind E.1.1 Styrol und E.1.2 Acrylnitril.
  • Für die in den Elastomermodifikatoren E) einzusetztenden Pfropfpolymerisate geeignete Pfropfgrundlagen E.2 sind beispielsweise Dienkautschuke, EP(D)M-Kautschuke, also solche auf Basis Ethylen/Propylen und gegebenenfalls Dien, Acrylat-, Polyurethan-, Silikon-, Chloropren und Ethylen/Vinylacetat-Kautschuke.
  • Bevorzugte Pfropfgrundlagen E.2 sind Dienkautschuke (z.B. auf Basis Butadien, Isopren etc.) oder Gemische von Dienkautschuken oder Copolymerisate von Dienkautschuken oder deren Gemischen mit weiteren copolymerisierbaren Monomeren (z.B. gemäß E.1.1 und E.1.2), mit der Maßgabe, dass die Glasübergangstemperatur der Komponente E.2 unterhalb < 10°C, vorzugsweise < 0°C, besonders bevorzugt < –10°C liegt.
  • Besonders bevorzugt ist als Pfropfgrundlage E.2. reiner Polybutadienkautschuk.
  • Besonders bevorzugte Polymerisate E sind z.B. ABS-Polymerisate (Emulsions-, Masse- und Suspensions-ABS), wie sie z. B. in der DE-A 2 035 390 (=US-A 3 644 574) oder in der DE-A 2 248 242 (=GB-A 1 409 275) bzw. in Ullmann, Enzyklopädie der Technischen Chemie, Bd. 19 (1980), S. 280 ff. beschrieben sind. Der Gelanteil der Pfropfgrundlage E.2 beträgt mindestens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-% (in Toluol gemessen).
  • Die Elastomermodifikatoren bzw. Pfropfcopolymerisate E werden durch radikalische Polymerisation, z.B. durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation, vorzugsweise durch Emulsions- oder Massepolymerisation hergestellt.
  • Besonders geeignete Pfropfkautschuke sind auch ABS-Polymerisate, die durch Redox-Initiierung mit einem Initiatorsystem aus organischem Hydroperoxid und Ascorbinsäure gemäß US-A 4 937 285 hergestellt werden.
  • Da bei der Pfropfreaktion die Pfropfmonomeren bekanntlich nicht unbedingt vollständig auf die Pfropfgrundlage aufgepfropft werden, werden erfindungsgemäß unter Pfropfpolymerisaten E auch solche Produkte verstanden, die durch (Co)Polymerisation der Pfropfmonomere in Gegenwart der Pfropfgrundlage gewonnen werden und bei der Aufarbeitung mit anfallen.
  • Geeignete Acrylatkautschuke basieren auf Propfgrundlagen E.2 die vorzugsweise Polymerisate aus Acrylsäurealkylestern, gegebenenfalls mit bis zu 40 Gew.-%, bezogen auf E.2 anderen polymeri sierbaren, ethylenisch ungesättigten Monomeren sind. Zu den bevorzugten polymerisierbaren Acrylsäureestern gehören C1-C8-Alkylester, beispielsweise Methyl-, Ethyl-, Butyl-, n-Octyl- und 2-Ethylhexylester; Halogenalkylester, vorzugsweise Halogen-C1-C8-alkyl-ester, wie Chlorethylacrylat sowie Mischungen dieser Monomeren.
  • Zur Vernetzung können Monomere mit mehr als einer polymerisierbaren Doppelbindung copolymerisiert werden. Bevorzugte Beispiele für vernetzende Monomere sind Ester ungesättigter Monocarbonsäuren mit 3 bis 8 C-Atomen und ungesättigter einwertiger Alkohole mit 3 bis 12 C-Atomen, oder gesättigter Polyole mit 2 bis 4 OH-Gruppen und 2 bis 20 C-Atomen, wie z.B. Ethylenglykoldimethacrylat, Allylmethacrylat; mehrfach ungesättigte heterocyclische Verbindungen, wie z.B. Trivinyl- und Triallylcyanurat; polyfunktionelle Vinylverbindungen, wie Di- und Trivinylbenzole; aber auch Triallylphosphat und Diallylphthalat.
  • Bevorzugte vernetzende Monomere sind Allylmethacrylat, Ethylenglykoldimethacrylat, Diallylphthalat und heterocyclische Verbindungen, die mindestens 3 ethylenisch ungesättigte Gruppen aufweisen.
  • Besonders bevorzugte vernetzende Monomere sind die cyclischen Monomere Triallylcyanurat, Triallylisocyanurat, Triacryloylhexahydro-s-triazin, Triallylbenzole. Die Menge der vernetzten Monomere beträgt vorzugsweise 0,02 bis 5, insbesondere 0,05 bis 2 Gew.-%, bezogen auf die Pfropfgrundlage E.2.
  • Bei cyclischen vernetzenden Monomeren mit mindestens 3 ethylenisch ungesättigten Gruppen ist es vorteilhaft, die Menge auf unter 1 Gew.-% der Pfropfgrundlage E.2 zu beschränken.
  • Bevorzugte "andere" polymerisierbare, ethylenisch ungesättigte Monomere, die neben den Acrylsäureestern gegebenenfalls zur Herstellung der Pfropfgrundlage E.2 dienen können, sind beispielsweise Acrylnitril, Styrol, α-Methylstyrol, Acrylamide, Vinyl-C1-C8-alkylether, Methylmethacrylat, Butadien. Bevorzugte Acrylatkautschuke als Pfropfgrundlage E.2 sind Emulsionspolymerisate, die einen Gelgehalt von mindestens 60 Gew.-% aufweisen.
  • Weitere geeignete Pfropgrundlagen gemäß E.2 sind Silikonkautschuke mit pfropfaktiven Stellen, wie sie in den DE-A 3 704 657, DE-A 3 704 655, DE-A 3 631 540 und DE-A 3 631 539 beschrieben werden.
  • Der Gelgehalt der Pfropfgrundlage E.2 wird bei 25°C in einem geeigneten Lösungsmittel bestimmt (M. Hoffmann, H. Krömer. R. Kuhn, Polymeranalytik [und II, Georg Thieme-Verlag, Stuttgart 1977).
  • Die mittlere Teilchengröße d50 ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Er kann mittels Ultrazentrifugenmessung (W. Scholtan, H. Lange, Kolloid, Z. und Z. Polymere 250 (1972), 782-1796) bestimmt werden.
  • Als Komponente F) können die erfindungsgemäß herzustellenden Formmassen zusätzlich Polycarbonat enthalten.
  • Bevorzugte Polycarbonate sind solche Homopolycarbonate und Copolycarbonate auf Basis der Bisphenole der allgemeinen Formel (II), HO-Z-OH (II)worin Z ein divalenter organischer Rest mit 6 bis 30 C-Atomen ist, der eine oder mehrere aromatische Gruppen enthält.
  • Bevorzugt sind Bisphenole der Formel (III)
    Figure 00140001
    worin
    A für eine Einfachbindung, C1-C5-Alkylen, C2-C5-Alkyliden, C5-C6-Cycloalkyliden, -O-, -SO-, -CO-, -S-, -SO2-, C6-C12-Arylen, an das weitere aromatische gegebenenfalls Heteroatome enthaltende Ringe kondensiert sein können, steht,
    oder A für einen Rest der Formel (IV) oder (V)
    Figure 00140002
    Figure 00150001
    steht, worin
    X für jeweils C1-C12-Alkyl, vorzugsweise Methyl, Halogen, vorzugsweise Chlor und/oder Brom steht,
    n jeweils unabhängig voneinander für 0, 1 oder 2 steht,
    p für 1 oder 0 steht,
    R7 und R8 für jedes Y individuell wählbar, unabhängig voneinander für Wasserstoff oder C1-C6-Alkyl, vorzugsweise Wasserstoff, Methyl oder Ethyl stehen,
    Y für Kohlenstoff steht und
    m für eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 steht, mit der Maßgabe, dass an mindestens einem Atom Y, R7 und R8 gleichzeitig Alkyl sind.
  • Beispiele für Bisphenole gemäß der allgemeinen Formel (II) sind Bisphenole, die zu den folgenden Gruppen gehören: Dihydroxydiphenyle, Bis-(hydroxyphenyl)-alkane, Bis-(hydroxyphenyl)-cycloalkane, Indanbisphenole, Bis-(hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-ether, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)-sulfoxide und α,α'-Bis-(hydroxyphenyl)-diisopropylbenzole.
  • Auch Derivate der genannten Bisphenole, die zum Beispiel durch Alkylierung oder Halogenierung an den aromatischen Ringen der genannten Bisphenole zugänglich sind, sind Beispiele für Bisphenole gemäß der allgemeinen Formel (II).
  • Beispiele für Bisphenole gemäß der allgemeinen Formel (II) sind insbesondere die folgenden Verbindungen: Hydrochinon, Resorcin, 4,4'-Dihydroxydiphenyl, Bis-(4 hydroxyphenyl)sulfid, Bis-(4-hydroxyphenyl)sulfon, Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfon, 1,1-Bis-(3,5-dimethyl-4-hydroxyphenyl)-p/m-diisopropylbenzol, 1,1-Bis-(4-hydroxyphenyl)-1-phenyl-ethan, 1,1-Bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexan, 1,1-Bis-(4-hydroxyphenyl)-3-methylcyclohexan, 1,1-Bis-(4-hydroxyphenyl)-3,3-dimethylcyclohexan, 1,1- Bis-(4-hydroxyphenyl)-4-methylcyclohexan, 1,1-Bis-(4-hydroxyphenyl)-cyclohexan, 1,1-Bis-(4- hydroxyphenyl)-3,3,5-trimethylcyclohexan, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3-methyl-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, 2,2-Bis-(4-hydroxyphenyl)-propan (d.h. Bisphenol A), 2,2-Bis-(3-chlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan, 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan, 2,4-Bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutan, α,α'-Bis-(4-hydroxyphenyl)-o-diisopropylbenzol, α,α'-Bis-(4-hydroxyphenyl)-m-diisopropylbenzol (d.h. Bisphenol M), α,α'-Bis-(4-hydroxyphenyl)-p-diisopropylbenzol und Indanbisphenol.
  • Erfindungsgemäß besonders bevorzugt als Komponente F) einzusetzende Polycarbonate sind das Homopolycarbonat auf Basis von Bisphenol A, das Homopolycarbonat auf Basis von 1,1-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan und die Copolycarbonate auf Basis der beiden Monomere Bisphenol A und 1,1-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan.
  • Die beschriebenen Bisphenole gemäß der allgemeinen Formel (II) können nach bekannten Verfahren, z.B. aus den entsprechenden Phenolen und Ketonen, hergestellt werden.
  • Die genannten Bisphenole und Verfahren zu ihrer Herstellung sind zum Beispiel beschrieben in der Monographie H. Schnell, "Chemistry and Physics of Polycarbonates", Polymer Reviews, Band 9, S. 77-98, Interscience Publishers, New York, London, Sydney, 1964.
  • 1,1-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan und seine Herstellung ist z.B. beschrieben in US-A 4 982 014.
  • Indanbisphenole können zum Beispiel aus Isopropenylphenol oder dessen Derivate oder aus Dimeren des Isopropenylphenols oder dessen Derivate in Gegenwart eines Friedel-Craft-Katalysators in organischen Lösungsmitteln hergestellt werden.
  • Polycarbonate können nach bekannten Verfahren hergestellt werden. Geeignete Verfahren zur Herstellung von Polycarbonaten sind zum Beispiel die Herstellung aus Bisphenolen mit Phosgen nach dem Phasengrenzflächenverfahren oder aus Bisphenolen mit Phosgen nach dem Verfahren in homogener Phase, dem sogenannten Pyridinverfahren, oder aus Bisphenolen mit Kohlensäureestern nach dem Schmelzeumesterungsverfahren. Diese Herstellverfahren sind z.B. beschrieben in H. Schnell, "Chemistry and Physis of Polycarbonates", Polymer Reviews, Band 9, S. 31-76, Interscience Publishers. New York, London, Sidney, 1964.
  • Bei der Herstellung von Polycarbonat werden bevorzugt Rohstoffe und Hilfsstoffe mit einem geringen Grad an Verunreinigungen eingesetzt. Insbesondere bei der Herstellung nach dem Schmelzeumesterungsverfahren sollen die eingesetzten Bisphenole und die eingesetzten Kohlensäurederivate möglichst frei von Alkaliionen und Erdalkaliionen sein. Derart reine Rohstoffe sind zum Beispiel erhältlich, indem man die Kohlensäurederivate, zum Beispiel Kohlensäureester, und die Bisphenole umkristallisiert, wäscht oder destilliert.
  • Die erfindungsgemäß geeigneten Polycarbonate haben bevorzugt ein Gewichtsmittel der molaren Masse (Mw), welches sich z.B. durch Ultrazentrifugation oder Streulichtmessung bestimmen lässt, von 10 000 bis 200 000 g/mol. Besonders bevorzugt haben sie ein Gewichtsmittel der molaren Masse von 12 000 bis 60 000 g/mol, insbesondere bevorzugt 20 000 bis 35 000 g/mol.
  • Die mittlere molare Masse der erfindungsgemäßen Polycarbonate kann zum Beispiel in bekannter Weise durch eine entsprechende Menge an Kettenabbrechern eingestellt werden. Die Kettenabbrecher können einzeln oder als Mischung verschiedener Kettenabbrecher eingesetzt werden.
  • Geeignete Kettenabbrecher sind sowohl Monophenole als auch Monocarbonsäuren. Geeignete Monophenole sind z.B. Phenol, p-Chlorphenol, p-tert.-Butylphenol, Cumylphenol oder 2,4,6-Tribromphenol, sowie langkettige Alkylphenole, wie z.B. 4-(1,1,3,3-Tetramethylbutyl)-phenol oder Monoalkylphenole bzw. Dialkylphenole mit insgesamt 8 bis 20 C-Atomen in den Allylsubstituenten wie z.B. 3,5-di-tert.-Butylphenol, p-tert.-Octylphenol, p-Dodecylphenol, 2-(3,5-Dimethyl-heptyl)-phenol oder 4-(3,5-Dimethyl-heptyl)-phenol. Geeignete Monocarbonsäuren sind Benzoesäure, Alkylbenzoesäuren und Halogenbenzoesäuren.
  • Bevorzugte Kettenabbrecher sind Phenol, p-tert.-Butylphenol, 4-(1,1,3,3-Tetramethylbutyl)-phenol und Cumylphenol.
  • Die Menge an Kettenabbrechern beträgt bevorzugt zwischen 0,25 und 10 Mol-%, bezogen auf die Summe der jeweils eingesetzten Bisphenole.
  • Die erfindungsgemäß geeigneten Polycarbonate können in bekannter Weise verzweigt sein, und zwar vorzugsweise durch den Einbau von trifunktionellen oder mehr als trifunktionellen Verzweigern. Geeignete Verzweiger sind z.B. solche mit drei oder mehr als drei phenolischen Gruppen oder solche mir drei oder mehr als drei Carbonsäuregruppen.
  • Geeignete Verzweigen sind beispielsweise Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten-2, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptan, 1,3,5-Tri-(4-hydroxyphenyl)-benzol, 1,1,1-Tris-(4-hydruxyphenyl)-ethan, Tri-(4-hydroxyphenyl)-phenylmethan, 2,2-Bis-[4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-propan, 2,4-Bis-(4-hydroxyphenyl-isopropyl)-phenol, 2,6-Bis-(2-hydroxy-5'-methyl-benzyl)-4-methylphenol, 2-(4-Hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan, Hexa-(4-(4-hydroxyphenyl-isopropyl)-phenyl)-terephthalsäureester, Tetra-(4-hydroxyphenyl)-methan, Tetra-(4-(4-hydroxyphenyl-isopropyl)-phenoxy)-methan und 1,4-Bis-(4',4''-dihydroxytri phenyl)-methylbenzol sowie 2,4-Dihydroxybenzoesäure, Trimesinsäure, Cyanurchlorid, 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol, Trimesinsäuretrichlorid und α,α',α''-Tris-(4-hydroxyphenol)-1,3,5-triisopropylbenzol.
  • Bevorzugte Verzweiger sind 1,1,1-Tris-(4-hydroxyphenyl)-ethan und 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol.
  • Die Menge der gegebenenfalls einzusetzenden Verzweiger beträgt bevorzugt 0,05 Mol-% bis 2 Mol-%, bezogen auf Mole an eingesetzten Bisphenolen.
  • Die Verzweiger können zum Beispiel im Falle der Herstellung des Polycarbonates nach dem Phasengrenzflächenverfahren mit den Bisphenolen und den Kettenabbrechern in der wässrig alkalischen Phase vorgelegt werden, oder in einem organischen Lösungsmittel gelöst zusammen mit den Kohlensäurederivaten zugegeben werden. Im Falle des Umesterungsverfahrens werden die Verzweiger bevorzugt zusammen mit den Dihydroxyaromaten oder Bisphenolen dosiert.
  • Bevorzugt einzusetzende Katalysatoren bei der Herstellung von Polycarbonat nach dem Schmelzeumesterungsverfahren sind die literaturbekannten Ammoniumsalze und Phosphoniumsalze.
  • Auch Copolycarbonate können verwendet werden. Copolycarbonate im Sinne der Erfindung sind insbesondere Polydiorganosiloxan-Polycarbonat-Blockcopolymere, deren Gewichtsmittel der molaren Masse (Mw) bevorzugt 10 000 bis 200 000 g/mol, besonders bevorzugt 20 000 bis SO 000 g/mol beträgt (ermittelt durch Gelchromatographie nach vorheriger Eichung durch Lichtstreuungsmessung oder Ultrazentrifugation). Der Gehalt aromatischer Carbonatstruktureinheiten in den Polydiorganosiloxan-Polycarbonat-Blockcopolymeren beträgt vorzugsweise 75 bis 97,5 Gew.-Teile, besonders bevorzugt 85 bis 97 Gew.-Teile. Der Gehalt an Polydiorganosiloxanstruktureinheiten in den Polydiorganosiloxan-Polycarbonat-Blockcopolymeren beträgt vorzugsweise 25 bis 2,5 Gew.-Teile, besonders bevorzugt 15 bis 3 Gew.-Teile. Die Polydiorganosiloxan-Polycarbonat-Blockcopolymeren können zum Beispiel ausgehend von α,ω-Bishydroxyaryloxyendgruppen-haltigen Polydiorganosiloxanen mit einem mittleren Polymerisationsgrad von bevorzugt Pn = 5 bis 100, besonders bevorzugt Pn = 20 bis 80, hergestellt werden.
  • Die Polydiorganosiloxan-Polycarbonat-Blockpolymere können auch eine Mischung aus Polydiorganosiloxan-Polycarbonat-Blockcopolymeren mit üblichen polysiloxanfreien, thermoplastischen Polycarbonaten sein, wobei der Gesamtgehalt an Polydiorganosiloxanstruktureinheiten in dieser Mischung bevorzugt 2,5 bis 25 Gew.-Teile beträgt.
  • Solche Polydiorganosiloxan-Polycarbonat-Blockcopolymere sind dadurch gekennzeichnet, dass sie in der Polymerkette einerseits aromatische Carbonatstruktur-Einheiten (VI) und andererseits Aryloxyendgruppen-haltige Polydiorganosiloxane (VII) enthalten,
    Figure 00190001
    Figure 00190002
    worin
    Ar für gleiche oder verschiedene difunktionelle aromatische Reste steht und
    R9 und R10 gleich oder verschieden sind und für lineares Alkyl, verzweigtes Alkyl, Alkenyl, halogeniertes lineares Alkyl, halogeniertes verzweigtes Alkyl, Aryl oder halogeniertes Aryl, vorzugsweise Methyl stehen, bedeuten und
    1 für den mittleren Polymerisationsgrad von bevorzugt 5 bis 100, besonders bevorzugt 20 bis 80, steht.
  • Alkyl ist in vorstehender Formel (VII) vorzugsweise C1-C20-Alkyl, Alkenyl ist in vorstehender Formel (VII) vorzugsweise C2-C6-Alkenyl; Aryl ist in den vorstehenden Formeln (VI) oder (VII) vorzugsweise C6-C14-Aryl. Halogeniert bedeutet in den vorstehenden Formeln teilweise oder vollständig chloriert, bromiert oder fluoriert.
  • Beispiele für Alkyle, Alkenyle, Aryle, halogenierte Alkyle und halogenierte Aryle sind Methyl, Ethyl, Propyl, n-Butyl, tert.-Butyl, Vinyl, Phenyl, Naphthyl, Chlormethyl, Perfluorbutyl, Perfluoroctyl und Chlorphenyl.
  • Derartige Polydiorganosiloxan-Polycarbonat-Blockcopolymere und ihre Herstellug gehören zum Stand der Technik und werden zum Beispiel in US-A 3 189 662 beschrieben.
  • Bevorzugte Polydiorganosiloxan-Polycarbonat-Blockcopolymere können z.B. hergestellt werden; indem man α,ω-Bishydroxyaryloxyendgruppen-haltige Polydiorganosiloxan zusammen mit anderen Bisphenolen, gegebenenfalls unter Mitverwendung von Verzweigern in den üblichen Mengen, z.B. nach dem Zweiphasengrenzflächenverfahren umsetzt (wie zum Beispiel beschrieben in N. Schnell, "Chemistry and Physis of Polycarbonates", Polymer Reviews, Band 9, S. 31-76, Interscience Publishers, New York, London, Sydney, 1964). Die als Edukte für diese Synthese verwendeten α,ω-Bishydroxyaryloxyendgruppen-haltige Polydiorganosiloxane und ihre Herstellung gehören zum Stand der Technik und werden zum Beispiel in US-A 3 419 634 beschrieben.
  • Den Polycarbonaten können übliche Additive wie z.B. Entformungsmittel, Stabilisatoren und/oder Fließmittel in der Schmelze zugemischt werden oder auf Ihrer Oberfläche aufgebracht werden. Bevorzugt enthalten die zu verwendenden Polycarbonate bereits Entformungsmittel vor der Compoundierung mit den anderen Komponenten der erfindungsgemäßen Formmassen.
  • Die Komponente G stellen Additive dar. Übliche Additive sind z.B. Stabilisatoren (zum Beispiel UV-Stabilisatoren, Thermostabilisatoren, Gammastrahlenstabilisatoren), Antistatika, Fließhilfsmittel, Entformungsmittel, Brandschutzadditive, Emulgatoren, Nukleierungsmittel, Weichmacher, Gleitmittel, Farbstoffe und Pigmente. Die genannten und weitere geeignete Additive sind zum Beispiel beschrieben in Gächter, Müller, Kunststoff-Additive, 3. Ausgabe, Hanser-Verlag, München, Wien, 1989 und im Plastics Additives Handbook, 5th Edition, Hanser-Verlag, München, 2001. Die Additive können alleine oder in Mischung bzw. in Form von Masterbatchen eingesetzt werden.
  • Als Stabilisatoren können zum Beispiel sterisch gehinderte Phenole, Hydrochinone, aromatische sekundäre Amine wie Diphenylamine, substituierte Resorcine, Salicylate, Benzotriazole und Benzophenone, sowie verschieden substituierte Vertreter dieser Gruppen und deren Mischungen eingesetzt werden.
  • Als Pigmente können z.B. Titandioxid, Ultramarinblau, Eisenoxid, Ruß, Phthalocyanine, Chinacridone, Perylene, Nigrosin und Anthrachinone eingesetzt werden.
  • Als Nukleierungsmittel können z.B. Natrium- oder Calciumphenylphosphinat, Aluminiumoxid, Siliziumdioxid sowie bevorzugt Talkum eingesetzt werden.
  • Als Gleit- und Entformungsmittel können z.B. Esterwachse, Pentaeritrytoltetrastearat (PETS), langkettige Fettsäuren (z.B. Stearinsäure oder Behensäure), deren Salze (z.B. Ca- oder Zn-Stearat) sowie Amidderivate (z.B. Ethylen-bis-stearylamid) oder Montanwachse (Mischungen aus geradkettigen, gesättigten Carbonsäuren mit Kettenlängen von 26 bis 32 C-Atomen) sowie niedermolekulare Polyethylen- bzw. Polypropylenwachse eingesetzt werden.
  • Als Weichmacher können zum Beispiel Phthalsäuredioctylester, Phthalsäuredibenzylester, Phthalsäurebutylbenzylester, Kohlenwasserstofföle, N-(n-Butyl)benzolsulfonamid eingesetzt werden.
  • Die Herstellung der erfindungsgemäßen Zusammensetzungen auf Basis thermoplastischer Polyester erfolgt nach bekannten Verfahren durch Mischen der Komponenten. Das Mischen der Komponenten erfolgt durch Vermischen der Komponenten in den entsprechenden Gewichtsanteilen. Vorzugsweise geschieht das Mischen der Komponenten bei Temperaturen von 220 bis 330°C durch gemeinsames Vermengen, Vermischen, Kneten, Extrudieren oder Verwalzen der Komponenten. Es kann vorteilhaft sein, einzelne Komponenten vorzumischen. Es kann weiterhin vorteilhaft sein, Formteile oder Halbzeuge aus einer bei Raumtemperatur (bevorzugt 0 bis 40°C) hergestellten physikalischen Mischung (Dryblend) vorgemischter Komponenten und/oder einzelner Komponenten direkt herzustellen.
  • Gegenstand der Erfindung sind ferner die nach dem erfindungsgemäßen Verfahren hergestellten Formmassen, erhältlich durch Vermischen von
    • A) 99,9 bis 10 Gew.-Teile, bevorzugt 99,5 bis 40 Gew.-Teile, besonders bevorzugt 99,0 bis 55 Gew.-Teile mindestens eines thermoplastischen Polyesters, vorzugsweise eines Polyalkylenterephthalats,
    • B) 0,1 bis 20 Gew.-Teile, vorzugsweise 0,25 bis 15 Gew.-Teile, besonders bevorzugt 1,0 bis 10 Gew.-Teile mindestens eines Copolymerisats aus mindestens einem α-Olefin, vorzugsweise Ethen mit mindestens einem Methacrylsäureester oder Acrylsäureester eines aliphatischen Alkohols, vorzugsweise eines aliphatischen Alkohols mit 5 bis 30 Kohlenstoffatomen,
    • C) 0 bis 70 Gew.-Teile, vorzugsweise 5 bis 50 Gew.-Teile, besonders bevorzugt 9 bis 47 Gew.-Teile mindestens eines Füll- oder Verstärkungsstoffes,
    • D) 0 bis 30 Gew.-Teile, vorzugsweise 5 bis 25 Gew.-Teile, besonders bevorzugt 9 bis 19 Gew.-Teile mindestens eines Flammschutzadditivs,
    • E) 0 bis 80 Gew.-Teile, besonders bevorzugt 2 bis 19 Gew.-Teile, besonders bevorzugt 9 bis 15 Gew.-Teile mindestens eines Elastomermodifikators.
    • F) 0 bis 80 Gew.-Teile, bevorzugt 10 bis 70 Gew.-Teile, besonders bevorzugt 20 bis 60 Gew.-Teile eines Polycarbonats,
    • G) 0 bis 10 Gew.-%, bevorzugt 0,05 bis 3 Gew.-%, besonders bevorzugt 0,1 bis 0,9 Gew.-% weiterer üblicher Additive,
    dadurch gekennzeichnet, dass das Copolymerisat B) keine weiteren reaktiven funktionellen Gruppen enthält und dass der MFI (gemessen bei 190°C für 2,16 kg) des Copolymerisats B) 100g/10 min, vorzugsweise 150 g/10 min, nicht unterschreitet und deren Verwendung zur Herstellung von Formteilen sowie die Formteile selbst.
  • Die aus den erfindungsgemäß eingesetzten Zusammensetzungen auf Basis thermoplastischer Polyester hergestellten erfindungsgemäßen Formmassen zeichnen sich durch eine höhere Schlagzähigkeit aus als Formmassen vergleichbarer Viskosität, die durch Einsatz eines niederviskosen Basisharzes als Komponente A) hergestellt wurden. Dabei ist vielfach auch die Reißdehnung der erfindungsgemäßen Formmassen im Vergleich zu den gleichviskosen Formmassen auf Basis niederviskosem Basisharz höher, wobei der Zugmodul bei den erfindungsgemäßen Formmassen nur geringfügig reduziert wird und somit eine Materialsubstitution möglich ist.
  • Erfindungsgemäße Formmassen können nach üblichen Verfahren, beispielsweise durch Spritzguss oder Extrusion, zu Formteilen oder Halbzeugen verarbeitet werden. Beispiele für Halbzeuge sind Folien und Platten. Besonders bevorzugt ist die Spritzgießverarbeitung.
  • Die erfindungsgemäß aus den Formmassen herzustellenden Formteile können klein- oder großteilig sein und beispielsweise in der Kraftfahrzeug-, Elektro-, Elektronik-, Telekommunikations-, Informationstechnologie-, Computerindustrie, im Haushalt, Sport in der Medizin oder der Unterhaltungsindustrie angewandt werden. Insbesondere können erfindungsgemäße Formmassen für Anwendungen eingesetzt werden, für die eine hohe Schmelzefließfähigkeit erforderlich ist. Ein Beispiel für derartige Anwendungen ist die so genannte Dünnwandtechnologie, bei der die Formteile Wanddicken von weniger als 2,5 mm, bevorzugt weniger als 2,0 mm, besonders bevorzugt weniger als 1,5 mm und am meisten bevorzugt weniger als 1,0 mm aufweisen. Ein weiteres Beispiel sind so genannte Multiwerkzeuge, bei denen über ein Angusssystem mindestens 4 Formteile, bevorzugt mindestens 8 Formteile, besonders bevorzugt mindestens 12 Formteile, am meisten bevorzugt mindestens 16 Formteile in einem Spritzgussvorgang gefüllt werden.
    • Komponente A1: Lineares Polybutylenterephthalat (Pocan® B 1300, Handelsprodukt der Bayer AG, Leverkusen, Deutschland) mit einer Intrinsischen Viskosität von ca. 0,93 cm3/g (gemessen in Phenol : 1,2-Dichlorbenzol = 1:1 bei 25°C)
    • Komponente A2: Lineares Polybutylenterephthalat (Pocan® B 1100, Handelsprodukt der Bayer AG, Leverkusen, Deutschland) mit einer Intrinsischen Viskosität von ca. 0,83 cm3/g (gemessen in Phenol : 1,2-Dichlorbenzol = 1:1 bei 25°C)
    • Komponente B: Copolymerisat aus Ethen und Acrylsäure-2-ethylhexylester mit einem Ethen-Anteil von 63 Gew.-% und einem MFI von 550 (Lotryl® 37 EH 550 der Atofina Deutschland, Düsseldorf )
    • Vergleichskomponente V: Copolymerisat aus Ethen, Methylacrylat und Glycidylacrylat mit einem Anteil von 26 Gew.-% Methylacrylat und 8 % Glycidylacrylat sowie einem MFI von 6 (Lotader® AX 8900 der Atofina Deutschland, Düsseldorf)
    • Komponente C: Mit silanhaltigen Verbindungen beschlichtete Glasfaser mit einem Durchmesser von 10 μm (CS 7967, Handelprodukt der Bayer Antwerpen N.V., Antwerpen, Belgien)
  • Als Additive wurden übliche Nukleierungsmittel und Entformungsmittel verwendet.
  • Zusammensetzungen auf Basis von PBT der Beispiele in den Tabellen 1 und 2 wurden auf einem Zweiwellenextruder des Typs ZSK32 (Werner und Pfleiderer) bei Massetemperaturen von 260 bis 300 °C zu Formmassen compoundiert, die Schmelze wurde in ein Wasserbad ausgetragen und anschließend granuliert.
  • Die Prüfkörper der Beispiele in den Tabellen 1 und 2 wurden auf einer Spritzgießmaschine des Typs Arburg 320-210-500 bei einer Massetemperatur von ca. 260°C und einer Werkzeugtemperatur von ca. 80°C zu Schulterstäben (3 mm Dicke gemäß ISO 527) und Prüfstäben 80 × 10 × 4 mm (gem. ISO 178) verspritzt.
  • Bis auf die Schmelzeviskositätsmessungen wurden alle in den folgenden Tabellen aufgeführten Untersuchungen an o.g. Prüfkörpern durchgeführt.
    Zug-E-Modul: Steifigkeit nach DIN/EN/ISO 527-2/1A.
    Zugfestigkeit nach DIN/EN/ISO 527-2/1A.
    Reißdehnung: Dehnbarkeit bestimmt nach DIN/EN/ISO 527-2/1A.
    Biegemodul: Steifigkeit nach DIN/EN/ISO 178
    Biegefestigkeit nach DIN/EN/ISO 178
    Randfaserdehnung: Dehnbarkeit nach DIN/EN/ISO 178
    Schlagzähigkeit: IZOD-Methode nach ISO 180 1U bei Raumtemperatur
    Fülldruck: Aufzeichnung des zum Verspritzen der jeweiligen Prüfkörper benötigten Druckes an der Spritzgussmaschine
    Schmelzeviskosität: Bestimmt nach DIN 5481 1/ISO 1 1443 bei der angegebene Scherrate und Temperatur mit dem Gerät Viscorobo 94.00 der Fa. Göttfert nach Trocknung des Granulates bei 120°C für 4 Stunden im Vakuumtrockner.
  • Figure 00250001
  • Figure 00260001

Claims (8)

  1. Verfahren zu Erniedrigung der Schmelzviskosität von Zusammensetzungen auf Basis thermoplastischer Polyester enthaltend A) 99,9 bis 10 Gew.-Teile mindestens eines thermoplastischen Polyesters, B) 0,1 bis 20 Gew.-Teile mindestens eines Copolymerisats aus mindestens einem α-Olefin mit mindestens einem Methacrylsäureester oder Acrylsäureester eines aliphatischen Alkohols, C) 0 bis 70 Gew.-Teile mindestens eines Füll- und/oder Verstärkungsstoffes, D) 0 bis 30 Gew.-Teile mindestens eines Flammschutzadditivs, E) 0 bis 80 Gew.-Teile mindestens eines Elastomermodifikators, F) 0 bis 80 Gew.-Teile eines Polycarbonats, G) 0 bis 10 Gew.-%, weiterer üblicher Additive, dadurch gekennzeichnet, dass das Copolymerisat B) keine weiteren reaktiven funktionellen Gruppen enthält und dass der MFI des Copolymerisats B) 100 g/10 min nicht unterschreitet.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass im Copolymerisat B) als α-Olefin Ethen eingesetzt wird.
  3. Verfahren gemäß der Ansprüche 1 und 2, dadurch gekennzeichnet, dass im Copolymerisat B) als aliphatischer Alkohol ein Alkohol mit 5 bis 30 Kohlenstoffatomen eingesetzt wird.
  4. Verfahren gemäß der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der MFI des Copolymerisats B) 150 g/10 min nicht unterschreitet.
  5. Formmassen erhältlich durch Vermischen von mindestens A) 99,9 bis 10 Gew.-Teile mindestens eines thermoplastischen Polyesters, B) 0,1 bis 20 Gew.-Teile mindestens eines Copolymerisats aus mindestens einem α-Olefin mit mindestens einem Methacrylsäureester oder Acrylsäureester eines aliphatischen Alkohols, C) 0 bis 70 Gew.-Teile, vorzugsweise 5 bis 50 Gew.-Teile, besonders bevorzugt 9 bis 47 Gew.-Teile mindestens eines Füll- oder Verstärkungsstoffes, D) 0 bis 30 Gew.-Teile mindestens eines Flammschutzadditivs, E) 0 bis 80 Gew.-Teile mindestens eines Elastomermodifikators, F) 0 bis 80 Gew.-Teile eines Polycarbonats, G) 0 bis 10 Gew.-% weiterer üblicher Additive, dadurch gekennzeichnet, dass das Copolymerisat B) keine weiteren reaktiven funktionellen Gruppen enthält und dass der MFI des Copolymerisats B) 100 g/10 min, nicht unterschreitet.
  6. Formteile erhältlich durch Spritzguss oder Extrusion der Formmassen gemäß Anspruch 5.
  7. Verwendung der Formteile gemäß Anspruch 6 in der Dünnwandtechnologie.
  8. Verwendung der Formteile gemäß der Ansprüche 6 in der Elektro-, Elektronik-, Telekommunikations-, Kraftfahrzeug-, Computerindustrie oder im Sport, der Medizin im Haushalt oder der Unterhaltungsindustrie.
DE200410027873 2004-06-08 2004-06-08 Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit Withdrawn DE102004027873A1 (de)

Priority Applications (18)

Application Number Priority Date Filing Date Title
DE200410027873 DE102004027873A1 (de) 2004-06-08 2004-06-08 Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit
ES05756795T ES2315882T3 (es) 2004-06-08 2005-06-08 Masas de moldeo basadas en un poliester termoplastico con fluidez mejorada.
DE502005010153T DE502005010153D1 (de) 2004-06-08 2005-06-08 Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit
DE502005005697T DE502005005697D1 (de) 2004-06-08 2005-06-08 Sters mit verbesserter fliessfähigkeit
CN200580026769XA CN101001915B (zh) 2004-06-08 2005-06-08 具有更好流动能力的基于热塑性聚酯的模塑料
PCT/EP2005/006135 WO2005121245A1 (de) 2004-06-08 2005-06-08 Formmassen auf basis eines thermoplastischen polyesters mit verbesserter fliessfähigkeit
ES08162770T ES2349201T3 (es) 2004-06-08 2005-06-08 Masas de moldeo basadas en un poliéster termoplástico con fluidez mejorada.
JP2007526282A JP4732457B2 (ja) 2004-06-08 2005-06-08 熱可塑性ポリエステルをベースとする改良された流動性を有する成形用組成物
PL05756795T PL1756223T3 (pl) 2004-06-08 2005-06-08 Masy do formowania na bazie termoplastycznego poliestru o polepszonej zdolności płynięcia
EP05756795A EP1756223B1 (de) 2004-06-08 2005-06-08 Formmassen auf basis eines thermoplastischen polyesters mit verbesserter fliessfähigkeit
PL08162770T PL1992662T3 (pl) 2004-06-08 2005-06-08 Masy do formowania na bazie termoplastycznego poliestru o polepszonej zdolności płynięcia
CN2009101510975A CN101649107B (zh) 2004-06-08 2005-06-08 具有更好流动能力的基于热塑性聚酯的模塑料
KR1020087019891A KR100888532B1 (ko) 2004-06-08 2005-06-08 열가소성 폴리에스테르를 기재로 하는 유동성이 개선된 성형 화합물
KR1020067025832A KR100874996B1 (ko) 2004-06-08 2005-06-08 열가소성 폴리에스테르를 기재로 하는 유동성이 개선된성형 화합물
AT08162770T ATE478924T1 (de) 2004-06-08 2005-06-08 FORMMASSEN AUF BASIS EINES THERMOPLASTISCHEN POLYESTERS MIT VERBESSERTER FLIEßFÄHIGKEIT
AT05756795T ATE411358T1 (de) 2004-06-08 2005-06-08 Formmassen auf basis eines thermoplastischen polyesters mit verbesserter fliessfähigkeit
EP08162770A EP1992662B1 (de) 2004-06-08 2005-06-08 Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit
US11/291,028 US7378470B2 (en) 2004-06-08 2005-11-30 Molding compositions based on a thermoplastic polyester with improved flowability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410027873 DE102004027873A1 (de) 2004-06-08 2004-06-08 Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit

Publications (1)

Publication Number Publication Date
DE102004027873A1 true DE102004027873A1 (de) 2006-01-05

Family

ID=35483172

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200410027873 Withdrawn DE102004027873A1 (de) 2004-06-08 2004-06-08 Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit

Country Status (2)

Country Link
DE (1) DE102004027873A1 (de)
ES (1) ES2349201T3 (de)

Also Published As

Publication number Publication date
ES2349201T3 (es) 2010-12-28

Similar Documents

Publication Publication Date Title
EP1756223B1 (de) Formmassen auf basis eines thermoplastischen polyesters mit verbesserter fliessfähigkeit
EP1869123B1 (de) Formmassen auf basis eines thermoplastischen polycarbonats
DE10259498A1 (de) Leitfähige Thermoplaste mit Ruß und Kohlenstoff-Nanofibrillen
EP1424360A1 (de) Hochfliessfähige Polymerzusammensetzungen mit verzweigten Fliesshilfsmitteln
DE102005050957A1 (de) Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit
EP1383836B1 (de) Schlagzähmodifizierte blends aus polyethylenterephthalat und mindestens einem auf dihydroxydiarylcyclohexan basierenden polycarbonat
DE202008015401U1 (de) Sitzstrukturen
EP1232216B1 (de) Zusammensetzungen auf basis schlagzähmodifizierten polyethylenterephthalat/polycarbonat blends
EP1523520B1 (de) Mit polymeren phosphorigsäureestern stabilisierte thermoplaste
EP2035499A1 (de) Verfahren zur herstellung schlagzähmodifizierter polyalkylenterephthalat/polycarbonat-zusammensetzungen
DE202008015395U1 (de) Vorderwagenstruktur
DE102004018192A1 (de) Strahlenvernetzbare Polyesterformmassen mit ungesättigten Dicarbonsäuren
DE102005009201A1 (de) Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit
DE10255043A1 (de) Verwendung von Polykondensatmischungen zur Herstellung von Formteilen mit verbesserter Hydrolysebeständigkeit
DE102004027873A1 (de) Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit
EP1583799B1 (de) Homogen durchgefärbte zusammensetzungen auf basis schlagzähmodifizierten polyalkylenterephthalat/polycarbonat blends
DE202008015400U1 (de) Instrumententafel
DE202008015399U1 (de) Dachstruktur
DE202008015396U1 (de) Fahrwerkstruktur
DE102005009911A1 (de) Formmassen auf Basis eines thermoplastischen Polyesters mit verbesserter Fließfähigkeit
DE202008015391U1 (de) Türen- und Klappenstrukturen
DE102004022108A1 (de) Homogen durchfärbte, bewitterungsstabile Zusammensetzungen auf Basis schlagzähmodifizierter Polyalkylenterephthalat/Polycarbonat Blends
DE202008015394U1 (de) Längsträgerstruktur
DE202008015392U1 (de) Pedalstruktur
EP4074718A1 (de) Stabilisatoren für polymere

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee