DE102004011019A1 - Polymer-Nanocomposite-Blends - Google Patents

Polymer-Nanocomposite-Blends Download PDF

Info

Publication number
DE102004011019A1
DE102004011019A1 DE102004011019A DE102004011019A DE102004011019A1 DE 102004011019 A1 DE102004011019 A1 DE 102004011019A1 DE 102004011019 A DE102004011019 A DE 102004011019A DE 102004011019 A DE102004011019 A DE 102004011019A DE 102004011019 A1 DE102004011019 A1 DE 102004011019A1
Authority
DE
Germany
Prior art keywords
component
weight
polyamide
polypropylene
compounded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102004011019A
Other languages
English (en)
Inventor
Daniela Dr. Tomova
Stefan Dr. Reinemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOMO Caproleuna GmbH
Sued Chemie AG
Original Assignee
DOMO Caproleuna GmbH
Sued Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOMO Caproleuna GmbH, Sued Chemie AG filed Critical DOMO Caproleuna GmbH
Priority to DE102004011019A priority Critical patent/DE102004011019A1/de
Priority to US10/555,910 priority patent/US20070004842A1/en
Priority to PCT/DE2004/000744 priority patent/WO2004099316A1/de
Priority to EP04725286A priority patent/EP1622982A1/de
Priority to JP2006504295A priority patent/JP2006525383A/ja
Publication of DE102004011019A1 publication Critical patent/DE102004011019A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft Polymer-Nanocomposite-Blends aus mindestens zwei Polymeren und nanodispers delaminierten Schichtsilikaten mit vorteilhaften Eigenschaften und Verfahren zu ihrer Herstellung. DOLLAR A Erfindungsgemäß enthalten die Polymer-Nanocomposite-Blends DOLLAR A a) Polyamid (PA) von 55 bis 95 Gew.-%, DOLLAR A b) Polypropylen (PP) von 4 bis 40 Gew.-%, DOLLAR A c) nanodisperse Schichtsilikate von 1 bis 9 Gew.-%, DOLLAR A d) carboxylierte Polyolefine, insbesondere Copolymere des Ethylens mit DOLLAR A ungesättigten Carbonsäuren, bis 10 Gew.-%, DOLLAR A so dass die entsprechenden Zusammensetzungen im Gewichtsverhältnis immer 100 Gew.-% ergeben. Gegebenenfalls kann ein Zusatz von üblichen Stabilisatoren und Füllstoffen enthalten sein. DOLLAR A Die Nanocomposite-Blends zeichnen sich durch hohe Steifigkeit im spritzfrischen und konditionierten Zustand, reduzierte Wasseraufnahme, verbesserte thermooxidative Stabilität und keine Abnahme der Zähigkeit aus.

Description

  • Die Erfindung betrifft Polymer-Nanocomposite-Blends aus mindestens zwei Polymeren und nanodispers delaminierten Schichtsilikaten. Das Schichtsilikat ist ein modifiziertes natürliches Natrium-Montmorillonit, Hektorit, Bentonit oder synthetisches Mica. Die Erfindung betrifft ebenfalls ein Verfahren zur Herstellung dieser Nanocomposites und ihre Verwendung. Aufgabe der Erfindung ist es, preiswerte Nanocomposites auf Polyamidbasis mit verbesserten Eigenschaften, wie hoher Steifigkeit auch im konditionierten Zustand sowie Stabilität gegenüber thermischer Oxidation, herzustellen.
  • Nanocomposites auf Palyamid- aber auch auf Polyolefinbasis werden, wegen der Gewichtseinsparung bei gleichem Eigenschaftsprofil immer attraktiver gegenüber konventionellen Composites mit Glasfasern bzw. Mineralien. Composites dieser Art sind für eine breite Anwendung für Spritzgussteile im Automobil- und Flugzeugbau, für Elektrotechnik und Elektronik, Gerätetechnik und in der Medizintechnik interessant.
  • Die Verbesserung der Eigenschaften ist vor allem auf die Fähigkeit der einzelnen Schichten der Schichtsilikate zurückzuführen, sich aufzuweiten (Intercalierung) oder sich vollkommen voneinander zu trennen (Exfolierung). Damit wird eine vergrößerte Oberfläche des Füllstoffs und ebenfalls eine vergrößerte Grenzfläche zu dem Matrixpolymer geschaffen. Um eine Intercalierung bzw. eine Exfolierung bei der Herstellung von Polymer-Nanocomposites zu errei chen, werden die Schichtsilikate zunächst mit organischen Verbindungen durch Kationenaustausch modifiziert, d.h. organophil eingestellt, und werden auch als Organoclays bezeichnet. Weiterhin sind Wechselwirkungen bzw. Kontaktstellen mit dem Matrixpolymer notwendig.
  • Die Einarbeitung von organisch interkalierten Schichtsilikaten in Polymere durch in-situ Polymerisation oder via Schmelzecompoundierung ist in mehreren Patentschriften beschrieben und meistens mit einer Verbesserung der mechanischen und Barriere-Eigenschaften und der Wärmeformstabilität verbunden [ US4739007 , WO0034180].
  • Die in-situ Polymerisation von ε-Caprolactam in Anwesenheit von organophil modifiziertem Clay wurde bereits 1988 beschrieben [ US4739007 ]. Die Einarbeitung von Organoclays in Polyethylenterephthalat (PET) via Schmelzecompoundierung brachte eine verbesserte Barriere gegenüber Sauerstoff [WO 0034180].
  • Grundsätzlich bekannt sind auch Polyamid-Nanocomposites mit einer zweiten Polymerkomponente. Die Einarbeitung von bromiertem Kautschuk [ US6060549 ] oder maleinsäureanhydrid-gepfropftem Polypropylen [X. Liu et al. Polymer 42, 2001, 8235–8239] in in-situ polymerisierten Polyamid 6/Na-Montmorillonit-Nanocomposites führte zu einer Verbesserung der Schlagzähigkeit, jedoch zu einer Abnahme der mechanischen Festigkeit des Polyamides. Ebenfalls wurde eine reduzierte Wasseraufnahme in Abhängigkeit von dem PP-g-MA Anteil in der Mischung festgestellt.
  • Polyamid-Composites mit erhöhtem Biegemodul und Dimensionsstabilität während der Wasserabsorption, jedoch mit dem Nachteil einer verringerten Zähigkeit wurden ebenfalls [ EP1076077 ] beschrieben. Die Composites wurden in Schmelze mittels Doppelschneckenextruder compoundiert und enthalten 2–40 Gew.-% Maleinsäureanhydrid gepfropftes Ethylenbutylacrylat oder Maleinsäureanhydrid gepfropftes Polypropylen und 0,3–30 Gew.-% Triazin modifiziertes synthetisches Schichtsilikat.
  • In EP0352042 sind ebenfalls Polyamid-Nanocomposites mit einer oder zwei weiteren Polymerkomponenten beschrieben. Zum Beispiel wurde ein in-situ hergestelltes Polyamid-Nanocomposite mittels Schmelzecompoundierung mit einem Ethylen-methacrylat-Zn+-Ionomer schlagzähmodifiziert. Es wurden jedoch Verluste bei der Festigkeit und Steifigkeit festgestellt.
  • In-situ polymerisierte Polyamid 6-Nanocomposite, die nachfolgend mit einem Schlagzähmodifikator (Buthylacrylat, Methylacrylat Kautschuk bzw. deren Mischungen) in Schmelze compoundiert wurden, sind in DE19854170 beschrieben. Die Autoren beanspruchen auch die in-situ Polymerisation von PA 6 in Gegenwart von Organoschichtsilikaten und der Kautschukkomponente. Diese Composites zeigten bei einem Clayanteil von 3,7 Gew.-% und Kautschukanteil von 3 Gew.-% einen sehr hohen E-Modul (5420 MPa), gute Schlagzähigkeit (Charpy 1eU 112 kJ/m2), jedoch eine geringe Bruchdehnung von 2,9%. Die angewendeten Schichtsilikate waren mit Di-2-hydroxyethylmethyl-stearylamin modifiziert.
  • In der Patentschrift US5206284 werden Polypropylencompounds beansprucht, die ein modifiziertes PP (PP-g-MA), ein Polyamid-Nanocomposite (MPA), welches in-situ mit 2% Organoclay (Aminododecansäure modifiziertem Motmorillonit) hergestellt wurde, ein Ethylen-Alpha-Olefin Kautschuk bzw. ein modifiziertes Ethylen-Alpha-Olefin Copolymer wie z. B. EPR-g-MA oder SEBS-g-MA enthalten. Das Composite PP-g-MA/PP/MPA im Gewichtsverhältnis 30/10/60 zeigte einen Biegemodul von 26000 kg/cm2 (2550 MPa), eine Biegefestigkeit von 770 kg/cm2 (75 MPa), eine Streckspannung von 450 kg/cm2 (45 MPa) und eine Wärmeformstabilität – HDT@0,45MPa von 150°C. Mit der Erhöhung des PP-Anteiles nahmen die Festigkeit, Steifigkeit und die Zähigkeit ab.
  • JP10279752 beansprucht eine Komposition bestehend aus 40–99,9 Gew.-% mit Carbonsäure bzw. Anhydrid gepfropftem Polyolefin, 0,5–40 Gew.-% Polyamid und 0,01–20 Gew.-% Schichtsilikat mit verbesserter Sauerstoffbarriere.
  • Von Tjong, S. C.; Meng, Y. Z.; Xu, Y., [J. Applied Polymer Science (2002), 86(9), 2330–2337] wurde eine Clay-Modifizierung durch Maleinsäureanhydrid für die Herstellung von PA 6/PP-Vermiculite Nanocomposites beschrieben. PP und maleinierter Vermiculite wurden zunächst in Schmelze compoundiert und die Mischung zusammen mit PA 6 nachfolgend mittels Spritzguss weiterverarbeitet. Es konnte eine Steigerung des Zug-Moduls von 995 MPa für das reine PA 6 auf 1397 MPa im Nanocomposite mit einem PP/Vermiculite-Anteil von 31 Gew.-% (8% Vermiculite) beobachtet werden, wobei die Festigkeit unverändert geblieben ist und die Dehnung stark abgenommen hat.
  • Hua Wang et al. ["Processing and Properties of Polymeric Nano-Composites" Polym. Eng. Sci. 41, 11(2001), 2036–2046] haben Nylon 6/PP-Blends mit Zugabe von ca. 10 Gew.- Clay untersucht. Bei diesen Blends wurde eine Verfeinerung der Blend-Morphologie durch die Zugabe von Schichtsilikaten mittels Raster -Elektronen- Mikroskopie beobachtet. Es wurde eine Erhöhung des E-Moduls, der auf den zu hohen Clay-Anteil zurückzuführen ist, sowie eine drastisch verringerte Zähigkeit festgestellt. Eine Kompatibilisierung mit PP-g-MA führte zur Abnahme der Steifigkeit und hatte kaum positiven Einfluss auf die Zähigkeit.
  • Polyamide erfüllen hochwertige Funktionen als Fasern, Folien oder Bauteile im weitesten Sinne. Auf Grund der Neigung zur Wasseraufnahme ist die Erweiterung auf große Anwendungsfelder eingeschränkt. So nimmt z.B. PA 6 bei 23°C und 50% Luftfeuchtigkeit 3% Wasser auf, bei 100 relativer Feuchte sogar bis zu 9,5%. Das eingelagerte Wasser hat bekanntlich erhebliche Auswirkungen auf grundlegende mechanische Kennwerte.
  • Bekannt ist, dass in Blends aus Polyamid und Polyolefinen die Wasseraufnahme entsprechend dem Polyolefinanteil gesenkt wird [L. Bottenbruch, R. Binsack; Kunststoffhandbuch; Carl Hanser Verlag, München 1998]. Eine Verträglichkeitsmachung über funktionalisierte Polyolefine wie z.B. Block- bzw. Pfropfcopolymere, und die damit verbundene Beeinflussung der Grenzflächenadhäsion ist in der Regel unerlässlich.
  • Das ist aber auch mit Nachteilen verbunden. Die Anwendung von Verträglichkeitsmachern, wie funktionalisierten Polyolefinen und Copolymeren, ist meist mit einem Weichmachereffekt verbunden und führt zur Abnahme der Festigkeit und Steifigkeit.
  • Polyamide sind ebenfalls empfindlich bei hohen Gebrauchstemperaturen. Es ist bekannt, dass Polyamide bei Temperaturlagerung an der Luft auch unterhalb ihres Schmelzpunktes thermooxidativ geschädigt werden. Dabei verlieren die Polyamide in Abhängigkeit von Lagerungsdauer und Temperatur ihre physikalischen Eigenschaften. Das ist auch als Ofenalterung bekannt und ist nicht mit dem thermischen Abbau, der bei Temperaturen über dem Schmelzpunkt eintreten kann, verbunden. Die Eigenschaft von Polymeren, ihre mechanische Festigkeit, Zähigkeit u.a. für längere Zeit bei hohen Temperaturen beizubehalten, wird auch Wärmestabilität genannt, hier noch als „thermische Stabilität" oder „thermooxidative Stabilität" bezeichnet. Um die thermische Stabilität von Polyamiden zu verbessern, werden Wärmestabilisatoren, Glasfasern und andere Polymere wie Polyphenylenether eingesetzt.
  • Die meistens verwendeten Methoden zur Bestimmung der thermischen Eigenschaften wie HDT (HDT = Heat Deflection-Temperature) oder DMTA (DMTA = Dynamisch-Mechanisch-Thermische Analyse) geben hauptsächlich Informationen über die Kurzzeitbeständigkeit von Materialien bei hohen Temperaturen. Der zeitabhängige Einfluss der thermischen Oxidation und der damit verbundenen Eigenschaftsverschlechterung kann auf diese Weise nicht befriedigend erfasst werden. Eine Aussage über die thermische Stabilität von Polyamid-Nanocomposites wurde bis jetzt nur mit einer HDT-Erhöhung bzw. dem Speichermodul bei der entsprechenden Temperatur oder einer Glasübergangverschiebung (DMTA-Messung) begründet.
  • Die hier durchgeführten Untersuchungen zur Langzeitstabilität haben ergeben, dass Polyamid 6/Clay-Nanocomposites keine thermische Stabilität nach Lagerung in Luft bei Temperaturen über 100°C aufweisen. Die thermische Oxidation an der Oberfläche der Nanocomposite verläuft viel schneller als bei Polyamid selbst, was zu rasant abnehmender Festigkeit führt und die Oberflächenqualität schädigt (siehe die in Tabelle 4 aufgeführten Eigenschaften der PA-Nanocomposites).
  • Aufgabe der vorliegenden Erfindung ist die Beibehaltung der günstigen Eigenschaften des Polyamides wie Steifigkeit auch im konditionierten Zustand und gute thermooxidative Stabilität in Verbindung mit einer reduzierten Dichte gegenüber konventioneller Glas- bzw. Mineralienverstärkung sowie eine Kostenreduzierung gegenüber reinen PA 6/Clay-Nanocomposites.
  • Erfindungsgemäß gelingt dies überraschenderweise durch Polymer-Nanocomposite-Blends, die
    • a) Polyamid (PA) von 55 bis 95 Gew.%,
    • b) Polypropylen (PP) von 4 bis 40 Gew.%,
    • c) nanodisperse Schichtsilikate von 1 bis 9 Gew.%
    • d) (gegebenenfalls) carboxylierte Polyolefine, insbesondere Copolymere des Ethylens mit ungesättigten Carbonsäuren, bis 10 Gew.%, vorzugsweise 0,1 bis 1,9 Gew.%,
    enthalten, so dass die entsprechenden Zusammensetzungen im Gewichtsverhältnis immer 100 Gew.% ergeben. Gegebenfalls kann ein Zusatz von üblichen Stabilisatoren und Füllstoffen enthalten sein.
  • Komponente a) Polyamid
  • Polyamide werden durch eine Kondensationsreaktion von Lactamen mit einem mehr als dreigliedrigen Ring und/oder ω-Aminosäure(n) oder von mindestens einer Disäure und mindestens einem Diamin hergestellt. Die durch Polykondensation hergestellten Polyamidharze sind Polyamidpolymere oder -Copolymere. Das Polyamidharz ist ausgewählt aus der Gruppe, bestehend aus Homopolyamiden, Copolyamiden und Gemischen davon, und diese Polyamide sind entweder semikristallin oder amorph.
  • Beispiele für Monomere sind ε-Caprolactam, ε-Aminocapronsäure, 11-Aminoundecansäure, 9-Aminononansäure und α-Piperidon. Beispiele für Disäuren umfassen Adipinsäure, Sebacinsäure, Dodecandisäure, Glutarsäure, Terephthalsäure, 2-Methylterephthalsäure, Isophthalsäure, Naphtalindicarbonsäure. Beispiele für Diamine sind Tetramethylendiamin, Hexamethylendiamin, Nonamethylendiamin, Decamethylendiamin, Undecamethylendiamin, Dodecamethylendiamin, p-Aminoanillin und m-Xyloldiamin.
  • Die Polyamide werden vorzugsweise ausgewählt aus der Gruppe Polyamid (Nylon) 6 oder Polyamid (Nylon) 6/66 mit 0 bis 20% Polyhexamethylenadipamid Anteil.
  • Besonders geeignet für die erfindungsgemäßen Polymer-Nanocomposite-Blends ist ein Polyamid 6 mit einer Lösungsviskosität, gemessen in 1%-ger Lösung von 96% Schwefelsäure bei 23°C, von 2,2 bis 4,0, vorzugsweise von 2,4 bis 3,5.
  • Komponente b) Polypropylen
  • Als Polypropylen kommen Homopolymere oder statistische Copolymere oder Block-Copolymere aus Propylen mit einem oder mehreren Olefinen, wie z.B. Ethylen und linearen und/oder verzweigten C4- bis C10 1-Olefinen, zum Einsatz. Zweckmäßig werden Polypropylen-Homopolymere und Block-Copolymere mit einem geringen Ethylen-Anteil verwendet.
  • Als Komponente b) wird vorzugsweise ein Polypropylen mit einem Schmelzindex von 1 bis 110, von 5 bis 30 ccm/10 min (230°C/2,16kg) eingesetzt.
  • Komponente c) Nanodisperse Schichtsilikate
  • Als nanodisperses Schichtsilikat wird vorzugsweise ein mit Onium-Ionen modifiziertes natürliches Natrium-Montmorillonite, Hektorit, Bentonit, oder synthetisches Mica mit einer Kationenaustauscherkapazität von 60 bis 150mval/100g eingesetzt.
  • Vorzugsweise werden bis 5 Gew.% nanodisperse Schichtsilikate eingesetzt. Gegenüber Hua Wang et al zeichnen sie sich durch hohe Zähigkeit, hohe Steifigkeit im spritzfrischen und konditionierten Zustand, reduzierte Wasseraufnahme und verbesserte thermooxidative Stabilität, aus.
  • In den erfindungsgemäßen Nanocomposite-Blends liegt eine Koexistenz zweier Phasen vor, so dass die organisch interkalierten Schichtsilikate hauptsächlich in der Polyamidphase dispergieren bzw. exfolieren. Eine Anlagerung von exfolierten Schichten an der Grenzfläche mit der Polypropylenphase konnte mittels Transmissions-Elektronen-Mikroskopie (TEM) beobachtet werden (4). Dabei wird angenommen, dass Wechselwirkungen zwischen der Polyamid- und Polypropylenphase durch die organisch interkalierten und delaminierten Schichtsilikate initiiert werden.
  • Unter einem delaminierten Schichtsilikat (Nanoclay, organisch interkaliertem) im Sinne der Erfindung sind quellfähige Schichtsilikate zu verstehen, bei denen durch Umsetzung mit sogenannten Hydrophobierungsmitteln die Schichtabstände der einzelnen Silikatschichten vergrößert worden sind. So führt im Falle von Montmorillonit die Interkalation mit geeigneten vorzugsweise kationischen Interkalationskomponenten zu einem Zwischenschichtabstand von 1,2 bis 5,0 nm.
  • Bevorzugt sind Schichtsilikate mit einer Kationenaustauschkapazität von mindestens 50, vorzugsweise 60–150 mval/100 g. Die in diesen quellfähigen Schichtsilikaten austauschbaren Alkali- und Erdalkalimetalle werden im Sinne einer Ionenaustauschreaktion partiell oder vollständig durch Onium-, Ammonium-, Phosphonium- oder Sulfoniumionen substituiert. Besonders bevorzugt sind quellfähige Schichtsilikate, bei denen 50 bis 200% der austauschfähigen anorganischen Kationen durch organische Kationen ausgetauscht sind.
  • Zur Interkalation geeignete kationische Stickstoffverbindungen sind Alkylammonium-ionen wie Laurylammonium, Myristylammonium, Palmitylammonium. Weitere bevorzugte kationische Stickstoffverbindungen sind quaternäre Ammoniumverbindungen wie beispielsweise Distearyldimethylammoniumchlorid und Dimethyldistearylbenzylammoniumchlorid.
  • Als bifunktionelle kationische Stickstoffmoleküle sind insbesondere ω-Aminocarbonsäuren wie ω-Aminoundecansäure, ω-Aminododecansäure, ω-Aminocaprylsäure oder ω-Aminocapronsäure verwendbar.
  • Weitere bevorzugte stickstoffhaltige Interkalationskomponenten sind Caprolactam, Lauryllactam, Melamin und oligomere wasserlösliche Amide.
  • Bevorzugt werden alle stickstoffhaltigen Intercalationskomponenten in protonierter Form eingesetzt. Für die Protonierung sind alle wasserlöslichen organischen oder anorganischen Säuren geeignet. Bevorzugt sind Mineralsäuren wie Salzsäure, Schwefelsäure, Salpetersäure und Phosphorsäure, sowie Essigsäure, Ameisensäure, Oxalsäure und Citronensäure.
  • Als geeignete Phosphoniumionen seien beispielsweise Docosyltrimethylphosphonium, Hexatriacontyltricyclohexylphosphonium, Octadecyltriethylphosphnium, Dicosyltriiso-butylphosphonium, Methyltrinonylphosphonium, Ethyltrihexadecylphosphonium, Di-methyldidecylphosphonium, Diethyldioctadecylphosphonium, Octadecyldiethylallylphosphonium, Trioctylvinylbenzylphosphonium, Dioctydecylethylhydroxyethyl-phosphonium, Docosyldiethyldichlorbenzylphosphonium, Octylnonyldecylpropargyl-phosphonium, Triisobutylperfluordecylphosphonium, Eicosyltrihydroxymethyl-phosphonium, Triacontyltriscyanethylphosphonium und Bistrioctylethylendiphosphonium genannt.
  • Komponente d) carboxylierte Polyolefine
  • Als Komponente D sind Polyolefine, insbesondere Polyolefin-Copolymere, geeignet, die mit ungesättigten Mono- oder Dicarbonsäuren oder -Anhydriden funktionalisiert sind.
  • Sie können in den Nanocomposite-Blends bis 10 Gew.% enthalten sein, vorzugsweise sind sie von 0,1 bis 1,9 Gew.% enthalten. Besonders geeignet sind Ethylen-Ionomer-Copolymere, vorzugsweise Ethylen-Acrylsäure- oder Ethylen-Methacrylsäure-Copolymere, die teilweise oder vollständig mit Metallionen neutralisiert sind. Das Ethylen-Ionomer kann ein Metallion enthaltendes Ethylen-Butadien-Acrylsäure-Copolymer, Ethylen-Methylacrylat-Maleinsäure-Copolymer sein. Das Metallion ist vorzugsweise ein Zn+, Na+, Mg+, oder Zn-Aminkomplexion.
  • Weitere Zusätze
  • Die erfindungsgemäßen Polymer-Nanocomposite-Blends können gegebenenfalls übliche Stabilisatoren und Füllstoffe enthalten, ausgewählt aus Oxidationsstabilisatoren, Lichtstabilisatoren, Prozessstabilisatoren, UV-Stabilisatoren, Gleitmitteln, Trennmitteln, Pigmenten, Farbstoffen, Flammschutzmitteln, Faserverstärkungsfüllstoffen.
  • Beispiele für Oxidations- und Prozessstabilisatoren sind Mischungen aus mindestens zwei Substanzen, ausgewählt aus Metallhalogeniden, z.B. Natrium-, Kalium-, Lithium-, Zink und Kupfer-Halogenide oder organischen Verbindungen auf Phenolbasis, Hydrochinonen, organischen Phosphitverbindungen.
  • Beispiele für UV-Stabilisatoren sind Resorzinole, Salizylate, gehinderte Amine, Benzotriazole und Benzophenole.
  • Beispiele für Gleitmittel und Trennmittel sind Stearinsäure, Stearinalkohol, Stearinsäureamid, Wachse, Carbonsäureester, Carbonsäure-Metallsalze.
  • Beispiele für Pigmente sind Titandioxid, Cadmiumsulfid, Cadmiumselenit, Ultramarinblau, Ruß.
  • Der organische Farbstoff ist beispielsweise Nigrosin.
  • Beispiele für Flammschutzmittel sind organische Halogenverbindungen, organische Phosphorverbindungen, roter Phosphor, Metallhydroxide.
  • Beispiele für Füllstoffe und Verstärkungsstoffe sind Glasfasern, Glasperlen, Glassflakes, Talk, Kohlefasern, Kaolin, Wollastonit, Molybdänsulfid, Kaliumtitanat, Bariumsulfat, elektrisch leitender Ruß und Aramidfasern.
  • Daneben lassen sich auch andere Additive, wie magnetisierende Stoffe, EMI-Maskierungsmittel, antibakterielle und antistatische Mittel einbringen.
  • Die Polymer-Nanocomposite-Blends werden dadurch hergestellt, dass die Komponenten
    • a) Polyamid (PA) von 55 bis 95 Gew.%,
    • b) Polypropylen (PP) von 4 bis 40 Gew.%,
    • c) Nanodisperse Schichtsilikate von 1 bis 9 Gew.%,
    • d) Carboxylierte Polyolefine, insbesondere Copolymere des Ethylens mit ungesättigten Carbonsäuren, (von 0,0) bis 10 Gew.%, vorzugsweise 0,1 bis 1,9 Gew.%,
    enthalten, die über diese Zusammensetzung von insgesamt 100 Gew.% Zusätze von üblichen Stabilisatoren und Füllstoffen enthalten können, bei Temperaturen über den Schmelztemperaturen der beteiligten Polymeren in einem Extruder oder Kneter compoundiert werden.
  • Eine Variante besteht darin, dass die Komponenten in einem Schritt compoundiert werden.
  • Möglich sind auch 2-Stufen-Verfahren.
  • So können die Komponenten c) und d) in Teilen der Komponente a) zunächst in Form von einem Masterbatch eingearbeitet werden, und der Masterbatch wird im zweiten Schritt mit Komponente b) und dem Rest von Komponente a) compoundiert und weiter verarbeitet.
  • In einer anderen Ausführung werden die Komponenten d) und b) zunächst über den Schmelztemperaturen der beteiligten Polymeren in einem Extruder oder Kneter zu einem modifizierten Polypropylen compoundiert und Komponente c) und ein Teil von Komponente a) in Form von einem Masterbatch eingearbeitet, wobei der Masterbatch im nächsten Schritt mit dem modifizierten Polypropylen und dem Rest von Komponente a) compoundiert und weiterverarbeitet wird.
  • Möglich ist auch, dass die Komponenten d) und b) zunächst über den Schmelztemperaturen der beteiligten Polymeren in einem Extruder oder Kneter zu einem modifizierten Polypropylen compoundiert werden und das modifizierte Polypropylen im nächsten Schritt mit der Komponente a) und Komponente d) compoundiert und weiterverarbeitet wird.
  • Die erfindungsgemäßen Polymer-Nanocomposite-Blends sind besonders geeignet für den Einsatz als Extrudate, Spritzgussteile oder Fasern.
  • Die in der Beschreibung der Komponente c) genannten Interkalationskomponenten wirken als Hydrophobierungsmittel und beeinflussen die Oberflächenspannung der Schichtsilikate, so dass die Polarität und der gesamte Wert der O berflächenenergie sinken. Nach Compoundierung mit Polyamid sinken die Polarität und die Oberflächenspannung des Polyamides. Damit werden eine bessere Durchmischung und eine feinere Dispergierung der Polypropylenphase in den Nanocomposite-Blends im Vergleich zu reinen PA 6/PP-Blends erreicht.
  • Die TEM-Untersuchung an den erfindungsgemäßen PA 6/PP-Nanocomposite-Blends zeigt eine feine Dispergierung der Polypropylenphase. Die Partikel weisen eine Größe zwischen 0,1 und 1 μm auf (4a). In 4b ist zu sehen, dass die exfolierten Schichtsilikate hauptsächlich innerhalb der Polyamidmatrix dispergiert sind, wobei eine Anlagerung der Schichten, die eine Art Kartenstruktur um die Polypropylenpartikel bilden, deutlich zu sehen ist. Durch die erhöhte Konzentration des organophilen Schichtsilikates an der Grenzfläche der Polyamid- zur Polypropylenphase wird die Oberflächenspannungsdifferenz zwischen den an sich unverträglichen Polymeren erniedrigt.
  • Die Morphologie in den Nanocomposite-Blends (auf mit Gold bedampften Kryobruchflächen) wurde ebenfalls mittels Rasterelektronenmikroskopie (REM) untersucht. Dabei wurden auch größere Strukturen beobachtet. In Bild 5a verteilt sich die PP-Phase stäbchenförmig in den PA/PP Nanocomposite-Blends. Nach Zugabe von nur 1 bis 1,9 Gew.% Ethylen-Ionomer ist es nicht mehr möglich, die PP von der PA-Phase zu unterscheiden. Die Kryobruchfläche erscheint als geschlossene Oberfläche mit ungebrochener PA/Clay-PP-Grenzfläche. Es können jedoch kleine, in der Polyamid/Clay-Matrix eingebettete PP-Teilchen mit einem Durchmesser kleiner als 1 μm beobachtet werden (Bild 5b).
  • Die erfindungsgemäßen Nanocomposite-Blends zeigen sehr gute mechanische Eigenschaften wie Festigkeit, Steifigkeit und Kerbschlagzähigkeit im spritzfrischen und im konditionierten Zustand, aber auch nach Temperaturlagerung.
  • Gegenüber reinem Polyamid wird der Zug-E-Modul im spritzfrischen Zustand um bis zu 50% gesteigert, im konditionierten Zustand beträgt diese Steigerung bis zu 150. Im Vergleich zu einem entsprechend zusammengesetzten Polyamid/Polypropylen-Blend beträgt diese Steigerung im spritzfrischem Zustand bis zu 70%, im konditionierten Zustand mehr als 75%. Die Wasseraufnahme der beschriebenen PA/PP-Nanocomposite Blends nach Konditionierung (exemplarisch bei 23°C und 95% Luftfeuchtigkeit) liegt deutlich unterhalb derer der reinen Nanocomposite sowie auch des reinen Polyamid 6. Im gesättigten Zustand und nach einer Lagerung in Wasser für mehr als 1800 Stunden zeigen die Nanocomposite-Blends ebenfalls eine Verbesserung der Zug-E-Moduli um 150% im Vergleich zu reinem Polyamid.
  • Nach Lagerung bei Temperaturen über 100°C (110, 120, 130 und 150°C) zeigen die erfindungsgemäßen Nanocomposite-Blends den geringsten Verlust an mechanischer Festigkeit.
  • Die erfindungsgemäßen Nanocomposite-Blends weisen nach Zugabe von kleinen Mengen von insbesondere bis zu 1,9 Gew.% Ethylen-Ionomer, insbesondere im Falle eines nie dermolekularen, vollständig mit Zn neutralisierten Ethylen-Ionomers und ohne Zusatz eines Wärmestabilisators, einen deutlich geringeren Verlust an mechanischer Festigkeit nach Temperaturlagerung bei 150°C auf.
  • Neben der thermischen Stabilität wurde bei diesen Nanocomposite-Blends auch eine reduzierte Wasseraufnahme und deutlich höhere Steifigkeit im konditionierten Zustand nach ISO 1110 (50% relative Feuchte) festgestellt.
  • Der Speichermodul, gemessen im Torsionsversuch, von den erfindungsgemäßen Nanocomposite-Blends mit 15 Gew.% PP verläuft ähnlich wie PA 6-Nanocomposite im Temperaturbereich von 25 bis 150°C und ist bei einer Temperatur von 100°C bis zu 100 höher als der vom reinen Polyamid 6 (6). In den erfindungsgemäßen Nanocomposite-Blends ist mit zunehmendem PP-Anteil eine geringe Abnahme des Speichermoduls festzustellen, der jedoch noch oberhalb des Speichermoduls von reinem Polyamid 6 verläuft (7).
  • Die Erfindung wird an folgenden Beispielen näher erläutert, ohne darauf beschränkt zu sein:
  • Beispiele 1 bis 7 – Einstufenverfahren
  • PA/PP-Nanocomposite-Blends wurden mittels eines Doppelschneckenextruders (ZSK 25, Coperion Werner & Pfleiderer) mit einem L/D-Verhältnis von mindestens 40 hergestellt. Die Polymere und die organisch interkalierten Schichtsilikate wurden in der ersten Zone mittels Polymer- bzw. Pulverwaagen zudosiert. Die Compoundierung erfolgte bei Temperaturen zwischen 220 und 260°C und einer Drehzahl von 400 min–1. Die compoundierten Nanocomposite-Blends wurden mittels Spritzguss (Arburg Allrounder 320M 850-210) zu Prüfkörpern verarbeitet.
  • Mittels WAXS- Analysen (WAXS = Weitwinkel Röntgenstrukturanalyse) wurden die Abstände zwischen den Silikatplättchen bestimmt. In Verbindung mit TEM-Aufnahmen konnten Rückschlüsse auf die Exfolierungsgrade bzw. den Grad der Dispergierung der Schichtsilikate gezogen werden. Anhand von TEM- und REM-Aufnahmen wurde die Verteilung der Polypropylenphase in den Nanocomposite-Blends beurteilt. (TEM = TransmissionsElektronenMikroskopie; REM = Raster-ElektronenMikroskopie)
  • Die Volumenschmelzindizes der Ausgangskomponenten sowie der Nanokomposite-Blends wurden mittels Schmelzindextester (Firma Göttfert) gemessen und in den einzelnen Beispielen als Schmelzindex aufgeführt.
  • Die mechanischen Eigenschaften der Nanocomposite-Blends wurden spritzfrisch und konditioniert im Zugversuch nach DIN EN ISO 527 und Kerbschlagzähigkeitsversuch nach DIN EN ISO 179/1eA geprüft. Die Wärmeformstabilität (HDT) wurde entsprechend ASTM D648 gemessen. Die Konditionierung der Proben in den Beispielen 1 bis 4 wurde bei einer Temperatur von 23°C und 95% Feuchte für die Dauer von 280 Stunden durchgeführt (Konditionierung 1). Anschließend wurde ein Teil der Proben im Zugversuch geprüft und der restliche Teil bei Raumtemperatur in Wasser bis zur Sättigung gelagert (Konditionierung 2). Die Zusammensetzung der Nanocomposite-Blends ist in den einzelnen Beispielen dargestellt. Die Eigenschaften sind in Tabelle 1 bis 4, die Wasseraufnahme in 1, 2 und die E-Moduli in 3 aufgeführt.
  • Das dynamisch-mechanische Verhalten der Nanocomposite-Blends in den Beispielen 6 und 7 wurde mittels Torsionsprüfgerät RDA II (Rheometric Scientific) bei konstanter Dehnung von 0,1% und einer Frequenz von 1Hz untersucht. Der Speichermodul in Abhängigkeit von der Temperatur ist in 6 aufgeführt.
  • Die Konditionierung der Proben 6 und 7 erfolgte nach EN ISO 1110 bei 70°C und 62% relativer Feuchte bis zur Gewichtskonstanz. Die Prüfstäbe der Proben in den Beispielen 6 und 7 wurden ebenfalls in Umluftwärmeschränken bei 110°C, 120°C, 130°C und 150°C gelagert und anschließend die Eigenschaften im Zugversuch bestimmt.
  • Die Lösungsviskosität von Polyamid 6 wurde in einer 1%igen Lösung in Schwefelsäure (96%ig) bei 25°C gemessen.
  • Beispiel 1
  • Polyamid 6 mit einem Schmelzindex von 4,9(230°C/2,16kg) und einer relativen Lösungsviskosität von 3,45 (Referenz Polyamid I), Polypropylen mit einem Schmelzindex von 5(230°C/2,16kg) und octadecylamin-modifiziertes Montmorillonit (z.B. Nanofil 848) wurden im Gewichtsverhältnis 80/15/5 compoundiert.
  • Beispiel 2
  • Polyamid 6 mit einem Schmelzindex von 4,9(230°C/2,16kg) und einer relativen Lösungsviskosität von 3,45, Polypropylen mit einem Schmelzindex von 5(230°C/2,16kg), octadecylamin-modifiziertes Montmorillonit (z.B. Nanofil 848) und aminododecansäure-modifiziertes Montmorillonit (z.B. Nanofil 784) wurden im Gewichtsverhältnis 79,2/15,8/2,5/2,5 compoundiert.
  • Vergleichsbeispiel 3
  • Polyamid 6 mit einem Schmelzindex von 4,9(230°C/2,16kg) und einer relativen Lösungsviskosität von 3,45, Polypropylen mit einem Schmelzindex von 5(230°C/2,16kg) wurden im Gewichtsverhältnis 85/15 compoundiert.
  • Vergleichsbeispiel 4
  • Polyamid 6 mit einem Schmelzindex von 4,9(230°C/2,16kg) und einer relativen Lösungsviskosität von 3,45 und octadecylamin-modifiziertes Montmorillonit (z.B. Nanofil 848) wurden im Gewichtsverhältnis 96,8/3,2 compoundiert.
  • Die Ergebnisse zeigen die nachfolgenden Tabellen. Tabelle 1: Eigenschaften der erfindungsgemäßen Nanocomposite-Blends
    Figure 00220001
    Tabelle 2: Eigenschaften der erfindungsgemäßen Nanocomposite-Blends nach Konditionierung bei 23°C und 95% relativer Feuchte für die Dauer von 280 Stunden.
    Figure 00220002
  • Tabelle 3: Wasseraufnahme der erfindungsgemäßen Nanocomposite-Blends nach Konditionierung bei 23°C in Wasser.
    Figure 00230001
  • Beispiel 5
  • Polyamid 6 mit einem Schmelzindex von 22,3(230°C/2,16kg) und einer relativen Lösungsviskosität von 2,7 (Referenz Polyamid II), Polypropylen mit einem Schmelzindex von 24(230°C/2,16kg), octadecylamin-modifiziertes Montmorillonit (z.B. Nanofil 848) im Gewichtsverhältnis 80/15/5 wurden compoundiert. Das PA 6/PP Nanocomposite-Blend zeigte verbesserte mechanische und thermische Eigenschaften, eine E-Modulerhöhung von 43% und HDT-Erhöhung von 73%.
  • Figure 00230002
  • Vergleichsbeispiel 6
  • Polyamid 6 mit einem Schmelzindex von 6,6(230°C/2,16kg) und einer relativen Lösungsviskosität von 3,2 (Referenz Polyamid III) und octadecylamin-modifiziertes Montmorillonit (z.B. Nanofil 848) im Gewichtsverhältnis 95/5 wurden compoundiert. Zu der Mischung wurden 0,2% Irganox B1171 (Ein Blend aus Wärmestabilisator und Prozessstabilisator) zugegeben.
  • Vergleichsbeispiel 7
  • Polyamid 6 mit einem Schmelzindex von 6,6(230°C/2,16kg) und einer relativen Lösungsviskosität von 3,2 (Referenz Polyamid III) wurde unter der Zugabe 0,2% Irganox B1171 (Ein Blend aus Wärmestabilisator und Prozessstabilisator) verarbeitet.
  • Tabelle 4: Eigenschaften von PA/PP Nanocomposite-Blends
    Figure 00250001
  • Beispiele 8 bis 16 – Zweistufenverfahren
  • Die PA/PP-Nanocomposite-Blends wurden mittels eines Doppelschneckenextruders (ZSK 25/40, Coperion Werner & Pfleiderer) mit einem L/D-Verhältnis von mindestens 40 hergestellt. Die Polymere und die organisch interkalierten Schichtsilikate wurden in der ersten Zone mittels Polymer- bzw. Pulverwaagen zudosiert. Die Compoundierung erfolgte bei Temperaturen in den Zonen zwischen 220 und 260°C und einer Drehzahl von 250 bzw. 400 min–1. Zunächst wurden Masterbatche PA 6/Clay ohne bzw. mit Ethylen-Acrylsäure oder Ethylen-Methacrylsäure-Ionomer hergestellt. Anschließend wurden die entsprechenden Masterbatches mit PP und PA 6 compoundiert. Der Gesamtdurchsatz bei der Masterbatchherstellung sowie beim Compoundieren betrug 6 kg/h.
  • Die compoundierten Nanocomposite-Blends wurden mittels Spritzguss (Arburg Alllrounder 320M 850-210) zu Prüfkörpern verarbeitet.
  • Anhand von WAXS- Analysen (WAXS = Weitwinkel Röntgenstrukturanalyse) wurden die Abstände zwischen den Silikatplättchen in den Masterbatche bestimmt.
  • Die mechanischen Eigenschaften der Nanocomposite-Blends (spritzfrisch und konditioniert) wurden im Zugversuch nach DIN EN ISO 527 und Kerbschlagzähigkeitsversuch nach DIN EN ISO 179/1eA geprüft.
  • Das dynamisch-mechanische Verhalten der Nanocomposite-Blends wurde am Torsionsprüfgerät RDA II (Fa. Rheometrics) bei konstanter Dehnung von 0,1% und einer Fre quenz von 1Hz untersucht. Die Zusammensetzung der Nanocomposite-Blends ist in den nachfolgenden Beispielen dargestellt und die Eigenschaften sind in Tabellen 4 und 5, der Speichermodul in Abhängigkeit von der Temperatur in 7 aufgeführt.
  • Die Konditionierung der Proben in den Beispielen 8 bis 16 erfolgte nach EN ISO 1110 bei 70°C und 62% relative Feuchte bis zur Gewichtskonstanz. Prüfstäbe von den Proben 10 bis 15 wurden im Umluftwärmeschrank bei 150°C gelagert und anschließend die Eigenschaften im Zugversuch geprüft.
  • Die Lösungsviskosität von Polyamid 6 wurde in einer 1%igen Lösung in Schwefelsäure (96%ig) bei 25°C gemessen.
  • Beispiel 8
  • Polyamid 6 mit einem Schmelzindex von 6,6(230°C/2,16kg) und einer relativen Lösungsviskosität von 3,2 (Referenz Polyamid III), Polypropylen mit einem Schmelzindex von 6(230°C/2,16kg) und octadecylamin-modifiziertes Montmorillonit (z.B. Nanofil 848) wurden angewendet.
  • Zunächst wurde ein Masterbatch mit der Zusammensetzung 80/20 PA 6/Clay hergestellt. WAXS-Untersuchungen zeigten, dass die Schichtabstände zwischen den Silikatplättchen sich um mehr als 4,5nm aufgeweitet haben. Der Masterbatch wurde dann mit PA 6 und PP compoundiert, so dass die Endkonzentration der Komponenten in der Mischung PA 6/PP/Clay – 80/15/5 im Gewichtsverhältnis betrug.
  • Beispiel 9
  • Die gleichen Materialien und die gleiche Prozedur wie in Beispiel 10 wurden angewendet. Die Endkonzentration der Komponenten in der Mischung betrug PA 6/PP/Clay – 70/25/5 im Gewichtsverhältnis.
  • Beispiel 10
  • Polyamid 6 mit einem Schmelzindex von 6,6(230°C/2,16kg) und einer relativen Lösungsviskosität von 3,2 (Referenz Polyamid III), Polypropylen mit einem Schmelzindex von 6(230°C/2,16kg), ein niedermolekulares vollständig mit Zn neutralisiertes Ethylen Acrylsäure-Copolymer (z.B. Aclyn 295) hier als Ionomer Ac bezeichnet und octadecylaminmodifiziertes Montmorillonit (z.B. Nanofil 848) wurden angewendet.
  • Zunächst wurde ein Masterbatch mit der Zusammensetzung 75/5/20 PA 6/Ionomer Ac/Clay hergestellt. WAXS-Untersuchungen zeigten, dass die Schichtabstände zwischen den Silikatplättchen sich um mehr als 4,26nm auf geweitet haben. Der Masterbatch wurde dann mit PA 6 und PP compoundiert, so dass die Endkonzentration der Komponenten in der Mischung PA 6/PP/Ionomer Ac/Clay – 79/15/1/5 im Gewichtsverhältnis betrug.
  • Beispiel 11
  • Die gleichen Materialien und die gleiche Prozedur wie in Beispiel 12 wurden angewendet. Die Endkonzentration der Komponenten in der Mischung betrug PA 6/PP/Ionomer Ac/Clay – 69/25/1/5 im Gewichtsverhältnis.
  • Beispiel 12
  • Polyamid 6 mit einem Schmelzindex von 6,6(230°C/2,16kg) und einer relativen Lösungsviskosität von 3,2 (Referenz Polyamid III), Polypropylen mit einem Schmelzindex von 6(230°C/2,16kg), ein niedermolekulares teilweise mit Zn neutralisiertes Ethylen Acrylsäure-Copolymer (z.B. Aclyn 291) hier als Ionomer Ac1 bezeichnet und octadecylaminmodifiziertes Montmorillonit (z.B. Nanofil 848) wurden angewendet.
  • Zunächst wurde ein Masterbatch mit der Zusammensetzung 72,5/7,5/20 PA 6/Ionomer Ac1/Clay hergestellt. WAXS-Untersuchungen zeigten, dass die Schichtabstände zwischen den Silikatplättchen sich um mehr als 4,26nm auf geweitet haben. Der Masterbatch wurde dann mit PA 6 und PP compoundiert, so dass die Endkonzentration der Komponenten in der Mischung PA 6/PP/Ionomer Ac1/Clay – 78,2/15/1,8/5 im Gewichtsverhältnis betrug.
  • Beispiel 13
  • Die gleichen Materialien und die gleiche Prozedur wie in Beispiel 14 wurden angewendet. Die Endkonzentration der Komponenten in der Mischung betrug PA 6/PP/Ionomer Ac1/Clay – 69,5/25/1,5/4 im Gewichtsverhältnis.
  • Beispiel 14
  • Polyamid 6 mit einem Schmelzindex von 6,6(230°C/2,16kg) und einer relativen Lösungsviskosität von 3,2 (Referenz Polyamid III), Polypropylen mit einem Schmelzindex von 6(230°C/2,16kg), ein hochmolekulares teilweise mit Zn neutralisiertes Ethylen-Methacrylsäure-Copolymer (z.B. Surlyn) hier als Ionomer Sr bezeichnet und octadecylamin modifiziertes Montmorillonit (z.B. Nanofil 848) wurden angewendet.
  • Zunächst wurde ein Masterbatch mit der Zusammensetzung 72,5/7,5/20 PA 6/Ionomer Sr/Clay hergestellt. WAXS-Untersuchungen zeigten, dass die Schichtabstände zwischen den Silikatplättchen sich um mehr als 4,3nm aufgeweitet haben. Der Masterbatch wurde dann mit PA 6 und PP compoundiert, so dass die Endkonzentration der Komponenten in der Mischung PA 6/PP/Ionomer Sr/Clay – 78,2/15/1,8/5 im Gewichtsverhältnis betrug.
  • Beispiel 15
  • Die gleichen Materialien und die gleiche Prozedur wie in Beispiel 16 wurden angewendet. Die Endkonzentration der Komponenten in der Mischung betrug PA 6/PP/Ionomer Sr/Clay – 69,5/25/1,5/4 im Gewichtsverhältnis.
  • Beispiel 16
  • Die gleichen Materialien und die gleiche Prozedur wie in Beispiel 16 wurden angewendet. Die Endkonzentration der Komponenten in der Mischung betrug PA 6/PP/Ionomer Sr/Clay – 55,9/40/1,1/3 im Gewichtsverhältnis.
  • Tabelle 5: Eigenschaften von PA/PP Nanocomposite-Blends
    Figure 00310001
  • 1 bis 7 betreffen
  • 1: Wasseraufnahme der Nanocomposite-Blends bei 23°C und 95% relativer Feuchte in Abhängigkeit der Lagerzeit
  • 2: Wasseraufnahme der Nanocomposite-Blends bei 23°C in Wasser in Abhängigkeit der Lagerzeit
  • 3: E-Moduli der Nanocomposite-Blends im spritzfrischen und konditionierten Zustand (23°C/95% relativer Feuchte – nach 280 Stunden; 23°/in Wasser – nach 1800 Stunden und nach 4000 Stunden)
  • 4: TEM- Aufnahme von PA 6/PP Nanocomposite-Blends-Ultradünnschnitte: a) kontrastiert, b) nicht kontrastiert
  • 5: REM-Aufnahmen von Kryobruchflächen der Prüfstäbe von PA 6/PP Nanocomposite-Blends: a) ohne zusätzliche Kompatibilisierung, b) mit 1,8 Gew.-% Ethylen-Ionomer-Copolymer
  • 6: Speichermodul von den erfindungsgemäßen PA/PP Nanocomposite-Blends in Abhängigkeit von der Temperatur
  • 7: Speichermodul von den erfindungsgemäßen PA/PP Nanocomposite-Blends in Abhängigkeit von der Temperatur

Claims (11)

  1. Nanocomposite-Blends, die a) Polyamid (PA) von 55 bis 95 Gew.%, b) Polypropylen (PP) von 4 bis 40 Gew.%, c) nanodisperse Schichtsilikate von 1 bis 9 Gew.% d) carboxylierte Polyolefine, insbesondere Copolymere des Ethylens mit ungesättigten Carbonsäuren, bis 10 Gew.%, enthalten, die über diese Zusammensetzung von insgesamt 100 Gew.% Zusätze von üblichen Stabilisatoren und Füllstoffen enthalten können.
  2. Polymer-Nanocomposite-Blends nach Anspruch 1, dadurch gekennzeichnet, dass die Komponente a). ein Polyamid 6 mit einer Lösungsviskosität von 2,2 bis 4,0, vorzugsweise von 2,4 bis 3,5, ist.
  3. Polymer-Nanocomposite-Blends nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Komponente b) ein Polypropylen mit einem Schmelzindex von 1 bis 110, vorzugsweise von 5 bis 30 ccm/10 min (230°C/2,16 kg) ist.
  4. Polymer-Nanocomposite-Blends nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das nanodisperse Schichtsilikat (Komponente c) ein mit Onium-Ionen modifiziertes natürliches Natrium-Montmorillonit, Hektorit, Bentonit oder synthetisches Mica mit einer Kationenaustauschkapazi tät von 60 bis 150 mval/100g ist.
  5. Polymer-Nanocomposite-Blends nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Komponente d) in den Nanocomposite-Blends von 0,1 bis 1,9 Gew.% enthalten ist und vorzugsweise ein Ethylen-Acrylsäure-Copolymer oder ein Ethylen-Methacrylsäure-Copolymer ist, das teilweise oder vollständig mit Metallionen neutralisiert ist.
  6. Verfahren zur Herstellung von Polymer-Nanocomposite-Blends, dadurch gekennzeichnet, dass die Komponenten Polyamid (PA) von 55 bis 95 Gew.%, Polypropylen (PP) von 4 bis 40 Gew.%, nanodisperse Schichtsilikate von 1 bis 9 Gew.%, carboxylierte Polyolefine, insbesondere Copolymere des Ethylens mit ungesättigten Carbonsäuren, bis 10 Gew.% enthalten, die über die Zusammensetzung von insgesamt 100 Gew.% Zusätze von üblichen Stabilisatoren und Füllstoffen enthalten können, bei Temperaturen über den Schmelztemperaturen der beteiligten Polymeren in einem Extruder oder Kneter compoundiert wurden.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Komponenten in einem Schritt compoundiert werden.
  8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Komponenten c) und d) in Teilen der Kompo nente a) zunächst in Form von einem Masterbatch eingearbeitet werden und der Masterbatch im nächsten Schritt mit Komponente b) und dem Rest von Komponente a) compoundiert und weiterverarbeitet wird.
  9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Komponenten d) und Komponente b) zunächst über den Schmelztemperaturen der beteiligten Polymeren in einem Extruder oder Kneter zu einem modifizierten Polypropylen compoundiert und Komponente c) und ein Teil von Komponente a) in Form von einem Masterbatch eingearbeitet werden und der Masterbatch im nächsten Schritt mit dem modifizierten Polypropylen und dem Rest von Komponente a) compoundiert und weiterverarbeitet wird.
  10. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Komponenten d) und Komponente b) zunächst über den Schmelztemperaturen der beteiligten Polymeren in einem Extruder oder Kneter zu einem modifizierten Polypropylen compoundiert werden und das modifizierte Polypropylen im nächsten Schritt mit der Komponente a) und Komponente d) compoundiert und weiterverarbeitet wird.
  11. Verwendung der Nanocomposite-Blends nach einem der Ansprüche 1 bis 5, hergestellt nach einem der Ansprüche 6 bis 10 als Extrudate, Spritzgussteile oder Fasern.
DE102004011019A 2003-05-05 2004-03-03 Polymer-Nanocomposite-Blends Withdrawn DE102004011019A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102004011019A DE102004011019A1 (de) 2003-05-05 2004-03-03 Polymer-Nanocomposite-Blends
US10/555,910 US20070004842A1 (en) 2003-05-05 2004-04-02 Polymer nanocomposite blends
PCT/DE2004/000744 WO2004099316A1 (de) 2003-05-05 2004-04-02 Polymer-nanocomposite-blends
EP04725286A EP1622982A1 (de) 2003-05-05 2004-04-02 Polymer-nanocomposite-blends
JP2006504295A JP2006525383A (ja) 2003-05-05 2004-04-02 ポリマーナノコンポジットブレンド

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10320695 2003-05-05
DE10320695.7 2003-05-05
DE102004011019A DE102004011019A1 (de) 2003-05-05 2004-03-03 Polymer-Nanocomposite-Blends

Publications (1)

Publication Number Publication Date
DE102004011019A1 true DE102004011019A1 (de) 2004-12-09

Family

ID=33440678

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004011019A Withdrawn DE102004011019A1 (de) 2003-05-05 2004-03-03 Polymer-Nanocomposite-Blends

Country Status (1)

Country Link
DE (1) DE102004011019A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008038294A1 (de) 2008-08-18 2010-02-25 Eads Deutschland Gmbh Verfahren zur Herstellung eines Faserverbundbeutels sowie textiles Halbzeug hierfür
DE102014008531A1 (de) * 2014-02-13 2015-08-13 Ewald Dörken Ag Gedämmte Gebäudekonstruktion
DE102014008530A1 (de) * 2014-02-13 2015-08-13 Ewald Dörken Ag Feuchtevariable Schutzschicht und Verwendung einer feuchtevariablen Schutzschicht

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008038294A1 (de) 2008-08-18 2010-02-25 Eads Deutschland Gmbh Verfahren zur Herstellung eines Faserverbundbeutels sowie textiles Halbzeug hierfür
WO2010020237A2 (de) * 2008-08-18 2010-02-25 Airbus Sas Verfahren zur herstellung eines faserverbundbauteils sowie textiles halbzeug hierfür
WO2010020237A3 (de) * 2008-08-18 2010-07-22 Airbus Sas Verfahren zur herstellung eines faserverbundbauteils sowie textiles halbzeug hierfür
DE102008038294B4 (de) * 2008-08-18 2013-07-18 Airbus Sas Verfahren zur Herstellung eines Faserverbundbauteils sowie textiles Halbzeug hierfür
US10059080B2 (en) 2008-08-18 2018-08-28 Airbus Sas Method for the production of a fiber composite component, and semifinished textile product therefor
DE102014008531A1 (de) * 2014-02-13 2015-08-13 Ewald Dörken Ag Gedämmte Gebäudekonstruktion
DE102014008530A1 (de) * 2014-02-13 2015-08-13 Ewald Dörken Ag Feuchtevariable Schutzschicht und Verwendung einer feuchtevariablen Schutzschicht

Similar Documents

Publication Publication Date Title
EP2049597B1 (de) Thermoplastische formmassen mit hoher steifigkeit
DE69825942T2 (de) Polyamidharz Zusammensetzung und Formkörper
DE69023542T2 (de) Verfahrung zur Herstellung eines Polyamidverbundmaterials.
DE10057455C2 (de) Polyamid-Formmassen mit verbesserten Eigenschaften
EP1841824B1 (de) Hochviskose formmassen auf basis von thermoplastischen polymeren sowie deren verwendung
DE68917156T2 (de) Mineralverstärkte nylonzusammensetzung für blasformen.
DE4122211A1 (de) Thermoplastische formmassen aus semikristallinem und amorphem polyamid, deren verwendung und verfahren zu ihrer herstellung
DE10108817B4 (de) Langfaser-verstärkte Polypropylenharzzusammensetzung und daraus erhaltener Formgegenstand
WO2011000816A1 (de) Nanokompositblends enthaltend polyamide und polyolefine
WO2004099316A1 (de) Polymer-nanocomposite-blends
EP1394197A1 (de) Hochviskose Formmassen mit nanoskaligen Füllstoffen
WO2004048452A1 (de) Schlagzähmodifizierte polymer-zusammensetzungen
DE60027468T2 (de) Ionomere polyesterzusammensetzungen enthaltend organotone, sowie verfahren
DE102009011668A1 (de) Polyamid und hyperverzweigte Polyesster enthaltende Formmasse
DE112019001653T5 (de) Verstärkter polyolefin-verbundwerkstoff
RU2513766C2 (ru) Суперконцентрат и композиционные материалы на его основе
EP1780241A1 (de) Verwendung von Polyamid-Formmassen zur Herstellung von Formteilen mit reduzierter Oberflächenverkohlung
DE4029226A1 (de) Polyamid/polypropylen-blends
DE102004011019A1 (de) Polymer-Nanocomposite-Blends
EP0583706B1 (de) Hochschlagzäh-modifiziertes, verstärktes Polyamid 66
DE60206675T2 (de) Verfahren zur Herstellung thermoplastischer Harzzusammensetzung
EP1359196B1 (de) Schichtsilikatverstärkte Polyamid-Zusammensetzung
EP1050557B1 (de) Thermoplaste und Thermoplastblends enthaltend modifizierte anorganische Schichtverbindungen und deren Verwendung
DE10222169A1 (de) Nanocomposites auf Polyolefin-Basis und Verfahren zu deren Herstellung sowie Verwendung
DE60103666T2 (de) Verwendung einer nano-füllstoff enthaltenden polyolefinzusammensetzung für die herstellung von verbesserten gegenständen

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal