DE10136499A1 - Process for changing the structure of silicon nitride ceramics comprises changing the process parameters - Google Patents

Process for changing the structure of silicon nitride ceramics comprises changing the process parameters

Info

Publication number
DE10136499A1
DE10136499A1 DE2001136499 DE10136499A DE10136499A1 DE 10136499 A1 DE10136499 A1 DE 10136499A1 DE 2001136499 DE2001136499 DE 2001136499 DE 10136499 A DE10136499 A DE 10136499A DE 10136499 A1 DE10136499 A1 DE 10136499A1
Authority
DE
Germany
Prior art keywords
method described
early stage
final structure
changing
sintering process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2001136499
Other languages
German (de)
Inventor
Hans-Joachim Kleebe
Wolfgang Lehner
Guenter Ziegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE2001136499 priority Critical patent/DE10136499A1/en
Publication of DE10136499A1 publication Critical patent/DE10136499A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3882Beta silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

Process for changing the structure of Si3N4 ceramics comprises changing the process parameters.

Description

Stand der TechnikState of the art

Im Gegensatz zu dem hier beschriebenen Verfahrensweg, verfolgten die bisher in der Literatur beschriebenen Verfahren zur Veränderung des Si3N4-Endgefüges folgende Ansätze (Abb. 1):

  • a) Die Beeinflussung des Si3N4-Endgefüges kann durch Variation der Ausgangspulver erzielt werden. In diesem Zusammenhang wiesen Ziegler et al.1 nach, dass eine hohe α-Si3N4-Konzentration im Ausgangspulver die Bildung eines bimodalen Gefüges fördert, wobei der durchschnittliche Streckungsgrad der β-Si3N4-Körner vom α-β-Verhältnis im Si3N4-Ausgangspulver abhängig ist2,3,4. Eine geschickte Dotierung sehr feiner β-Si3N4- Pulver mit nadelförmigen β-Si3N4-Kristalliten verändert nach Mitomo et al.5 sowohl die Anzahl großer, langgestreckter β-Si3N4-Körner im Endgefüge als auch deren Streckungsgrad. Beobachtet wurde in diesem Zusammenhang auch ein anisotropes Kornwachstum während des Sintervorganges, welches die Bildung langgestreckter β-Si3N4-Körner fördert6.
  • b) Eine weitere Möglichkeit der Gefügebeeinflussung von Si3N4 ist durch Variation von Temperatur und Haltezeit oberhalb 1750°C gegeben3,7. Durch Auslagerung bei Temperaturen oberhalb 1750°C wird nur das Wachstum großer langgestreckter Körner gefördert (Ostwaldreifung). Der Feinanteil bleibt im Gegensatz zu der im vorliegenden Patentantrag neuen Methode jedoch relativ unberührt.
  • c) Die Zugabe externer Keime stellt eine teuere Lösung zur Gefügevariation von Si3N4- Keramiken, da nur in (001)-Richtung orientierte β-Keime zu großen langgestreckten Keimen heranwachsen können und diese nur sehr begrenzt verfügbar sind.
In contrast to the process described here, the processes for changing the final Si 3 N 4 structure previously described in the literature pursued the following approaches ( Fig. 1):
  • a) The Si 3 N 4 final structure can be influenced by varying the starting powder. In this context, Ziegler et al. 1 after that a high α-Si 3 N 4 concentration in the starting powder promotes the formation of a bimodal structure, the average degree of stretching of the β-Si 3 N 4 grains depending on the α-β ratio in the Si 3 N 4 starting powder is 2,3,4 . A clever doping of very fine β-Si 3 N 4 powder with acicular β-Si 3 N 4 crystallites changed according to Mitomo et al. 5 both the number of large, elongated β-Si 3 N 4 grains in the final structure and their degree of stretching. Anisotropic grain growth during the sintering process was also observed in this connection, which promotes the formation of elongated β-Si 3 N 4 grains 6 .
  • b) A further possibility of influencing the structure of Si 3 N 4 is given by varying the temperature and holding time above 1750 ° C. 3.7 . By aging at temperatures above 1750 ° C, only the growth of large elongated grains is promoted (Ostwald maturation). In contrast to the new method in the present patent application, the fine fraction remains relatively unaffected.
  • c) The addition of external nuclei represents an expensive solution for the structure variation of Si 3 N 4 ceramics, since only in the (001) direction oriented β nuclei can grow into large elongated nuclei and these are only available to a very limited extent.

Beschreibung des VerfahrensDescription of the procedure

Im vorliegenden Patentantrag wird u. a. Variation der Aufheizrate der Effekt der unterschiedlichen Zeitabhängigkeit der Grenzflächenreaktion am α-Si3N4-Korn und der Diffusion durch die Sekundärphase ausgenutzt. Eine reduzierte Aufheizrate bewirkt eine erhöhte Anzahl lokaler Übersättigungen in der Schmelze und ein Ansteigen der Keimbildungsrate. Damit ist es möglich, Keimbildungsprozesse im Si3N4 zu initiieren und die Anzahl wachstumsfähiger Keime im Gefüge zu erhöhen, wodurch sich ein feinkörnigeres Endgefüge erzielen lässt. Verstärkt wird dieser Effekt durch das Einfügen einer zusätzlichen Haltezeit im Frühstadium der Verdichtung (1400-1700°C). In the present patent application, the effect of the different time dependency of the interface reaction on the α-Si 3 N 4 grain and the diffusion through the secondary phase is used, inter alia, by varying the heating rate. A reduced heating rate causes an increased number of local supersaturations in the melt and an increase in the nucleation rate. This makes it possible to initiate nucleation processes in Si 3 N 4 and to increase the number of growth-capable nuclei in the structure, as a result of which a finer-grained final structure can be achieved. This effect is reinforced by the addition of an additional holding time in the early stage of compression (1400-1700 ° C).

Durch zusätzliche Druckerhöhung im Frühstadium der Verdichtung kann die Anzahl großer langgestreckter β-Si3N4-Körner im Endgefüge gesteigert an. Mit der Verknüpfung der Variation der Prozeßparameter (Aufheizrate, Haltezeit und Druckerhöhung) lassen sich sowohl der Feinanteil als auch die Anzahl großer langgestreckter Körner im Si3N4-Endgefüge gezielt einstellen.


The number of large elongated β-Si 3 N 4 grains in the final structure can be increased by additional pressure increase in the early stage of compression. By linking the variation of the process parameters (heating rate, holding time and pressure increase), both the fine fraction and the number of large elongated grains in the final Si 3 N 4 structure can be set.


Im Vergleich zu den bisherigen Arbeiten ist es durch den hier vorgestellten neuartigen Ansatz gelungen, ausschließlich durch die Variation der Sinterparameter (t, T, p-Programm) im Frühstadium der Verdichtung (1400-1700°C) an identisch dotierten Grünkörpern keimbildende Vorgänge zu initiieren. Dies hat denselben Effekt wie die Zugabe einer Vielzahl kleiner externer β-Körner und kann gezielt zur Gefügeveränderung in Siliciumnitridkeramiken genutzt werden. Die Variation der Anzahl wachstumsfähiger β-Si3N4-Kristallite, ausgehend von ein und demselben Grünkörper, gelang unabhängig von der verwendeten Additivzusammensetzung. In comparison to previous work, the novel approach presented here succeeded in initiating nucleation processes on identically doped green bodies solely by varying the sintering parameters (t, T, p program) in the early stage of compaction (1400-1700 ° C) , This has the same effect as the addition of a large number of small external β-grains and can be used specifically to change the structure of silicon nitride ceramics. The variation in the number of growth-capable β-Si 3 N 4 crystallites, starting from one and the same green body, was achieved independently of the additive composition used.

Der Vorteil des hier vorgestellten neuartigen Verfahrens ist, im Vergleich zu den bisherigen Ansätzen, dass ausgehend von ein und demselben Grünkörper je nach Anforderungsprofil das jeweilige Endgefüge gezielt - ausschließlich durch Variation der Sinterparamter - eingestellt werden kann. The advantage of the new method presented here is compared to the previous ones Approaches that starting from one and the same green body depending on the requirement profile The respective final structure is set specifically - only by varying the sintering parameters can be.

Beispiel 1example 1 Einstellung eines feinkörnigen EndgefügesSetting a fine-grained final structure

Durch Einstellen einer geringeren Aufheizgeschwindigkeit wird die Anzahl lokaler Übersättigungen in der Schmelze erhöht. Dadurch steigt die Keimbildungswahrscheinlichkeit stark an. Damit ist es möglich, Si3N4-Keimbildungsprozesse zu initiieren und die Anzahl wachstumsfähiger Keime im Endgefüge zu erhöhen, wodurch ein feinkörnigeres Endgefüge eingestellt werden kann. By setting a lower heating rate, the number of local supersaturations in the melt is increased. This greatly increases the probability of nucleation. This makes it possible to initiate Si 3 N 4 nucleation processes and to increase the number of viable nuclei in the final structure, which means that a finer-grained final structure can be set.

Dieser Effekt kann durch das Einfügen einer zusätzlichen Haltezeit im Frühstadium der Verdichtung (1400-1700°C) verstärkt werden. This effect can be achieved by inserting an additional holding time in the early stages of the Compression (1400-1700 ° C) to be reinforced.

Beispiel 2Example 2 Einstellung eines feinkörnigen Endgefüges mit großen langgestreckten β-Si3N4-KörnernSetting of a fine-grained final structure with large elongated β-Si 3 N 4 grains

Durch zusätzliche Druckerhöhung im Frühstadium der Verdichtung kann die Anzahl großer langgestreckter β-Si3N4-Körner im Endgefüge gesteigert an. Mit der Verknüpfung der Variation der Prozeßparameter (Aufheizrate, Haltezeit und Druckerhöhung) lassen sich sowohl der Feinanteil als auch die Anzahl langgestreckter Körner im Si3N4-Endgefüge gezielt einstellen. Literatur zum Stand der Technik 1 Ziegler, J. Heinrich and G. Wötting,. "Relationship Between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride", J. Mater. Sci., 22 (1987) 3041-86.
2 G. Wötting und G. Ziegler, "Dichtes Siliciumnitrid, II: Einflussfaktoren bei der Herstellung und Gefügeeigenschaften", Sprechsaal, 122 (1989) 45-57.
3 M. Krämer, "Untersuchungen zur Wachstumskinetik von β-Si3N4 in Keramiken und Oxynitridgläsern", Dissertation, Universität Stuttgart, (1991).
4 W. Dreßler, "Gefügeentwicklung und mechanische Eigenschaften von Si3N4-Keramiken", Diss., Universität Stuttgart (1993).
5 M. Mitomo, N. Yang, Y. Kishi and Y. Bando, "Influence of Powder Characteristics on Gas- Pressure Sintering of Si3N4", J. Mater. Sci. 23 (1988) 3412-19.
6 M. Hermann, H. Keßler und S. Heß, "Einfluss der Phasentransformation des Si3N4 und die Gefügeentwicklung", VII. Arbeitstagung Festkörperchemie und Keramik, Tagungsband (1988) 161-63.
7 L. Iskoe, F. F. Lange, "Development of Microstructure And Mechanical Properties During Hot Pressing of Si3N4", Ceramic Microstructures '76, With Emphasis on Energy Related Applications, (1976) 669-78.
The number of large elongated β-Si 3 N 4 grains in the final structure can be increased by additional pressure increase in the early stage of compression. By linking the variation of the process parameters (heating rate, holding time and pressure increase), both the fine fraction and the number of elongated grains in the Si 3 N 4 final structure can be set in a targeted manner. Literature related to the state of the art 1 Ziegler, J. Heinrich and G. Wötting ,. "Relationship Between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride", J. Mater. Sci., 22 (1987) 3041-86.
2 G. Wötting and G. Ziegler, "Dense Silicon Nitride, II: Factors Influencing Production and Structural Properties", at the conference hall, 122 (1989) 45-57.
3 M. Krämer, "Studies on the growth kinetics of β-Si 3 N 4 in ceramics and oxynitride glasses", dissertation, University of Stuttgart, (1991).
4 W. Dreßler, "Structure development and mechanical properties of Si 3 N 4 ceramics", Diss., University of Stuttgart (1993).
5 M. Mitomo, N. Yang, Y. Kishi and Y. Bando, "Influence of Powder Characteristics on Gas-Pressure Sintering of Si 3 N 4 ", J. Mater. Sci. 23 (1988) 3412-19.
6 M. Hermann, H. Keßler and S. Heß, "Influence of the phase transformation of Si 3 N 4 and the development of the microstructure", VII. Workshop Solid State Chemistry and Ceramics, conference volume (1988) 161-63.
7 L. Iskoe, FF Lange, "Development of Microstructure And Mechanical Properties During Hot Pressing of Si 3 N 4 ", Ceramic Microstructures '76, With Emphasis on Energy Related Applications, (1976) 669-78.

Claims (9)

1. Verfahren zur gezielten Veränderung des Gefüges von Si3N4-Keramiken, dadurch gekennzeichnet, dass die Prozessparameter verändert werden. 1. Process for the targeted change of the structure of Si 3 N 4 ceramics, characterized in that the process parameters are changed. 2. Das in Anspruch 1 beschriebene Verfahren, dadurch gekennzeichnet, dass es unabhängig vom gewählten Additivsystem ist. 2. The method described in claim 1, characterized, that it is independent of the additive system chosen. 3. Das in den Ansprüchen 1-2 beschriebene Verfahren, dadurch gekennzeichnet, dass nur durch Variation der Prozessparameter im Frühstadium der Verdichtung (Temperaturbereich 1400-1700°C), das Si3N4-Endgefüge beeinflußt wird. 3. The method described in claims 1-2, characterized in that only by varying the process parameters in the early stage of compression (temperature range 1400-1700 ° C), the Si 3 N 4 final structure is affected. 4. Das in den Ansprüchen 1-3 beschriebene Verfahren, dadurch gekennzeichnet, dass durch Variation der Aufheizrate während des Frühstadiums des Sinterprozesses (1400-1700°C) das Si3N4-Endgefüge beeinflußt wird. 4. The method described in claims 1-3, characterized in that the Si 3 N 4 final structure is influenced by varying the heating rate during the early stage of the sintering process (1400-1700 ° C). 5. Das in den Ansprüchen 1-4 beschriebene Verfahren, dadurch gekennzeichnet, dass durch Einfügen einer Haltezeit während des Frühstadiums des Sinterprozesses (1400-1700°C) das Si3N4-Endgefüge beeinflußt wird. 5. The method described in claims 1-4, characterized in that the Si 3 N 4 final structure is influenced by inserting a hold time during the early stage of the sintering process (1400-1700 ° C). 6. Das in den Ansprüchen 1-5 beschriebene Verfahren, dadurch gekennzeichnet, dass durch Erhöhung des N2-Gasdruckes während des Frühstadiums des Sinterprozesses (1400-1700°C) das Si3N4-Endgefüge beeinflußt wird. 6. The method described in claims 1-5, characterized in that the Si 3 N 4 final structure is influenced by increasing the N 2 gas pressure during the early stage of the sintering process (1400-1700 ° C). 7. Das in den Ansprüchen 1-6 beschriebene Verfahren, dadurch gekennzeichnet, dass durch Einfügen einer Haltezeit in Kombination mit der gleichzeitigen Erhöhung des N2-Gasdruckes während des Frühstadiums des Sinterprozesses (1400-1700°C) das Si3N4-Endgefüge beeinflußt wird. 7. The method described in claims 1-6, characterized in that by inserting a hold time in combination with the simultaneous increase in the N 2 gas pressure during the early stage of the sintering process (1400-1700 ° C) the Si 3 N 4 final structure being affected. 8. Das in den Ansprüchen 1-7 beschriebene Verfahren, dadurch gekennzeichnet, dass durch Absenkung der Temperatur während der Haltezeit in Kombination mit einer gleichzeitigen Erhöhung des N2-Gasdruckes während des Frühstadiums des Sinterprozesses (1400-1700°C) das Si3N4-Endgefüge beeinflußt wird. 8. The method described in claims 1-7, characterized in that by lowering the temperature during the holding time in combination with a simultaneous increase in the N 2 gas pressure during the early stage of the sintering process (1400-1700 ° C) the Si 3 N 4-end structure is affected. 9. Das in den Ansprüchen 1-8 beschriebene Verfahren, dadurch gekennzeichnet, dass das resultierende Si3N4-Endgefüge einen hohen Feinkornanteil und eine erhöhte Anzahl großer langgestreckter β-Si3N4-Körner, eingebettet in die feinkörnige Matrix, aufweist. 9. The method described in claims 1-8, characterized in that the resulting Si 3 N 4 final structure has a high proportion of fine grains and an increased number of large elongated β-Si 3 N 4 grains, embedded in the fine-grained matrix.
DE2001136499 2001-07-27 2001-07-27 Process for changing the structure of silicon nitride ceramics comprises changing the process parameters Withdrawn DE10136499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2001136499 DE10136499A1 (en) 2001-07-27 2001-07-27 Process for changing the structure of silicon nitride ceramics comprises changing the process parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2001136499 DE10136499A1 (en) 2001-07-27 2001-07-27 Process for changing the structure of silicon nitride ceramics comprises changing the process parameters

Publications (1)

Publication Number Publication Date
DE10136499A1 true DE10136499A1 (en) 2003-02-13

Family

ID=7693224

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2001136499 Withdrawn DE10136499A1 (en) 2001-07-27 2001-07-27 Process for changing the structure of silicon nitride ceramics comprises changing the process parameters

Country Status (1)

Country Link
DE (1) DE10136499A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2266935A1 (en) * 2008-04-18 2010-12-29 Kabushiki Kaisha Toshiba Anti-wear member, anti-wear instrument and method of producing anti-wear member
EP3896300A4 (en) * 2018-12-11 2022-08-31 Kabushiki Kaisha Toshiba Sliding member, and bearing, motor and driving device using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113885A1 (en) * 1991-04-27 1992-10-29 Hoechst Ag METHOD FOR PRODUCING FINE-PARTICLE CRYSTALLINE SILICON NITRIDE
DE19629074A1 (en) * 1995-07-18 1997-01-23 Ngk Spark Plug Co High strength and hardness sintered silicon nitride-based material
DE19746283A1 (en) * 1996-10-25 1998-04-30 Electrolux Ab Suction line and cylinder inlet assembly for motorised saw

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113885A1 (en) * 1991-04-27 1992-10-29 Hoechst Ag METHOD FOR PRODUCING FINE-PARTICLE CRYSTALLINE SILICON NITRIDE
DE19629074A1 (en) * 1995-07-18 1997-01-23 Ngk Spark Plug Co High strength and hardness sintered silicon nitride-based material
DE19746283A1 (en) * 1996-10-25 1998-04-30 Electrolux Ab Suction line and cylinder inlet assembly for motorised saw

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2266935A1 (en) * 2008-04-18 2010-12-29 Kabushiki Kaisha Toshiba Anti-wear member, anti-wear instrument and method of producing anti-wear member
EP2266935A4 (en) * 2008-04-18 2011-09-14 Toshiba Kk Anti-wear member, anti-wear instrument and method of producing anti-wear member
US8377837B2 (en) 2008-04-18 2013-02-19 Kabushiki Kaisha Toshiba Wear resistant member, wear resistant device and method for manufacturing the wear resistant member
EP3896300A4 (en) * 2018-12-11 2022-08-31 Kabushiki Kaisha Toshiba Sliding member, and bearing, motor and driving device using same

Similar Documents

Publication Publication Date Title
DE69631733T2 (en) Silicon nitride ceramic, silicon based composition for the manufacture thereof, and methods of making the same
DE1646796B2 (en) Process for the production of highly refractory moldings from silicon nitride. Eliminated from: 1240458
US5674793A (en) Method for producing a high-strength, high-toughness silicon nitride sinter
DE10136499A1 (en) Process for changing the structure of silicon nitride ceramics comprises changing the process parameters
JP2670221B2 (en) Silicon nitride sintered body and method for producing the same
DE60120586T2 (en) Process for producing a silicon nitride filter
DE3610528C2 (en)
DE4126510C2 (en) Process for the production of silicon nitride sintered bodies of high strength and toughness
JP2759288B2 (en) Method for producing aluminum oxide sintered body
EP0918735B1 (en) Method for producing moulded bodies from a composite ceramic material structure
JPH06234572A (en) Ceramic part made of silicon nitride, with high mechanical strength and being densely sintered
DE4126509C2 (en) Process for the production of a silicon nitride ceramic
JPH07138075A (en) Production of silicon nitride having high strength and high thermal expansion
JPH11147769A (en) Silicon nitride ceramic material and its production
JP2661761B2 (en) Silicon nitride sintered body and method for producing the same
EP1144337A2 (en) Reaction-bonded silicon nitride-based materials and method for producing the same
GB1335842A (en) Method of manufacturing a silicon nitride body
JP2742619B2 (en) Silicon nitride sintered body
EP0327046B1 (en) Method of preparing shaped polycrystalline silicon carbide articles having a density, a great strength and a homogeneous carbon distribution by controlled diffusion
JPH0319293B2 (en)
JPH03290370A (en) Production of sintered silicon nitride having high toughness
EP0650943B1 (en) Process for producing dense silicon nitride materials
JP2892244B2 (en) Manufacturing method of silicon nitride sintered body
DE19850597A1 (en) New alpha-sialon material, useful as a cutting material, in machine and equipment construction and in the chemical industry, has a sialon phase containing magnesium and yttrium, rare earth metal and-or calcium
JPH1149571A (en) Silicon nitride sintered compact and its production

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8139 Disposal/non-payment of the annual fee