DE10021681C2 - Energiespeichersystem, insbesondere System zum Speichern von Wasserstoff - Google Patents

Energiespeichersystem, insbesondere System zum Speichern von Wasserstoff

Info

Publication number
DE10021681C2
DE10021681C2 DE10021681A DE10021681A DE10021681C2 DE 10021681 C2 DE10021681 C2 DE 10021681C2 DE 10021681 A DE10021681 A DE 10021681A DE 10021681 A DE10021681 A DE 10021681A DE 10021681 C2 DE10021681 C2 DE 10021681C2
Authority
DE
Germany
Prior art keywords
pressure
storage system
energy storage
tank
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10021681A
Other languages
English (en)
Other versions
DE10021681A1 (de
Inventor
Friedel Michel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Deutschland GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Priority to DE10021681A priority Critical patent/DE10021681C2/de
Priority to DE20022954U priority patent/DE20022954U1/de
Publication of DE10021681A1 publication Critical patent/DE10021681A1/de
Application granted granted Critical
Publication of DE10021681C2 publication Critical patent/DE10021681C2/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/01Intermediate tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Die Erfindung betrifft ein Energiespeichersystem mit einem ersten Speicher, der mit einer Zuleitung für einen flüssigen Energieträger, insbesondere für flüssigen Wasserstoff, sowie mit einer Entnahmeleitung zum Transportieren des Energieträgers an einen Verbraucher versehen und mit einem zweiten Speicher zum Speichern von im ersten Speicher verdampftem Energieträger strömungsverbunden ist.
Derartige Energiespeichersysteme sind bekannt und finden beispielsweise in der Brennstoffzellen-Technologie Verwendung. Brennstoffzellen-Antriebe werden zunehmend als ernstzunehmende Alternative zu herkömmlichen Antrieben für Fahrzeuge gesehen. Die Brennstoffzelle benötigt als Reaktanden einen chemischen Energieträger, üblicherweise Wasserstoff, und Sauerstoff. Während des Sauerstoff, ähnlich wie beim Verbrennungsmotor, meist aus der Luft der Umgebung entnommen werden kann, werden für den Wasserstoff Speichersysteme benötigt. Dabei wird der Wasserstoff entweder unmittelbar oder als Bestandteil eines anderen Stoffes, etwa Methanol oder Erdgas, gespeichert.
Die Speicherung des Wasserstoffs in Form von Methanol erfordert ein relativ komplexes und teures System zur Nutzbarmachung der Wasserstoffenergie. Systeme, die den Wasserstoff unmittelbar, d. h. in Form von flüssigem oder gasförmigen Wasserstoff speichern, sind dagegen einfacher im Aufbau und im Einsatz. Besonders zweckmäßig erscheint dabei die Speicherung des Wasserstoffs in flüssiger Form, da mit flüssigem Wasserstoff eine hohe Energiedichte erzielt wird. Fahrzeuge, die mit einem Flüssigwasserstoff- Speicher ausgerüstet sind, weisen Reichweiten pro Speicherfüllung auf, die mit denen von herkömmlichen Diesel- oder Benzinfahrzeugen vergleichbar sind. Der Einsatz dieser Speichertechnologie in Kraftfahrzeugen wird beispielsweise in der Firmenzeitschrift "gas aktuell" 36, S. 17 (1991) beschrieben.
Der Nachteil der herkömmlichen Flüssigwasserstoff-Speicherung ist jedoch, dass auch bei bester thermischer Isolation des Wasserstofftanks, etwa mit Hilfe von Superisolation, ein geringer Restwärmestrom in das Tankinnere verbleibt, der zu einem langsamen Druckanstieg im Tank führt. Solange regelmäßig Wasserstoff von einem Verbraucher entnommen wird, ist dies ohne Bedeutung, da in diesem Falle durch die Entnahme der Druck im Tankinnern wieder abgesenkt wird. Wenn jedoch über eine längere Zeitdauer hinweg keine Entnahme erfolgt, kann der Druck bis zum Öffnungsdruck des Überströmventils steigen, wodurch es in der Folge zu einem kontinuierlichen Abblasestrom aus dem Tank kommt. Der Restwärmestrom wird dabei durch die Verdampfung des flüssigen Wasserstoffs im Tank kompensiert. In der Praxis liegt die Abblase­ menge eines Flüssigwasserstofftanks etwa für Fahrzeuge derzeit bei 1 bis 5% der maximalen Tankfüllung pro Tag.
In der EP 0 473 555 A2 wird vorgeschlagen, da in einem ersten Speicher verdampfende Gas in einen zweiten Speicher abzuleiten, der mittels eines Überdruckventils mit dem ersten Speicher strömungsverbunden ist. Übersteigt der Gasdruck im zweiten Behälter den des ersten Behälters, so kann über ein entsprechendes Verteilungsventil erreicht werden, dass zur Versorgung eines Verbrauchers Gas aus dem zweiten Speicher entnommen wird.
Nachteilig bei diesem bekannten System ist, dass die Kapazität des zweiten Speichers rasch erschöpft ist. Spätestens nach dem Druckausgleich beider Behälter ergibt sich ohne Gasentnahme durch einen Verbraucher die Notwendigkeit, überschüssiges Gas in die Umgebung abzublasen.
Aufgabe der vorliegenden Erfindung ist es, ein Energiespeichersystem zu entwickeln, bei dem der Verdampfungsverlust des eingesetzten Energieträgers auch bei längeren Standzeiten minimiert wird.
Gelöst ist diese Aufgabe bei einem Energiespeichersystem der eingangs genannten Art dadurch, dass der zweite Speicher einen Drucktank umfasst, dem eine Einrichtung zur Druckerhöhung strömungstechnisch vorgeschaltet ist.
Beim erfindungsgemäßen Energiespeichersystem wird der aufgrund des Restwärmeeintrags in den ersten Speicher verdampfende und nicht vom Verbraucher entnommene Anteil des gespeicherten Energieträgers im zweiten Speicher aufgefangen und steht somit einer späteren Verwendung zur Verfügung. Er entweicht also nicht in die Umgebung, wie dies bei konventionellen Systemen der Fall ist, bei denen der Energieträger ausschließlich in flüssiger Form gespeichert wird. Der zweite Speicher umfasst dabei einen Drucktank, dem strömungstechnisch eine Einrichtung zur Druckerhöhung vorgeschaltet ist. Dadurch wird die Speicherkapazität des zweiten Speichers besonders hoch. Mit diese Technologie wird der Verlustanteil an Energieträger beim Speichern drastisch reduziert. Gegenüber einem reinen Gasspeicher weist die erfindungsgemäße Form der Energiespeicherung den Vorteil auf, dass bei Speicherung in flüssiger Form eine höhere Energiespeicherdichte erzielt werden kann, wodurch ein geringerer Platzbedarf besteht. Des weiteren wird bei der Befüllung des ersten Speichers mit flüssigem Energieträger ein niedrigerer Fülldruck beansprucht und die Befüllung kann sehr viel rascher, insoweit mit konventionellen Kraftstoffen vergleichbar, erfolgen. Besonders zweckmäßig ist erfindungsgemäße Technologie beim Einsatz von Wasserstoff als Energieträger, sie ist jedoch nicht auf diesen beschränkt.
Geeignete Drucktanks sind beispielsweise konventionelle Druckgasflaschen für Drücke zwischen 0 und 300 bar, besonders vorteilhaft sind jedoch Höchstdruck-Verbundbehälter für Drücke bis zu 1000 bar und mehr.
Bei der Einrichtung zur Druckerhöhung handelt es sich bevorzugt um einen Kompressor.
In einer vorteilhaften Weiterbildung ist die Einrichtung zur Druckerhöhung mit einer Druckregelung wirkverbunden, mittels der die Kompression des Energieträgers im Drucktank in Abhängigkeit vom Druck des Energieträgers im ersten Speicher geregelt werden kann.
So kann der Druckregler beispielsweise derart eingestellt sein, dass kurz vor Erreichen eines Grenzdrucks, der ein Überdruckventil im ersten Speicher öffnet, die Einrichtung zur Druckerhöhung in Betrieb gesetzt und gasförmiger Energieträger aus dem ersten Speicher in den Drucktank gepresst wird.
Eine besonders einfache Druckregelung kann insbesondere dann verwirklicht werden, wenn die Entnahme des gasförmigen Energieträgers stets aus dem Drucktank und nicht unmittelbar aus dem ersten Speicher erfolgt. Dabei umfasst die Druckregelung eine Bypassleitung, welche die druckseitige Seite der Einrichtung zur Druckerhöhung mit dem ersten Speicher verbindet. Ein Teil des Gases wird somit am Austritt der Einrichtung zur Druckerhöhung in die Flüssigphase des Energieträgers im ersten Speicher zurückgeführt.
Um eine Entnahme des gasförmigen Energieträgers aus dem zweiten Speicher zu ermöglichen, ist diese vorzugsweise mit einer Ableitung versehen. Um einen etwa notwendigen Druckausgleich herzustellen, ist diese Ableitung vorzugs­ weise mit einem Druckminderer ausgerüstet.
Zweckmäßigerweise ist die Entnahmeleitung jeweils separat mit dem ersten und dem zweiten Speicher strömungsverbindbar. Mit dieser Ausgestaltung ist eine wechselweise Entnahme von Energieträger aus dem ersten oder dem zweiten Speicher möglich.
Eine Weiterbildung der letztgenannten Ausgestaltung der Erfindung sieht vor, die Entnahmeleitung mit einer druckgesteuerten Armatur zu versehen, welche die Entnahme von Energieträger aus den beiden Speichern in Abhängigkeit von dem im jeweiligen Speicher vorherrschenden Druck zu steuern imstande ist.
Vorzugsweise ist in der Entnahmeleitung ein Wärmetauscher integriert, mittels dessen der gasförmige Energieträger aus dem ersten Speicher vor Erreichen des Verbrauchers aufgewärmt wird. So liegt Wasserstoff als eingesetzter Energieträger im ersten Tank bei einer Temperatur vor, die im Bereich der Siedetemperatur des Wasserstoffs liegt. Der Einsatz eines derart tiefkalten Gases kann beim Verbraucher zu Problemen, beispielsweise Vereisungen u. dergl. führen. Diese Probleme werden durch den Einbau eines Wärmetausches in der Entnahmeleitung zumindest entschärft, wenn nicht beseitigt.
Eine Weiterbildung der Erfindung sieht vor, dass der erste Speicher einen tieftemperaturtauglichen Drucktank, insbesondere einen Hochdrucktank umfasst, der mit dem Drucktank des zweiten Speichers in Strömungs­ verbindung steht. Ein derartiger tieftemperaturtauglicher Drucktank kann mit flüssigem Wasserstoff bei niedrigem Druck befüllt werden. Wird der Tank unmittelbar nach der Befüllung abgesperrt, steigt der Druck im Tank sehr schnell an, da der Tankmantel im Gegensatz zum Tieftemperaturtank keine besondere Isolationswirkung hat. Ein Druckausgleich kann über einen Wärmetauscher mit dem Drucktank des zweiten Speichers erfolgen, der zumindest für den gleichen Maximaldruck ausgelegt sein muss.
Alternativ oder ergänzend zum vorgenannten tieftemperaturtauglichen Drucktank umfasst der erste Speicher einen Tieftemperaturtank, der vorzugsweise mit einer Superisolation versehen ist. Durch die thermische Isolation derartiger Tanks lassen sich die Verdampfungsverluste des als Energieträger eingesetzten flüssigen Wasserstoffs minimieren.
Insbesondere bei der Verwendung von Wasserstoff als Energieträger ist die chemische Speicherung des Wasserstoffs im zweiten Speicher eine sinnvolle Alternative oder Ergänzung zum vorgenannten Drucktank. So wird bei der Metallhydrid-Technik der Wasserstoff chemisch an bestimmte Metalle gebunden. Dabei entstehen Metallhydride, die abhängig vom Druck in einem geringen Volumen relativ große Wasserstoffmengen aufnehmen können. Typische Arbeitsdrücke für Metallhydridspeicher liegen zwischen 0 und 35 bar.
Eine besonders vorteilhafte Ausgestaltung der Erfindung sieht den Einsatz des Energiespeichersystems für Brennstoffzellenantriebe vor, insbesondere für den Einsatz in Fahrzeugen.
Anhand der Zeichnung sollen nachfolgend Ausführungsbeispiele der Erfindung näher erläutert werden.
In schematischen Ansichten zeigen:
Fig. 1 ein zum Speichern von Wasserstoff einsetzbares erfindungsgemäßes Energiespeichersystem in einer ersten Ausführungsform,
Fig. 2 ein zum Speichern von Wasserstoff einsetzbares erfindungsgemäßes Energiespeichersystem in einer zweiten Ausführungsform, und
Fig. 3 einen typischen zeitlichen Druckverlauf des Wasserstoffs im ersten Speicher beim Betrieb eines erfindungsgemäßen Wasserstoffspeicher­ systems.
Das in Fig. 1 gezeigte Wasserstoffspeichersystem 1 umfasst einen ersten Speicher in Form eines Tieftemperaturtanks 2 sowie einen zweiten Speicher in Form eines Hochdrucktanks 3.
Als Hochdrucktank 3 kann dabei beispielsweise ein Hybridspeicher, der für Drücke zwischen 0 und 35 bar geeignet ist, eine Druckgasflasche für Drücke von 0 bis 300 bar oder ein Höchstdruck-Verbundbehälter für Drücke von 0 bis 1000 bar eingesetzt werden.
Der Tieftemperaturtank 2, der für die Aufnahme von flüssigem Wasserstoff mit einer Temperatur von ca. 20 K bestimmt ist, ist mit einer Wärmeisolation 5 versehen. Zur Herstellung der Wärmeisolation 5 umfasst der Tieftemperaturtank 2 einen Innenbehälter 6, der zur Aufnahme des Wasserstoffs bestimmt ist, und der in einem Abstand von beispielsweise 40 mm von einem Außenbehälter 7 umgeben ist. Der Zwischenraum zwischen dem Innenbehälter 6 und dem Außenbehälter 7 ist evakuiert und kann zum Schutz vor Strahlungsverlusten mit entsprechenden Strahlungsschilden versehen sein. Einen typischen Aufbau für eine derartige Wärmeisolation ist beispielsweise in der Firmenzeitschrift "gas aktuell" Nr. 36, S. 17 (1991) beschrieben, es kann freilich jede aus der Tieftemperaturtechnik bekannte und für den vorliegenden Zweck geeignete Isolation verwendet werden.
Der Innenbehälter 6 kann mittels einer Füll-Leitung 9 zumindest teilweise mit flüssigem Wasserstoff befüllt werden. Trotz der guten Isolation tritt bei derartigen Tieftemperaturtanks ein Restwärmeeintrag auf, der zum Verdampfen eines Teils des eingefüllten Wasserstoffs von üblicherweise etwa 1 bis 5% pro Tag führt. Der Innenbehälter weist daher ein Sicherheitsventil 10 auf, das bei Erreichen eines bestimmten Mindestdrucks, beispielsweise 5 bar, öffnet und gasförmigen Wasserstoff in die Umgebung entweichen lässt.
Die durch Verdampfen des eingefüllten Wasserstoffs entstehende Gasphase 11 im Innenbehälter 6 steht über eine Entnahmeleitung 12 mit einem Verbraucher 13 in Strömungsverbindung. In der Entnahmeleitung 12 ist ein Wärmetauscher 14 zum Erwärmen des tiefkalten Gases sowie ein Absperrventil 15 integriert.
Zwischen dem Tieftemperaturtank 2 und dem Hochdrucktank 3 ist ein Kompressor 17 angeordnet, dessen Niederdruckseite 18 über eine Abzweigung 19 an der Entnahmeleitung 12 mit der Gasphase 11 des Wasserstoffs und dessen Hochdruckseite 21 mit dem Hochdrucktank 3 strömungsverbunden ist. Der Kompressor 17 ist derart ausgelegt, dass bei Erreichen eines bestimmten Drucks im Innenbehälter 6 des Tieftemperaturtanks 2, dessen Wert unterhalb des Öffnungsdrucks des Sicherheitsventils 10 liegt, Wasserstoff aus der Gasphase 11 entnommen und im komprimierten Zustand dem Hochdruckbehälter 3 zugeführt wird. Die Druckregelung erfolgt dabei etwa durch Messung des Drucks im Innenbehälter 6, und eine entsprechende Steuerung, die bei Erreichen des entsprechenden Druckwertes über eine geeignete Steuerung den Kompressor in Gang setzt.
Der Hochdrucktank 3 ist über eine Entnahmeleitung 23 gleichfalls mit dem Verbraucher strömungsverbunden. Um den Druck des entnommenen Wasserstoffs den Erfordernissen des Verbrauchers 13 anzupassen, ist in die Entnahmeleitung 23 ein Druckminderer 24 integriert.
Beim Wasserstoffspeichersystem 1 kann gasförmiger Wasserstoff wahlweise entweder aus der Gasphase 11 im Innenbehälter 6 des Tieftemperaturtanks 2 oder aus dem Hochdrucktank 3 entnommen werden. Diese ist insbesondere dann zweckmässig, wenn, etwa unmittelbar nach einer Betankung des Tieftemperaturtank 2, nur wenig gasförmiger Wasserstoff im Innenbehälter 6 des Tieftemperaturtank 2 vorliegt. In diesem Falle kann der gasförmige Wasserstoff dem Hochdruckbehälter entnommen werden. Bei Erreichen eines bestimmten Druckwertes kann der Tieftemperaturtank 2, etwa mittels einer geeigneten druckgesteuerten Automatik 25 im Absperrventil 15, zugeschaltet werden. Gegebenenfalls kann in diesem Falle gleichzeitig über eine weitere - hier nicht gezeigte - druckgesteuerte Automatik die Entnahmeleitung 23 des Hochdrucktanks 3 gesperrt werden. Um einen minimalen Versorgungsdruck im Tieftemperaturtank 2 dauerhaft sicherzustellen, kann in bekannter Weise etwa eine - hier ebenfalls nicht gezeigte - Heizung im Innenbehälter 6 vorgesehen sein.
Wird der gasförmige Wasserstoff ausschließlich aus dem Hochdrucktank 3 entnommen, und dient der Tieftemperaturtank 2 somit lediglich als Energiespeicher und nicht zugleich als Versorgungstank, so kann auf eine aufwendige Drucksteuerung des Kompressors 17 verzichtet werden. In diesem Falle kann eine Druckregelung mittels einer entsprechend dimensionierten Bypass-Leitung 26 erfolgen, durch die ein kleiner Teilstrom des bereits erheblich erwärmten Wasserstoffgases in die Flüssigphase des Wasserstoffs in dem Innenbehälter 6 des Tieftemperaturtanks 2 geleitet wird und eine Druckerhöhung im Innenbehälter 6 bewirkt.
Eine alternative Ausgestaltung eines Energiespeichersystems wird in Fig. 2 vorgestellt. Das dort gezeigte Wasserstoffspeichersystem 30 umfasst ebenfalls einen Hochdrucktank 33, der mit einem Tank 32 zur Aufnahme von Wasserstoff in flüssiger Form über eine Verbindungsleitung 31 strömungsverbunden ist. Im Gegensatz zum Tieftemperaturtank 2 des Wasserstoffspeichersystems 1 handelt es sich bei dem Tank 32 jedoch nicht um einen superisolierten Tieftemperaturtank, sondern um einen - für die Aufnahme von tiefkalten Flüssigkeiten geeigneten - Hochdrucktank, der nicht mit einer der Wärmeisolierung 5 vergleichbaren thermischen Isolation ausgerüstet ist. Wenn der Tank 32 über die Einfüll-Leitung 34 mit flüssigem Wasserstoff (bei niedrigem Druck, etwa 1-4 bar) befüllt und mit einem hier nicht gezeigten Absperrelement abgesperrt wird, verdampft sogleich ein Teil des Wasserstoffs und der Druck im Tank 32 steigt sehr stark an. Der Druckausgleich mit dem Hochdrucktank 33 erfolgt nach Öffnen eines Absperrventils 35 über die Verbindungsleitung 31 in die ein Wärmetauscher 36, z. B. eine luftbeheizte Rohrschlange, integriert ist. Es versteht sich, dass bei diesem Ausführungsbeispiel der Tank 32 und der Hochdrucktank 33 für den gleichen Maximaldruck ausgelegt sein sollen. Auf einen Kompressor zwischen Tank 32 und Hochdrucktank 33 kann bei diesem Ausführungsbeispiel verzichtet werden. Die Entnahme für einen Verbraucher 37 erfolgt ausschließlich über eine Entnahmeleitung 38 des Hochdrucktanks 33, die zum Anschließen des Verbrauchers 37 mit einem geeigneten Druckminderer 39 ausgerüstet ist.
Fig. 3 zeigt einen beispielhaften, jedoch typischen Druckverlauf im Innenbehälter 6 des Tieftemperaturtanks 2 während des Betriebs.
Bei der Wasserstoffentnahme durch einen Verbraucher 13 unmittelbar aus dem Tieftemperaturtank 2 sinkt der Druck im Innenbehälter 6 bis auf den, beispielsweise mittels einer Heizung beständig aufrechterhaltenen, Versorgungsdruck p1 ab (Betriebszustand B1). Zum Zeitpunkt t1 wird die Entnahme von Wasserstoff eingestellt. Bei Nichtentnahme von Wasserstoff steigt der Druck im Innenbehälter 6 langsam an, solange der Kompressor 17 noch nicht eingeschaltet ist (Betriebszustand B2). Im Zeitpunkt t2 wird der Ansprechdruck p2 des Kompressors 17 erreicht, und der Kompressor 17 in Betrieb gesetzt. Gasförmiger Wasserstoff wird nun dem Innenbehälter 6 des Tieftemperaturtanks 2 entnommen und dem Hochdruckbehälter 3 in komprimierter Form zugeführt (Betriebszustand B3). Der Druck im Innenbehälter 6 sinkt dadurch wieder ab. Bei Erreichen des Versorgungsdrucks p1, zum Zeitpunkt t3, schaltet der Kompressor 17 ab. In der Folge steigt der Druck im Innenbehälter wieder an, bis er zum Zeitpunkt t4 den Ansprechdruck p2 erreicht. Der Kompressor schaltet wieder an, der Druck in Innenbehälter sinkt und erreicht zum Zeitpunkt t5 erneut den Versorgungsdruck p1, um danach, nach Abschalten des Kompressors 17, wieder allmählich anzusteigen. Bei erneuter Entnahme von Wasserstoff durch den Verbraucher (ab dem Zeitpunkt t6) sinkt der Druck wieder bis in den Bereich des Versorgungsdrucks p1 ab. Der Druck bleibt so stets unterhalb des Ansprechdrucks p3 des Sicherheitsventils 10. Ein Austritt von Wasserstoff in die Umgebung wird somit zuverlässig vermieden.
Für Fahrzeuge in Fahrzeugflotten, die ohne lange Parkzeiten regelmäßig betrieben werden, kann die Kapazität des Hochdrucktanks 3 kleiner als die des Tieftemperaturtanks 2 gewählt werden, da bei deren Einsatzprofil üblicherweise nur wenige Abdampfverluste anfallen. Bei diesen Fahrzeugen besitzt der Hochdrucktank 3 vor allem die Funktion eines "Kaltstart-Speichers", da in diesem Tank stets gasförmiger Wasserstoff zumindest in einer geringen, jedoch für die Durchführung eines Kaltstarts ausreichenden Menge vorliegt. Dieser Wasserstoff kann sogleich entnommen werden, ohne in zeitaufwendiger Weise vor dem Start des Fahrzeuges erst einen Teil des flüssigen Wasserstoffs verdampfen zu müssen, wie dies bei herkömmlichen Fahrzeugen mit lediglich einem Flüssigwasserstoff-Tank erforderlich ist.
Bei Fahrzeugen, die etwa als Privatfahrzeuge eingesetzt werden, und die mitunter über einen längeren Zeitraum geparkt werden, sollte der Hochdrucktank 3 eine mit dem Tieftemperaturtank 2 vergleichbare Kapazität aufweisen, um die etwa bei z. B. einer vierwöchige Zeitdauer nach dem letzten Tankvorgang erreichte Abdampfmenge speichern zu können.
Bezugszeichenliste
1
Wasserstoffspeichersystem
2
Tieftemperaturtank
3
Hochdrucktank
4
-
5
Wärmeisolation
6
Innenbehälter
7
Außenbehälter
8
-
9
Füll-Leitung
10
Sicherheitsventil
11
Gasphase
12
Entnahmeleitung
13
Verbraucher
14
Wärmetauscher
15
Absperrventil
16
-
17
Kompressor
18
Niederdruckseite
19
Abzweigung
20
-
21
Hochdruckseite
22
-
23
Entnahmeleitung
24
-
25
druckgesteuerte Automatik
26
Bypass-Leitung
27
-
28
-
29
-
30
Wasserstoffspeichersystem
31
Verbindungsleitung
32
Tank
33
Hochdrucktank
34
Einfüll-Leitung
35
Absperrventil
36
Wärmetauscher
37
Verbraucher
38
Entnahmeleitung
39
Druckminderer
p1
Versorgungsdruck
p2
Ansprechdruck Kompressor
p3
Ansprechdruck Sicherheitsventil
t1
-t6
Zeitpunkte
B1 Betriebszustand
B2 Betriebszustand
B3 Betriebszustand

Claims (13)

1. Energiespeichersystem mit einem ersten Speicher (2, 32), der mit einer Zuleitung (9, 34) für einen flüssigen Energieträger, insbesondere für flüssigen Wasserstoff, sowie mit einer Entnahmeleitung (12, 23, 38) zum Transportieren des Energieträgers an einen Verbraucher (13, 37) versehen und der mit einem zweiten Speicher (3, 33) zum Speichern von im ersten Speicher (2, 32) verdampftem Energieträger strömungsverbunden ist, dadurch gekennzeichnet, dass der zweite Speicher einen Drucktank (3, 33) umfasst, dem eine Einrichtung zur Druckerhöhung (17) strömungstechnisch vorgeschaltet ist.
2. Energiespeichersystem nach Anspruch 1, dadurch gekennzeichnet, dass als Einrichtung zur Druckerhöhung ein Kompressor (17) vorgesehen ist.
3. Energiespeichersystem nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als Drucktank (3, 33) ein Höchstdruck- Verbundbehälter vorgesehen ist.
4. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einrichtung zur Druckerhöhung mit einer Druckregelung wirkverbunden ist, welche die Kompression des Energieträgers im Drucktank (3, 33) in Abhängigkeit vom Druck des Energieträgers im ersten Speicher (2) regelt.
5. Energiespeichersystem nach Anspruch 4, dadurch gekennzeichnet, dass die Druckregelung eine Bypassleitung (26) umfasst, die die druckseitige Seite der Einrichtung zur Druckerhöhung mit dem ersten Speicher (2) verbindet.
6. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Speicher (3, 33) mit einer Ableitung (23, 38) für gasförmigen Energieträger strömungsverbunden ist, weiche Ableitung (23, 38) vorzugsweise mit einem Druckminderer (24, 39) ausgerüstet ist.
7. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Entnahmeleitung (12) jeweils separat mit dem ersten Speicher (2) und mit dem zweiten Speicher (3) strömungsverbindbar ist.
8. Energiespeichersystem nach Anspruch 7, dadurch gekennzeichnet, dass die Entnahmeleitung (12) mit einer druckgesteuerten Armatur (15) versehen ist, mittels der die Entnahme des Energieträgers aus den Speichern (2, 3) entsprechend den in den Speichern (2, 3) jeweils herrschenden Drücken steuerbar ist.
9. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in die Entnahmeleitung (12) ein Wärmetauscher (14, 36) integriert ist.
10. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Speicher einen tieftemperaturtauglichen Drucktank (32) umfasst.
11. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Speicher einen - vorzugsweise superisolierten - Tieftemperaturtank (2) umfasst.
12. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dass der zweite Speicher (3, 33) Mittel zur vorübergehenden chemischen Bindung von Wasserstoff, etwa einen Metallhydrid-Tank aufweist.
13. Energiespeichersystem nach einem der vorhergehenden Ansprüche, gekennzeichnet durch die Verwendung als Energiespeichersystem, vorzugsweise Wasserstoffspeichersystem (1, 30) für einen Brennstoffzellenantrieb.
DE10021681A 2000-05-05 2000-05-05 Energiespeichersystem, insbesondere System zum Speichern von Wasserstoff Expired - Fee Related DE10021681C2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10021681A DE10021681C2 (de) 2000-05-05 2000-05-05 Energiespeichersystem, insbesondere System zum Speichern von Wasserstoff
DE20022954U DE20022954U1 (de) 2000-05-05 2000-05-05 Energiespeichersystem, insbesondere System zum Speichern von Wasserstoff

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10021681A DE10021681C2 (de) 2000-05-05 2000-05-05 Energiespeichersystem, insbesondere System zum Speichern von Wasserstoff

Publications (2)

Publication Number Publication Date
DE10021681A1 DE10021681A1 (de) 2001-11-22
DE10021681C2 true DE10021681C2 (de) 2002-06-13

Family

ID=7640739

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10021681A Expired - Fee Related DE10021681C2 (de) 2000-05-05 2000-05-05 Energiespeichersystem, insbesondere System zum Speichern von Wasserstoff

Country Status (1)

Country Link
DE (1) DE10021681C2 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006009062B4 (de) * 2005-03-01 2008-06-19 General Motors Corp. (N.D.Ges.D. Staates Delaware), Detroit Kryoadsorptionssammelgefäß zur Verdampfungsverlustkompensation für Flüssiggasspeicherung
DE102005018072B4 (de) * 2004-04-21 2010-05-27 General Motors Corp., Detroit Druckmanagementsystem und Verfahren zum Managen von Wasserstofflecks in Fluidkreisläufen von Brennsstoffzellensystemen
DE102009030358A1 (de) * 2009-06-18 2010-12-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennstoffzellensystem und Verfahren zu dessen Betrieb
DE112006001304B4 (de) * 2005-05-25 2012-02-16 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem
CN102494514A (zh) * 2011-12-09 2012-06-13 张立永 冻堆
DE102012218856A1 (de) 2012-10-16 2014-04-17 Bayerische Motoren Werke Aktiengesellschaft Kraftstoffspeicheranlage eines Kraftfahrzeugs
DE102012218857A1 (de) 2012-10-16 2014-04-17 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Befüllen einer Kraftstoffspeicheranlage eines Kraftfahrzeugs
DE102015209028A1 (de) 2015-05-18 2016-11-24 Bayerische Motoren Werke Aktiengesellschaft Kryogenes Druckbehältersystem
DE102018201327A1 (de) * 2018-01-29 2019-08-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Entnahme von Brennstoff aus einem Druckbehältersystem mit mehreren Druckbehältern sowie Druckbehältersystem
DE102019122227A1 (de) * 2019-08-19 2021-02-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wasserstoffsystem für eine mobile Einheit sowie Verfahren zum Betreiben eines Wasserstoffsystems, Steuerungsprogramm und computerlesbares Speichermedium

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT5999U1 (de) * 2002-03-18 2003-02-25 Mi Developments Austria Ag & C Mobiles system zur speicherung von einem flüssigen leichten gas, insbesondere wasserstoff
DE10330308A1 (de) * 2003-07-04 2005-02-03 Linde Ag Speichersystem für kryogene Medien
DE102004036318A1 (de) * 2004-07-27 2006-02-16 Eiserloh, Jan Peter Reserveschaltung für flüssigasbetriebene Fahrzeuge
DE102005032556B4 (de) * 2005-07-11 2007-04-12 Atlas Copco Energas Gmbh Anlage und Verfahren zur Nutzung eines Gases
JP4753696B2 (ja) 2005-11-29 2011-08-24 本田技研工業株式会社 水素充填装置
DE102006006685A1 (de) * 2006-02-14 2007-08-23 Bayerische Motoren Werke Ag Kraftfahrzeug mit einem Kraftstoff-Kryotank
US9291309B2 (en) 2009-07-22 2016-03-22 Shell Oil Company Hydrogen dispensing system and method thereof
DE102011117158B4 (de) * 2011-10-28 2016-08-11 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Tanksystem für ein Kraftfahrzeug sowie Betriebsverfahren hierfür
DE102019108158A1 (de) * 2019-03-29 2020-10-01 Airbus Operations Gmbh Treibstoffentnahmesystem, Treibstofftankvorrichtung mit Treibstoffentnahmesystem und Brennstoffzellensystem mit Treibstoffentnahmesystem
IT202100020324A1 (it) * 2021-07-29 2023-01-29 Ierom S R L Sistema di compenso per serbatoio criogenico per il contenimento di idrogeno liquido
US20240092498A1 (en) * 2022-09-15 2024-03-21 Lockheed Martin Corporation Wing tank vaporizer for solid oxide fuel cell on unmanned aircraft

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH145971A (de) * 1926-11-13 1931-03-31 Industriegasverwertung Mbhg Verfahren und Vorrichtung zum verlustlosen Transport und zur Aufspeicherung von tief siedenden flüssigen Gasen.
EP0473555A2 (de) * 1990-07-31 1992-03-04 I.CO.M. S.r.L. Verbesserungen an den Flüssiggasbehältern und dem dazugehörigen Verteilungsventil insbesondere für Wohnmobil u.dgl.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH145971A (de) * 1926-11-13 1931-03-31 Industriegasverwertung Mbhg Verfahren und Vorrichtung zum verlustlosen Transport und zur Aufspeicherung von tief siedenden flüssigen Gasen.
EP0473555A2 (de) * 1990-07-31 1992-03-04 I.CO.M. S.r.L. Verbesserungen an den Flüssiggasbehältern und dem dazugehörigen Verteilungsventil insbesondere für Wohnmobil u.dgl.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
gas aktuell, Ausg. 36, 1991, S. 17-21 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005018072B4 (de) * 2004-04-21 2010-05-27 General Motors Corp., Detroit Druckmanagementsystem und Verfahren zum Managen von Wasserstofflecks in Fluidkreisläufen von Brennsstoffzellensystemen
US7516752B2 (en) 2005-03-01 2009-04-14 General Motors Corporation Boil-off compensating cryoadsorption container for liquid gas storage
DE102006009062B4 (de) * 2005-03-01 2008-06-19 General Motors Corp. (N.D.Ges.D. Staates Delaware), Detroit Kryoadsorptionssammelgefäß zur Verdampfungsverlustkompensation für Flüssiggasspeicherung
US8349506B2 (en) 2005-05-25 2013-01-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
DE112006001304B4 (de) * 2005-05-25 2012-02-16 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem
DE102009030358C5 (de) * 2009-06-18 2016-09-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennstoffzellensystem und Verfahren zu dessen Betrieb sowie dessen Verwendung
DE102009030358B4 (de) * 2009-06-18 2013-07-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennstoffzellensystem und Verfahren zu dessen Betrieb sowie dessen Verwendung
DE102009030358A1 (de) * 2009-06-18 2010-12-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennstoffzellensystem und Verfahren zu dessen Betrieb
CN102494514A (zh) * 2011-12-09 2012-06-13 张立永 冻堆
CN102494514B (zh) * 2011-12-09 2014-10-15 张立永 冻堆
DE102012218856A1 (de) 2012-10-16 2014-04-17 Bayerische Motoren Werke Aktiengesellschaft Kraftstoffspeicheranlage eines Kraftfahrzeugs
DE102012218857A1 (de) 2012-10-16 2014-04-17 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Befüllen einer Kraftstoffspeicheranlage eines Kraftfahrzeugs
CN104718408A (zh) * 2012-10-16 2015-06-17 宝马股份公司 用于填充机动车的燃料储存设备的方法
DE102015209028A1 (de) 2015-05-18 2016-11-24 Bayerische Motoren Werke Aktiengesellschaft Kryogenes Druckbehältersystem
DE102018201327A1 (de) * 2018-01-29 2019-08-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Entnahme von Brennstoff aus einem Druckbehältersystem mit mehreren Druckbehältern sowie Druckbehältersystem
DE102019122227A1 (de) * 2019-08-19 2021-02-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wasserstoffsystem für eine mobile Einheit sowie Verfahren zum Betreiben eines Wasserstoffsystems, Steuerungsprogramm und computerlesbares Speichermedium
DE102019122227B4 (de) 2019-08-19 2024-04-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wasserstoffsystem für eine mobile Einheit sowie Verfahren zum Betreiben eines Wasserstoffsystems, Steuerungsprogramm und computerlesbares Speichermedium

Also Published As

Publication number Publication date
DE10021681A1 (de) 2001-11-22

Similar Documents

Publication Publication Date Title
DE10021681C2 (de) Energiespeichersystem, insbesondere System zum Speichern von Wasserstoff
DE102005007551B4 (de) Verfahren zum Betreiben eines Tieftemperatur-Flüssiggasspeichertanks
DE102006019993B3 (de) Druckgasspeicher, insbesondere für Wasserstoff
EP1779025B1 (de) Speicherbehälter für kryogene medien
DE102006025656B4 (de) Vorrichtung zur Kraftstoffspeicherung und -förderung von kryogenem Kraftstoff
DE102006009062B4 (de) Kryoadsorptionssammelgefäß zur Verdampfungsverlustkompensation für Flüssiggasspeicherung
EP3027955A1 (de) Tank
DE60034333T2 (de) Speicherbehälter für gasförmige Medien
EP1920185A1 (de) Speicherbehälter für kryogene medien
EP2035739B1 (de) Verfahren zum betrieb einer vorrichtung zur befüllung eines behälters mit kryogen gespeichertem kraftstoff
DE102012204819A1 (de) Betriebsverfahren für eine Brennstoffzellen-Anlage
DE19854581A1 (de) Vorrichtung und Verfahren zum Umwandeln des Boil-Off-Gases von Kryo-Kraftstofftanks
DE102007023821A1 (de) Verfahren zum Befüllen eines kryogenen Wasserstoff vorgesehenen Speicherbehälters insbesondere eines Kraftfahrzeugs
EP1828592B1 (de) Kraftstoffversorgungseinrichtung f]r ein mit wasserstoff betreibbares kraftfahrzeug
EP3722652B1 (de) Speicherbehälter für tiefkaltes flüssiggas
EP2427687A2 (de) Verfahren zur speicherung von und speicher für technische gase
DE102006042456A1 (de) Metallhydridspeicher
DE10040679A1 (de) Vorrichtung und Verfahren zur druckgeregelten Versorgung aus einem Flüssiggastank
WO2017148604A1 (de) Verfahren zum abkühlen eines ersten kryogenen druckbehälters
DE102006025657B4 (de) Vorrichtung zur Förderung von kryogen gespeichertem Kraftstoff
EP1531300A2 (de) Speicherbehälter für kryogene Medien
DE102015219984A1 (de) Verfahren zum Erhöhen der Temperatur von Gas in einem kryogenen Druckbehälter
DE102008043927A1 (de) Vorrichtung zur Speicherung eines Gases sowie Verfahren zur Entnahme eines Gases aus einem Sorptionsspeicher
DE10105819A1 (de) Vorrichtung und Verfahren für die Kraftstoffversorgung eines mit kryogenem Kraftstoff betriebenen Fahrzeugs
DE102017217348A1 (de) Druckbehältersystem und Verfahren zum Zuführen von Brennstoff aus einem Druckbehältersystem

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: AIR LIQUIDE DEUTSCHLAND GMBH, 47805 KREFELD, DE

8339 Ceased/non-payment of the annual fee