CZ304998B6 - Anorganické scintilátory a luminofory na bázi ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y) dopované Eu2+ s výjimkou KLuS2 a NaLaS2 - Google Patents
Anorganické scintilátory a luminofory na bázi ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y) dopované Eu2+ s výjimkou KLuS2 a NaLaS2 Download PDFInfo
- Publication number
- CZ304998B6 CZ304998B6 CZ2013-393A CZ2013393A CZ304998B6 CZ 304998 B6 CZ304998 B6 CZ 304998B6 CZ 2013393 A CZ2013393 A CZ 2013393A CZ 304998 B6 CZ304998 B6 CZ 304998B6
- Authority
- CZ
- Czechia
- Prior art keywords
- doped
- europium
- sulfide
- inorganic scintillator
- inorganic
- Prior art date
Links
- 229910052688 Gadolinium Inorganic materials 0.000 title claims description 7
- 229910052765 Lutetium Inorganic materials 0.000 title claims description 7
- 229910052746 lanthanum Inorganic materials 0.000 title claims description 7
- 229910052701 rubidium Inorganic materials 0.000 title claims description 7
- 229910052727 yttrium Inorganic materials 0.000 title claims description 7
- 229910052700 potassium Inorganic materials 0.000 title claims description 5
- 229910052708 sodium Inorganic materials 0.000 title claims description 4
- 230000005284 excitation Effects 0.000 claims abstract description 16
- 238000001514 detection method Methods 0.000 claims abstract description 7
- 239000011734 sodium Substances 0.000 claims description 9
- 230000005855 radiation Effects 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 5
- -1 potassium gadolinium sulfide Chemical compound 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 5
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 150000002910 rare earth metals Chemical class 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 5
- PXMLGXWGOVHNQX-UHFFFAOYSA-N [Y].[Eu] Chemical compound [Y].[Eu] PXMLGXWGOVHNQX-UHFFFAOYSA-N 0.000 claims 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims 2
- METANOZTNQDKRK-UHFFFAOYSA-N [Eu].[Lu] Chemical compound [Eu].[Lu] METANOZTNQDKRK-UHFFFAOYSA-N 0.000 claims 1
- PWGQJSFGZFRVSH-UHFFFAOYSA-N [S-2].[La+3].[K+].[S-2] Chemical compound [S-2].[La+3].[K+].[S-2] PWGQJSFGZFRVSH-UHFFFAOYSA-N 0.000 claims 1
- DSYYWEOXWCPFDH-UHFFFAOYSA-N [S-2].[Y+3].[Na+].[S-2] Chemical compound [S-2].[Y+3].[Na+].[S-2] DSYYWEOXWCPFDH-UHFFFAOYSA-N 0.000 claims 1
- MDFCXYVJUZMYCJ-UHFFFAOYSA-N europium gadolinium Chemical compound [Eu][Gd] MDFCXYVJUZMYCJ-UHFFFAOYSA-N 0.000 claims 1
- CUZYJNBUPITPEI-UHFFFAOYSA-N europium lanthanum Chemical compound [La][Eu] CUZYJNBUPITPEI-UHFFFAOYSA-N 0.000 claims 1
- KQSQUBDDKGVUQR-UHFFFAOYSA-N lithium sodium sulfide Chemical compound [Li+].[Na+].[S-2] KQSQUBDDKGVUQR-UHFFFAOYSA-N 0.000 claims 1
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 claims 1
- 229910052979 sodium sulfide Inorganic materials 0.000 claims 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 18
- 238000001228 spectrum Methods 0.000 abstract description 11
- 230000005865 ionizing radiation Effects 0.000 abstract description 8
- 239000007787 solid Substances 0.000 abstract description 4
- 238000010276 construction Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 17
- 229910052693 Europium Inorganic materials 0.000 description 13
- 239000004570 mortar (masonry) Substances 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 9
- 230000007704 transition Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 150000004763 sulfides Chemical class 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 6
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 6
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 5
- 238000000295 emission spectrum Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000005395 radioluminescence Methods 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- 238000000695 excitation spectrum Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000010431 corundum Substances 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 235000009518 sodium iodide Nutrition 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 1
- 238000006229 Nazarov cyclization reaction Methods 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- CYYJHOKPHDSYIS-UHFFFAOYSA-N [S-2].[Ce+3].[K+].[S-2] Chemical compound [S-2].[Ce+3].[K+].[S-2] CYYJHOKPHDSYIS-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052977 alkali metal sulfide Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229940104825 bismuth aluminate Drugs 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- PDSAKIXGSONUIX-UHFFFAOYSA-N hexaaluminum;dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Bi+3].[Bi+3] PDSAKIXGSONUIX-UHFFFAOYSA-N 0.000 description 1
- 229910021644 lanthanide ion Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XJWLINBANRXJGF-UHFFFAOYSA-N lithium potassium sulfide Chemical compound [Li+].[S--].[K+] XJWLINBANRXJGF-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 239000010981 turquoise Substances 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
Abstract
Jsou popsány sloučeniny NaGdS.sub.2.n., NaLuS.sub.2.n., NaYS.sub.2.n., KLaS.sub.2.n., KGdS.sub.2.n., KYS.sub.2.n., RbLaS.sub.2.n., RbGdS.sub.2.n., RbLuS.sub.2 .n.a RbYS.sub.2.n. dopované Eu.sup.2+.n., kde koncentrační rozmezí EU je 0,0001 až 3 % mol. Tyto sloučeniny při ozařování rentgenovým zářením emitují v oblasti vlnových délek 498 až 779 nm. Lze je použít pro detekci ionizujícího záření polovodičovými detektory. Tyto sloučeniny díky přítomnosti intenzivních excitačních pásů v blízké UV až modré oblasti spektra a emisi v širokém rozsahu vlnových délek 498 až 779 nm lze využít pro konstrukci LED zdrojů světla s použitím budicího zdroje 350 až 460 nm.
Description
Oblast techniky
Předmět vynálezu se týká anorganických scintilátorů a luminoforů do LED zdrojů na bázi sulfidů obecného vzorce ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y) dopovaných Eu2+ s výjimkou KLuS2 a NaLaS2.
Dosavadní stav techniky
Scintilátory jsou látky organické či anorganické povahy používané k detekci a spektrometrii (měření energie) různých forem ionizujícího záření, jako je např. rentgenové nebo gama záření, beta záření nebo urychlené elektrony apod. Absorpce ionizujícího záření v libovolném prostředí produkuje excitované a ionizované stavy atomů, molekul nebo iontů. Ty sloučeniny nebo krystaly, které energii uloženou v těchto stavech rychle, účinně a reprodukovatelně převedou na viditelné světlo, případně ultrafialové záření, se nazývají scintilátory. Připojený detekční systém určí množství těchto emitovaných fotonů nejčastěji pomocí fotonásobiče, obsahujícího tzv., fotokatodu, obsahující látku, z níž se po dopadu světla uvolní elektron. Systém elektrod, tzv. dynod, pak řádově znásobí počet elektronů a na výstupu zaznamenáme proudový impulz. Účinnost uvolnění elektronu z fotokatody závisí na materiálu fotokatody a na vlnové délce fotonů, emitovaných scintilátorem. Nejběžnější jsou směsi alkalických kovů nebo různé polovodivé materiály, jejichž maximum účinnosti leží v oblasti 200 až 600 nm (Blasse a Grabmaier: Luminescent Materials (1994), Springer-Verlag, Berlin).
Jako anorganické scintilátory, které mají většinou vysoká efektivní atomová čísla a tudíž silnou brzdnou schopnost pro ionizující záření, se velice často používají halogenidy jako např. silně hygroskopický jodid sodný dopovaný thaliem NaI:Tl či jodid česný CsI:Tl nebo oxidy, často dopované ionty lanthanoidů (tzv. prvků vzácných zemin), které slouží jako emisní centra scintilátoru. Pro kvantitativní porovnání scintilační účinnosti nových materiálů při vývoji a výzkumu scintilátorů se často používá paralelní měření scintilačního standardu Bi4Ge30i2 (BGO) za identických podmínek a následné porovnání ploch pod emisními spektry, případně intenzit maxima. Mezi výhody scintilačního standardu BGO patří jeho široké použití, dobře definovaný a stálý světelný výtěžek, nízká hodnota afterglow, dlouhodobá mechanická a chemická stabilita v práškové formě a malé fluktuace scintilačních charakteristik (materiálová kvalita) v případě různého původu (od různých výrobců).
Ve srovnání s oxidy mají sulfídické materiály menší šířku zakázaného pásu mezi valenčním avodivostním pásem, tudíž mohou teoreticky vykazovat vyšší scintilační účinnost než oxidy (Robbins: J. Electrochem. Soc. 127 (1980) 2694 až 2702). Mezi používané binární sulfidy s dotací Eu2+ patří především CaS a SrS (Nazarov a kol.: J. Solid. State Chem. 179 (2006) 2529 až 2533), které jsou připravovány reakcemi v pevné fázi ve formě polykrystalických prášků. Při excitaci modrou diodou (420 až 480 nm) SrS:Eu emituje u 600 nm a CaS:Eu u 650 mm. Z temárních systémů s dotací Eu2+ byl popsán SrGa2S4 (Chartier a kol. J. of Lumin. 111 (2005) 147 až 158), který byl stejně jako CaS:Eu a SrS:Eu připraven ve formě polykrystalického prášku. SrGa2S4:Eu při buzení fialovým světlem (420nm) emituje u 535 nm. Všechny tyto materiály jsou hygroskopické.
Často studované sulfidy typu AB2S4, kde A11 = (Ca / Sr / Ba) a B111 = (Al / Ga) nejsou příliš ideální matricí pro ionty vzácných zemin, neboť strukturní pozice B je příliš malá pro lanthanoidy. Z tohoto důvodu jsme se zaměřili na sulfidy, které již v samotné matrici obsahují atomy lanthanoidů (pokud možno opticky neaktivních, jako např. La, Lu) a tudíž obsahují strukturní pozici vhodnou pro další vzácné zeminy.
- 1 CZ 304998 B6
V současnosti jsou na poli vývoje nových zdrojů osvětlení hledány a zkoumány různé strategie pro konstrukci tzv. „white LED“, zdroje vyváženého bílého světla na bázi diod emitujících světlo (LED), případně bílého světla s laditelnou teplotou světla, a tedy spektrálním složením (S. Ye a kol.: Mater. Sci. Eng., R: Reports 71 (2010) 1 až 34). Jedním z přístupů je pokrytí povrchu modré LED diody vrstvou vhodného luminoforu, který část procházejícího záření absorbuje a opět vyzáří ve formě delších vlnových délek, nejlépe ve žlutozelené až červené oblasti spektra. Emisní spektrum luminoforu doplněné o zbytkové modré světlo, které prošlo vrstvou luminoforu, pak ideálně vytvoří vyvážené bílé světlo. Hlavními podmínkami jsou vysoká účinnost luminiscence, barevná stabilita, vhodná pozice emitovaného záření a její tepelná odolnost až do cca 200 °C. S rostoucí teplotou, které může být v LED zdrojích snadno dosaženo, totiž nastává tepelné zhášení luminiscence, snižující intenzitu záření luminoforu nezářivými (termickými) procesy - dalším projevem zhášení je zkracování doby života luminiscence.
Temámí sulfidy typu ALnS2, kde A je alkalický kov a Ln kation vzácné zeminy, byly popsány ze strukturního hlediska v několika článcích. W. Broner a kol. popsal systémy RbLnS2 a CsLnS2 (Bronger a kol.: Journal of Alloys and Compounds, 200 (1993) 205 až 210), Sáto a kol. popsal systém NaLnS2 (Sáto a kol.: Mat. Res. Bull., Vol. 19 (1984) 1215 až 1220). V mnoha dalších publikacích je popsána struktura materiálů s různými monovalentními kationty (K, Rb, Cs, Tl, Cu, Ag), např. W. Bronger a kol. (Bronger a kol.: Rev. Chim. Min. 10, 147 (1973)), S. Kabré a kol. (Kabré a kol.: Bull. Soc. Chim. 9 až 10, 1881 (1974)), R. Ballestracci a kol. (Ballestracci a kol.: Comptes Rend. Set. C 262, 1253 (1966)), M. Julien-Pouzola a kol. (Julien-Pouzol a kol.: Ann. Chim. 8, 139(1973)).
Struktura těchto materiálů je tedy velice dobře popsána, jsou k dispozici databázové listy umožňující identifikaci struktury těchto materiálů z práškových difraktogramů. Rovněž je k většině systémů možné snadno vyhledat mřížkové parametry elementární buňky. Na druhou stranu není prakticky pro tyto systémy k dispozici popis jejich fyzikálních vlastností. Výjimkou je popis magnetických vlastností NaCeS2 v publikaci H. Lueken a kol. (Lueken a kol.: Journal of the Less-Common Metals, 65 (1979) 79 až 88).
Popis optických vlastností těchto materiálů v literatuře prvně zachycují nedávno vyšlé publikace
L. Havlák a kol. (Havlák a kol.: Acta Mater. 59, 6219 až 6227 (2011)), kde je popsán sytém RbLaS2:RE, V. Jarý a kol. (Jarý a kol.: Phys. Status Solidi 6, 95 až 97 (2012)), která přináší popis systému RbLuS2:RE, a V. Jatý a kol. (Jarý a kol.: Opt. Mater. (2013), http://dx.doi.Org/10.1016/i.optmat.2013.01.028), kde jsou už detailněji popsané teplotní a koncentrační závislosti emisních charakteristik Ce3+ a Pr3+ v matrici RbGdS2.
V případě systému RbLaS2 byly jako dopanty použity vzácné zeminy Ce, Fu, Pr, Sn a Tb o koncentraci 1 % mol. Absorpční hrana těchto sloučenin je u cca 320 nm. Přenos náboje mezi S2“ a Eu3+ byl navržen na základě absorpčních spekter s příslušejícími píky u 390 nm a 446 nm. Emise Eu3+ excitována rentgenovým zářením je v matrici RbLaS2 pro obsah 1 % molámí Eu téměř zcela zhášena, její intenzita dosahuje velmi nízké úrovně cca 1 % scintilačního standardu BGO. Dopanty Pr3+, Sm3+ a Tb3+ poskytují charakteristické 4f-4f čárové emise v uvedených intervalech vlnových délek: 480 až 750 nm (Pr3+), 540 až 750 nm (Sm3+) a 380 až 630 nm (Tb3+)· Doby dosvitu jsou pro 506 nm (Pr3+), 565 nm (Sm3+) a 547 nm (Tb3+) následující: 68 ps, 3,9 ms a 2,8 ms. Emisnímu spektru RbLaS2:Ce s excitací rentgenovým zářením dominuje široký emisní pás Ce odpovídající přechodu 5dj - 4f s maximem u vlnové délky 695 nm, intenzita emise dosahuje cca 20% intenzity emise scintilačního standardu BGO.
V případě systému RbLuS2 byly jako dopanty použity Ce, Pr, Sm a Tb. Absorpční hrana materiálu je u 310 nm. Absorpční pás Ce3+ příslušející přechodu 4f-5di má maximum u vlnové délky 490 nm. Pr3+, Sm3+ a Tb3+ vykazují charakteristické linie 4f-4f přechodů podobně jako v případě matrice RbLaS2. V emisním spektru RbLuS2:Ce dominuje pás s maximem u 578 nm odpovídající přechodu 5di-4f, který dosahuje 180 % intenzity maxima scintilačního standardu BGO. Dopová-2CZ 304998 B6 ní matrice RbLuS2 ionty europia dosud nebylo popsáno. Práce týkající se systému RbGdS2 pak popisuje detailněji koncentrační a teplotní závislosti dvou vybraných dopantů, a to Ce a Pr. Absorpční hrana RbGdS2 leží u 332 nm, absorpční pás Ce3+ při pokojové teplotě pak u 490 nm, přechod spojený s přenosem náboje S2“ - Pr3+ pak u 365 nm. Teplotní závislost dob života Ce3+ emise je popsána v rámci jednoduchého modelu a je prokázána teplotně indukována ionizace excitovaného stavu Ce3+ v RbGdS2 matrici. Dopování matrice RbGdS2 ionty europia dosud nebylo popsáno.
V září roku 2012 byla podána přihláška vynálezu PV 2012-666: Anorganický scintilátor na bázi sulfidu draselno-lutecitého dopovaného europiem, jejímž předmětem je sloučenina KLuS2:Eu2+, kde koncentrační rozmezí dopantu je 0,0001 až 3 % mol. Sloučenina KLuS2:Eu2+ byla připravena chemickou reakcí výchozích látek K2CO3, Lu2O3 a Eu2O3 pod proudem sirovodíku. Fázová čistota byla potvrzena měřením a vyhodnocením difrakčních spekter. Látka KLuS2:Eu při ozařování rentgenovým zářením vykazuje intenzivní emisi v oblasti 520 nm, a lze ji s výhodou použít pro detekci ionizujícího záření polovodičovými detektory. KLuS2:Eu2+ díky přítomnosti intenzivních excitačních pásů v blízké UV až modré oblasti spektra a vlastní emisi v širokém pásu s maximem u 520 nm lze využít při konstrukci zdrojů bílého osvětlení buzených LED diodou ve fialovomodré oblasti spektra 400 až 440 nm.
V září téhož roku byla rovněž podána přihláška vynálezu a PV 2012-667: Anorganický scintilátor na bázi sulfidu draselno-lutecitého dopovaného cerem, jehož předmětem je sloučenina KLuS2:Ce, kde koncentrační rozmezí dopantu je 0,0001 až 20 % mol. Sloučenina KLuS2:Ce byla připravena chemickou reakcí výchozích látek K2CO3, Lu2O3 a CeO2 pod proudem sirovodíku. Fázová čistota byla potvrzena měřením a vyhodnocením difrakčních spekter. Látka KLuS2:Ce při ozařování rentgenovým zářením vykazuje intenzivní emisi v oblasti 580 nm, a dá se tedy s výhodou použít pro detekci ionizujícího záření polovodičovými detektory.
Podstata vynálezu
Podstatou vynálezu je skupina anorganických scintilátorů a luminoforů do LED zdrojů na bázi temámích sulfidů dopovaných europiem obecného vzorce ALnS2, kde A značí jeden z následujících alkalických kovů: Na, K, Rb a Ln značí jeden z následujících kovů vzácných zemin: La, Gd, Lu, Y s výjimkou KLuS2 a NaLaS2, kteiý nevykazuje emisi Eu2+. Vynález se tedy týká následujících deseti sulfidů dopovaných europiem: NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2. Europium je do těchto materiálů dopováno selektivní, ekvimolámí náhradou Eu za Ln (La, Gd, Lu, Y), charakterizovanou parametrem 0 < x < 1. Úroveň dotace můžeme též charakterizovat výrazem p% Eu, kde p = 100.x, tj. 0% < p < 100%. Složení patentovaných materiálů lze tedy vyjádřit obecným vzorcem ALnixEuxS2_y s vyloučením KLu|.xEuxS2 y a NaLai_xEuxS2_y nebo následujícími vzorci konkrétních patentovaných materiálů: NaGDi_xEuxS2-y, NaLui_xEuxS2_y, NaY| _xEuxS2 y, KLad _xEuxS2_y, KGd|_xEuxS2y, KYi-xEuxS2-y, RbLai_xEuxS2_y, RbGdi xEuxS2_y, RbLui_xEuxS2-y a RbY| xEuxS2_y, kde parametr y > 0 odráží skutečnost, že významná část iontů Eu je ve stavu Eu2+ (tudíž y < x/2; rovnost platí, pokud jsou všechny ionty Eu dvojmocné). Vynález se týká složení s x = 10“6 až 0,03 (0,001% až 3% Eu).
Hlavní výhodou těchto materiálů oproti stávajícímu stavu techniky v oblasti scintilátorů jsou optimální pozice emisních maxim Eu2+ emise při excitaci ionizujícím zářením, konkrétní hodnoty jsou uvedeny v závorkách za konkrétními sloučeninami s dotací Eu: NaGdS2 (779 nm), RbLaS2 (555 nm), RbGdS2 (514 nm), RbLuS2 (498 nm) a RbYS2 (500 nm) a možnost zvolit polohu emisního maxima Eu2+ volbou matrice, tj. výběrem konkrétní sloučeniny z výše uvedených. NaGdS2, NaLuS2, NaYS2 KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 s dotací Eu jsou vhodné i pro použití ve scintilačních detekčních systémech, které pro registraci scintilačního záření používají polovodičové diody.
-3 CZ 304998 B6
Hlavní výhodou těchto materiálů oproti stávajícímu stavu techniky v oblasti luminoforů je přítomnost velmi intenzivního pásu v excitačním spektru následujících sloučenin s dotací Eu: NaGdS2 (430 nm), NaLuS2 (429 nm), NaYS2 (437 nm), KLaS2 (394 nm), KGdS2 (394 nm), KYS2 (393 nm), RbLaS2 (390 nm), RbGdS2 (391 nm), RbLuS2 (389 nm) a RbYS2 (393 nm) s maximem excitačního pásu uvedeným v závorce za konkrétní sloučeninou (souhrnně tab. 1 v kapitole Příklad provedení vynálezu) s možností excitace až do cca 480 nm (obr. 2). Pás v excitačním spektru přísluší přechodu 4/- 5d centra Eu2+. Toto je s velkou výhodou využitelné pro excitaci ve fíalovo-modré oblasti spektra LED diodou, čímž lze vybudit intenzivní 5d - 4f emisi Eu2+ sjiž uvedenými maximy mezi 498 až 779 nm. Aby byla excitace efektivní, musí NaGdS2, NaLuS2, NaYS2m KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 s dotacemi Eu dostatečně silně absorbovat ve fíalovo-modré oblasti světla. Absorpce světla roste se zvyšujícím se obsahem Eu vNaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2, ale použití těchto systémů jako scintilátorů i luminoforů je limitováno koncentračním zhášením emise Eu2+ vNaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS, RbLuS2 a RbYS2, které nastává okolo x = 0,02 (2% Eu). Použití NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 s dotacemi Eu jako luminoforů je výhodné pro vyšší úrovně dotace než v případě scintilátorů, tj. cca od x = 0,001 (0,1% Eu) do x = 0,01 (1% Eu).
Podstatou vynálezu je možnost měnit polohu emisního pásu Eu2+ volbou příslušné matrice NaGdS2 (779 nm), NaLuS2 (641 nm), NaYS2 (683 nm), KLaS2 (613 nm), KGdS2 (567 nm), KYS2 (535 nm), RbLaS2 (555 nm), RbGdS2 (514 nm), RbLuS2 (498 nm) a RbYS2 (500 nm). Polohy maxim emise jsou uvedené v závorkách a souhrnně v tab. 1. Při buzení v oblasti 350 až 460 nm lze sloučeninami NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 s dotacemi Eu pokrýt celou viditelnou oblast světla. RbLuS2:Eu emituje modré světlo s maximem u vlnové délky 498 nm. RbYS2:Eu emituje světlo azurové barvy s maximem u vlnové délky 500 nm. RbGdS2:Eu emituje rovněž azurové (tyrkysové) světlo s maximální emisí u 514 nm. RbLaS2:Eu (555 nm) a KYS2:Eu (535 nm) svojí emisí pokrývají oblast zeleného světla. KGdS2:Eu emituje žluté světlo (567 nm); KLaS2:Eu oranžové (613 nm). Sloučeniny NaLuS2:Eu, NaYS2:Eu a NaGdS2:Eu pokrývají svou emisí červenou oblast světla (emise 641, 683 a 779 nm).
Vzhledem k tomu, že lidské oko obsahuje receptory (čípky) citlivé pouze na tři základní barvy (modrou, zelenou a červenou), lze kombinací sloučenin NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 s dotacemi Eu vytvořit světelný zdroj emitující teplé bílé světlo.
Objasnění výkresů
Obr. 1: Radioluminiscenční spektra látek NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 s dotací Eu.
Na obr. 1 jsou emisní spektra látek NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 s dotací Eu 0,05 % mol. vybuzená rentgenovým zářením (U= 40 kV). Intenzivní emisní pásy (pozice a intenzity viz tab. 1 v kapitole Příklad provedení vynálezu) jsou dány přechodem elektronu v Eu2+ iontu ze stavu 5ddo stavu 4f.
Obr. 2: Excitační spektra látek NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 s dotací Eu
Na obr. 2 jsou fotoluminiscenění excitační spektra látek NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 s dotací Eu 0,05 % mol. a to pro emisní vlnové délky odpovídající pozicím maxim emisí Eu2+ v radioluminiscenčních spektrech (viz tab. 1). Excitační pásy s maximy v intervalu 300 až 335 nm (maxima uvedena v tab. 1 jako
-4CZ 304998 B6 pozice absorpční hrany v nm) jsou přisouzeny absorpční hraně materiálů NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2, zatímco velmi intenzivní široké pásy v blízké UV až modré oblasti od 350 do 460 nm (maxima uvedena v tab. 1 jako maxima excitačního Eu2+ pásu) mají původ v přechodu elektronů ze stavu 4/ do stavu 5d centra Eu2+.
Příklad uskutečnění vynálezu
Nejprve byly připraveny oxidy La2O3, Gd2O3, Lu2O3 a Y2O3 s dotací Eu ve formě Eu2O3. V třecí misce bylo smícháno 9,9946 g La2O3 a 0,0054 g Eu2O3; 9,9951 g Gd2O3 a 0,0049 g Eu2O3; 9,9956 g Lu2O3 a 0,0044 g Eu2O3; 9,9922 g Y2O3 a 0,0078 g Eu2O3. Takto byly připraveny výchozí oxidy La2O3:Eu, Gd2O3:Eu, Lu2O3:Eu a Y2O3:Eu s dotací Eu 0,05 % molámího. Pro přípravu NaGdS2:Eu bylo smícháno a rozetřeno v třecí misce 3,19 g Na2S a 0,371 g Gd2O3:Eu. Pro přípravu NaLuS2:Eu bylo smícháno a rozetřeno v třecí misce 3,00 g Na2S a 0,388 g Lu2O3:Eu. Pro přípravu NaYS2:Eu bylo smícháno a rozetřeno v třecí misce 3,00 g Na2S a 0,218 g Y2O3:Eu. Pro přípravu KLaS2:Eu bylo smícháno a rozetřeno v třecí misce 10,00 g K2CO3 a 0,295 g La2O3:Eu. Pro přípravu KGdS2:Eu bylo smícháno a rozetřeno v třecí misce 10,00 g K2CO3 a 0,328 g Gd2O3:Eu. Pro přípravu KYS2:Eu bylo smícháno a rozetřeno v třecí misce 10,00 g K2CO3 a 0,204 g Y2O3:Eu. Pro přípravu RbLaS2:Eu bylo smícháno a rozetřeno v třecí misce 10,00 g Rb2CO3 a 0,176 g La2O3:Eu. Pro přípravu RbGdS2:Eu bylo smícháno a rozetřeno v třecí misce 10,00 g Rb2CO3 a 0,196 g Gd2O3:Eu. Pro přípravu RbLuS2:Eu bylo smícháno rozetřeno v třecí misce 10,00 g Rb2CO3 a 0,215 g Lu2O3:Eu. Pro přípravu RbYS2:Eu bylo smícháno a rozetřeno v třecí misce 10,00 g Rb2CO3 a 0,125 g Y2O3:Eu.
Takto připravené směsi byly umístěny do korundové lodičky a vloženy do korundové trubice, která byla umístěna v elektrické odporové trubkové peci. Jedna sloučenina NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 s dotací Eu byla vždy připravována jednou zde popsanou reakcí. Následoval ohřev směsi pod tokem argonu po dobu
1.5 hodiny, během této doby trubicí o vnitřním objemu 1 dm3 proteklo 15 dm3 Ar o čistotě 99,999 %. Po dosažení teploty 1025 °C ± 25 °C, byl do trubice vpouštěn sirovodík o čistotě
99.5 % po dobu 2 h. Po tuto dobu byla teplota udržována na stejné hodnotě. Celkové množství použitého sirovodíku bylo 30 dm3 pro přípravy KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 s dotací Eu a 10 dm3 pro přípravy NaGdS2, NaLuS2, NaYS2 s dotací Eu. Po uplynutí dvou hodin trubicí protékal argon a směs chladla rychlostí 1 °C / min na laboratorní teplotu. Objem použitého argonu na propláchnutí trubice během chladnutí byl cca 10 dm3. Korundová lodička byla z trubice vytažena při laboratorní teplotě a její obsah byl do kádinky vypláchnut destilovanou vodou, ve které se rozpustily sulfidy alkalického kovu, a požadovaný produkt se usadil na dně nádoby. Kapalný podíl byl opatrně odlit a na pevný podíl byla opětovně nalita destilovaná voda, která byla po sedimentaci pevného podílu opět opatrně odlita. Tento proces byl nakonec proveden s etanolem z důvodu rychlejšího sušení produktu, které probíhalo volně na vzduchu. Množství vzniklých produktů bylo 0,50 g NaLuS2:Eu; 0,34 g NaYS2:Eu; 0,44 g KLaS2:Eu; 0,47 g KGdS2:Eu; 0,35 g KYS2:Eu, 0,44 g RbLaS2:Eu, 0,33 g RbGdS2:Eu; 0,35 g RbLuS2:Eu a 0,26 g RbYS2:Eu. Podle rentgenové difrakční analýzy byly v produktech potvrzeny čisté fáze NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGds2, RbLuS2 a RbYS2 strukturního typu «-NaFeO2. Vzorky byly naneseny na podložky z černého papíru s fixační vrstvou kaučukového lepidla a na takto připravených vzorcích bylo provedeno:
1) měření jejich scintilační účinnosti - Vzorky byly excitovány rentgenovým zářením (rentgenka s molybdenovou anodou, napětí 40 kV) a byla změřena jejich radioluminiscenční (RL) spektra. Scintilační účinnost měřených vzorků byla odvozena ze srovnání výšek jejich emisních pásů s výškou maxima RL spektra vzorku standardního scintilátoru germaničitanu bizmutitého, Bi4Ge30i2 (BGO).
2) měření jejich fotoluminiscenčních spekter a dosvitu.
-5CZ 304998 B6
Naměřená spektra byla korigována na spektrální závislost detekční části aparatury.
Optické vlastnosti sloučenin NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, 5 RbLuS2 a RbYS2 s dotací Eu jsou souhrnně uvedeny v tab. 1.
Tab. 1: Tabulka optických vlastností látek NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 s dotací Eu
Pozice emisního maxima Eu2+ v nm | % BGO při pokojové teplotě | Pozice absorpční hrany v nm | Doba života emise při pokojové teplotě v ns | Maximum excitačního Eu2+ pásu v nm | |
RbLuS2 | 498 | 102 | 310 | 553,2 | 389 |
RbYS2 | 500 | 72 | 307 | 514,1 | 393 |
RbGdS2 | 514 | 26 | 321 | 453,1 | 391 |
KYS2 | 535 | 614 | 309 | 496,3 | 393 |
RbLaS2 | 555 | 18 | 323 | 513,1 | 390 |
KGdS2 | 567 | 531 | 330 | 437,8 | 394 |
KLaS2 | 613 | 126 | 325 | 689,4 | 394 |
NaLuS2 | 641 | 774 | 304 | 488 | 429 |
NaYS2 | 683 | 119 | 309 | 511 | 437 |
NaGdS2 | 779 | 25 | 330 | 531,3 | -430 |
Průmyslová využitelnost 15
Látky NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuSj a RbYS2 dopované Eu lze výhodně využít jako scintilační materiály v detektorech ionizujícího záření v zařízeních, která pro registraci výstupního signálu používají polovodičové detektory, např. ve formě práškových stínítek při plošném monitorování rozložení intenzity rentgenového záření v aplika20 cích ve výzkumu, průmyslu a zdravotnictví.
Látky NaGdS2, NaLuS2, NaYS2, KLaS2, KGdS2, KYS2, RbLaS2, RbGdS2, RbLuS2 a RbYS2 dopované Eu lze použít jako luminofory ke konstrukci laditelného zdroje bílého záření, tzv. „white LED light sources“, u kterých lze volbou konkrétní sloučeniny měnit emisní vlnovou délku (viz pozice emisních maxim v tab. 1).
Claims (12)
1. Anorganický scintilátor nebo luminofor na bázi sulfidu obecného vzorce ALnt xEuxS2_y, kde A označuje jeden z následujících alkalických kovů: Na, K, Rb a Ln označuje jeden z následujících kovů vzácných zemin: La, Gd, Lu, Y s výjimkou KLuS2 a NaLaS2, přičemž x = 10“6 až 0,03; y = 0 až x/2.
2. Anorganický scintilátor nebo luminofor podle nároku 1, vyznačující se tím, že A = Na a Ln = Gd, tj. sulfid sodno-gadolinitý dopovaný europiem, vzorce NaGd]_xEuxS2 y, přičemž x = 10”6 až 0,03, výhodně 0,001 až 0,03 a y = 0 až x/2.
3. Anorganický scintilátor nebo luminofor podle nároku 1, vyznačující se tím, že A = Na a Ln = Lu, tj. sulfid sodno-lutecitý dopovaný europiem, obecného vzorce NaLui xEuxS2 y, přičemž x = 10^ až 0,03, výhodně 0,001 až 0,03 a y = 0 až x/2.
4. Anorganický scintilátor nebo luminofor podle nároku 1, vyznačující se tím, že A = Na a Ln = Y, tj. sulfid sodno-yttritý dopovaný europiem, obecného vzorce NaY] xEuxS2 y, přičemž x = 10~* až 0,03, výhodně 0,001 až 0,03 a y = 0 až x/2.
5. Anorganický scintilátor nebo luminofor podle nároku 1, vyznačující se tím, že A = K a Ln = La, tj. sulfid draselno-lanthanitý dopovaný europiem, obecného vzorce KLai.xEuxS2_y, přičemž x = 10 ’6 až 0,03, výhodně 0,001 až 0,03 a y = 0 až x/2.
6. Anorganický scintilátor nebo luminofor podle nároku 1, vyznačující se tím, že A = K a Ln = Gd, tj. sulfid draselno-gadolinitý dopovaný europiem, obecného vzorce KGdi.xEuxS2.y, přičemž x = 10 6 až 0,03, výhodně 0,001 až 0,03 a y = 0 až x/2.
7. Anorganický scintilátor nebo luminofor podle nároku 1, vyznačující se tím, že A = K a Ln = Y, tj. sulfid draselno-yttritý dopovaný europiem, obecného vzorce KYi_xEuxS2_y, přičemž x = 10“6 až 0,03, výhodně 0,001 až 0,03 a y = 0 až x/2.
8. Anorganický scintilátor nebo luminofor podle nároku 1, vyznačující se tím, že A = Rb a Ln = La, tj. sulfid rubidno-lanthanitý dopovaný europiem, obecného vzorce RbLai-xEuxS2 y, přičemž x = 10“6 až 0,03, výhodně 0,001 až 0,03 a y = 0 až x/2.
9. Anorganický scintilátor nebo luminofor podle nároku 1, vyznačující se tím, že A = Rb a Ln = Gd, tj. sulfid rubidno-gadolinitý dopovaný europiem, obecného vzorce RbGdi.xEuxS2 y, přičemž x = 10“6 až 0,03, výhodně 0,001 až 0,03 a y = 0 až x/2.
10. Anorganický scintilátor nebo luminofor podle nároku 1, vyznačující se tím, že A = Rb a Ln = Lu, tj. sulfid rubidno-lutecitý dopovaný europiem, obecného vzorce RbLui_xEuxS2y, přičemž x = 10“6 až 0,03, výhodně 0,001 až 0,03 a y = 0 až x/2.
11. Anorganický scintilátor nebo luminofor podle nároku 1, vyznačující se tím, že A = Rb a Ln = Y, tj. sulfid rubidno-yttritý dopovaný europiem, obecného vzorce RbYi_xEuxS2_y, přičemž x = 10“6 až 0,03, výhodně 0,001 až 0,03 a y = 0 až x/2.
12. Použití anorganických scintilátorů podle nároků 1 až 11 ve scintilačních detekčních systémech, které pro registraci scintilačního záření používají polovodičové diody a použití anorganických luminoforů podle nároků 1 až 11 v LED světelných zdrojích, kde je výhodně vlnová délka budicího světla z LED zdroje 350 až 460 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2013-393A CZ2013393A3 (cs) | 2013-05-28 | 2013-05-28 | Anorganické scintilátory a luminofory na bázi ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y) dopované Eu2+ s výjimkou KLuS2 a NaLaS2 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2013-393A CZ2013393A3 (cs) | 2013-05-28 | 2013-05-28 | Anorganické scintilátory a luminofory na bázi ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y) dopované Eu2+ s výjimkou KLuS2 a NaLaS2 |
Publications (2)
Publication Number | Publication Date |
---|---|
CZ304998B6 true CZ304998B6 (cs) | 2015-03-18 |
CZ2013393A3 CZ2013393A3 (cs) | 2015-03-18 |
Family
ID=52705821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ2013-393A CZ2013393A3 (cs) | 2013-05-28 | 2013-05-28 | Anorganické scintilátory a luminofory na bázi ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y) dopované Eu2+ s výjimkou KLuS2 a NaLaS2 |
Country Status (1)
Country | Link |
---|---|
CZ (1) | CZ2013393A3 (cs) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112852424B (zh) * | 2021-01-18 | 2022-08-19 | 福建师范大学 | 一种碱金属-稀土三元硫化物纳米发光材料及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050002490A1 (en) * | 2003-06-30 | 2005-01-06 | Bergh Rudy Van Den | Rare earth activated lutetium oxyorthosilicate phosphor for direct X-ray detection |
EP2133449A1 (en) * | 2007-02-07 | 2009-12-16 | Sakai Chemical Industry Co., Ltd. | Iodide single crystal, method for production the iodide single crystal, and scintillator comprising the iodide single crystal |
CZ302205B6 (cs) * | 2009-02-18 | 2010-12-15 | Fyzikální ústav AV CR, v.v.i. | Anorganický scintilátor |
CZ302443B6 (cs) * | 2009-11-11 | 2011-05-18 | Ceské vysoké ucení technické v Praze Fakulta jaderná a fyzikálne inženýrská | Zpusob prípravy nanocásticového scintilátoru na bázi oxidu zinecnatého s vysoce intenzivní luminiscencí |
CZ302687B6 (cs) * | 2010-08-31 | 2011-08-31 | Fyzikální ústav AV CR, v. v. i. | Anorganický scintilátor na bázi hafnicitanu strontnatého s nadbytkem hafnia nebo zirkonicitanu strontnatého s nadbytkem zirkonu |
CZ2012666A3 (cs) * | 2012-09-27 | 2014-05-14 | České Vysoké Učení Technické V Praze, Fakulta Jaderná A Fyzikálně Inženýrská | Anorganický scintilátor nebo luminofor na bázi sulfidu draselno-lutecitého dopovaného europiem (KLuS2:Eu) |
-
2013
- 2013-05-28 CZ CZ2013-393A patent/CZ2013393A3/cs unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050002490A1 (en) * | 2003-06-30 | 2005-01-06 | Bergh Rudy Van Den | Rare earth activated lutetium oxyorthosilicate phosphor for direct X-ray detection |
JP2005049337A (ja) * | 2003-06-30 | 2005-02-24 | Agfa Gevaert Nv | 直接x線検出のための希土類活性化希土類活性化オキシサルファイド燐光体 |
EP2133449A1 (en) * | 2007-02-07 | 2009-12-16 | Sakai Chemical Industry Co., Ltd. | Iodide single crystal, method for production the iodide single crystal, and scintillator comprising the iodide single crystal |
CZ302205B6 (cs) * | 2009-02-18 | 2010-12-15 | Fyzikální ústav AV CR, v.v.i. | Anorganický scintilátor |
CZ302443B6 (cs) * | 2009-11-11 | 2011-05-18 | Ceské vysoké ucení technické v Praze Fakulta jaderná a fyzikálne inženýrská | Zpusob prípravy nanocásticového scintilátoru na bázi oxidu zinecnatého s vysoce intenzivní luminiscencí |
CZ302687B6 (cs) * | 2010-08-31 | 2011-08-31 | Fyzikální ústav AV CR, v. v. i. | Anorganický scintilátor na bázi hafnicitanu strontnatého s nadbytkem hafnia nebo zirkonicitanu strontnatého s nadbytkem zirkonu |
CZ2012666A3 (cs) * | 2012-09-27 | 2014-05-14 | České Vysoké Učení Technické V Praze, Fakulta Jaderná A Fyzikálně Inženýrská | Anorganický scintilátor nebo luminofor na bázi sulfidu draselno-lutecitého dopovaného europiem (KLuS2:Eu) |
Also Published As
Publication number | Publication date |
---|---|
CZ2013393A3 (cs) | 2015-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Van der Heggen et al. | Importance of evaluating the intensity dependency of the quantum efficiency: impact on LEDs and persistent phosphors | |
Xia et al. | Ca 2 Al 3 O 6 F: Eu 2+: a green-emitting oxyfluoride phosphor for white light-emitting diodes | |
Li et al. | A strategy for developing thermal-quenching-resistant emission and super-long persistent luminescence in BaGa 2 O 4: Bi 3+ | |
Kshatri et al. | Characterization and optical properties of Dy3+ doped nanocrystalline SrAl2O4: Eu2+ phosphor | |
Praveena et al. | Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12: Ce3+ nano-garnet | |
Blazek et al. | Luminescence and defects creation in Ce3+‐doped Lu3Al5O12 crystals | |
Zhang et al. | Photoluminescence and concentration quenching of NaCa4 (BO3) 3: Eu3+ phosphor | |
Sahu | The role of europium and dysprosium in the bluish-green long lasting Sr2Al2SiO7: Eu2+, Dy3+ phosphor by solid state reaction method | |
Joos et al. | Thermal quenching and luminescence lifetime of saturated green Sr1− xEuxGa2S4 phosphors | |
Montes et al. | Mechanisms of radioluminescence of rare earths doped SrAl2O4 and Ca12Al14O33 excited by X-ray | |
Zhang et al. | A novel white light-emitting diode (w-LED) fabricated with Sr6BP5O20: Eu2+ phosphor | |
Li et al. | Luminescence properties of a new green afterglow phosphor NaBaScSi 2 O 7: Eu 2+ | |
Nayar et al. | Synthesis and luminescence characterization of LaBO3: Dy3+ phosphor for stress sensing application | |
Korzhik et al. | Towards effective indirect radioisotope energy converters with bright and radiation hard scintillators of (Gd, Y) 3Al2Ga3O12 family | |
US9334444B1 (en) | Sorohalide scintillators, phosphors, and uses thereof | |
Zhang et al. | A long-persistent phosphor Sr3MgSi2O8-1.5 xNx: Eu2+, Dy3+, Mn2+ based on white LEDs applications | |
Yang et al. | Efficient emission in copper-doped Cs 3 ZnX 5 (X= Cl, I) for white LEDs and X-ray scintillators | |
Guo et al. | The persistent energy transfer of Eu 2+ and Dy 3+ and luminescence properties of a new cyan afterglow phosphor α-Ca 3 (PO 4) 2: Eu 2+, Dy 3+ | |
Li et al. | Incorporating Ce 3+ into a high efficiency phosphor Ca 2 PO 4 Cl: Eu 2+ and its luminescent properties | |
Pawade et al. | Synthesis and optical studies of novel Eu2+ and Ce3+ doped BaMg8Al18Si18O72 phosphors | |
Rangari et al. | Synthesis and photoluminescence characteristics of (Y, Gd) BO3: RE (RE= Eu3+, Ce3+, Dy3+ and Tb3+) phosphors for blue chip and near‐UV white LEDs | |
CZ304458B6 (cs) | Anorganický scintilátor nebo luminofor na bázi sulfidu draselno-lutecitého dopovaného europiem (KLuS2:Eu) | |
Sahu et al. | Retracted: Studies on the luminescence properties of cerium co‐doping on Ca2MgSi2O7: Eu2+ phosphor by solid‐state reaction method | |
Xie et al. | Synthesis and photoluminescence properties of Ce3+ and Tb3+ doped Na3Gd (PO4) 2 phosphors for white LEDs | |
Stand et al. | Crystal growth and characterization of high performance KSr2BrxI5− x: Eu scintillators |