Způsob přípravy chlorkarbonátů
Oblast techniky
Předmětem vynálezu je nový způsob syntézy chlorkarbonátů odvozených od kyselých fenolů.
Dosavadní stav techniky
Jednou z vyráběných specialit fosgenové chemie jsou chlorkarbonáty odvozené od kyselých fenolů, jejichž hodnota pAa(H2O) je nižší než deset jednotek. Tyto chlorkarbonáty s fragmenty dobře odstupujících skupin se používají zejména pri aktivaci amino a hydroxy skupin nebo pro syntézu dalších karbonátů, karbamátů a močovin. Zmíněné chlorkarbonáty se často uplatňují v agrochemii, farmaceutické chemii, nanochemii nebo v biotechnologiích (Cotarca L., Eckert H.: Phosgenations - A Handbook, Wiley-VCH Verlag GmbH & KGaA, Weinheim 2004). Na rozdíl od syntéz chlorkarbonátů odvozených od alkoholů s dostatečně nukleofilním kyslíkovým atomem je nutno při syntézách chlorkarbonátů odvozených od kyselých fenolů převést tyto málo reaktivní hydroxysloučeniny na odpovídající fenoláty. Separátně nebo přímo v reakční směsi připravené fenoláty následně reagují s přebytkem fosgenu. Podle současně používaných metod se nejprve připraví roztok odpovídajícího ťenolátu sodného nebo draselného ve vodě, který se částečně odvodní a dosuší v sušárně nebo se zcela odvodní azeotropicky např. toluenem. Pevný bezvodý fenolát nebo jeho suspenze v rozpouštědle se pak postupně vnáší do roztoku fosgenu v příslušném rozpouštědle. Po ukončené reakci následuje oddestilování části rozpouštědla s přebytkem fosgenu, ochlazení, filtrace chloridu sodného nebo draselného, oddestilování rozpouštědla a závěrečná destilace nebo krystalizace produktu. Tyto technologie mají několik nevýhod, jsou energeticky náročné, pracné a hygienicky nevyhovující. V případě chlorkarbonátů odvozených od nitrofenolů přinášejí tyto technologie rizika nebezpečí výbuchu při sušení. Jiné popsané metody přípravy chlorkarbonátů spočívají v reakcích alkoholů a fenolů s fosgenem v homogenním prostředí za přítomnosti rozpuštěných organických bází jako jsou např, N, N-d imethy lan i lin, pyridin, triethylamin nebo diisopropylethylamin (Cotarca L., Eckert H.: Phosgenations - A Handbook, Wiley-VCH Verlag GmbH & KGaA, Weinheim 2004; Konakahara T., Ozaki T., Sáto J., Gold B.: Synthesis 1993, 103-106). Nevýhodou těchto provedení je relativně vysoká cena použitých aminů a v některých případech tvorba nežádoucích barevných látek znečišťujících produkt. Rovněž odstraňování hydrochloridů zmíněných aminů je častý technologický problém a někdy vyžaduje následnou změnu rozpouštědlového systému po reakci (Gosh A.K., Diong T.T., McKee S.P.: Tetrahedron Lett. 1991, 32, 4251^245; Ozaki T„ Sáto K., Gold B.: Synthesis Í993, 103-1096).
Podstata vynálezu
Předmětem vynálezu je způsob přípravy chlorkarbonátů obecného vzorce I:
(I)
- 1 CZ 303311 B6 kde R1, R2, R1, R4, R5 jsou nezávisle na sobě vybrány ze skupiny zahrnující NO2, H, F, přičemž alespoň jeden z R1, R2, R3, R4, R5 není H, jehož podstata spočívá v tom, že kyselý fenol obecného vzorce II:
kde R1, R2, R3, R4, R5 jsou nezávisle na sobě vybrány ze skupiny zahrnující NO2, H, F, přičemž alespoň jeden z R1, R2, R3, R4, R5 není H, se podrobí reakci s fosgenem za heterogenní bazické katalýzy bezvodým pevným uhličitanem io alkalického kovu, s výhodou bezvodým zrnitým uhličitanem draselným nebo sodným.
Ve výhodném provedení vynálezu R1 = NO2, R2“5 = H.
V jiném výhodném provedení vynálezu R3 = NO2, R1’2’4,5 - H.
V dalším výhodném provedení vynálezu R13 = NO2, R2*4,5 ~ H.
V ještě dalším provedení vynálezu R1 2,3 4 5 = F.
S výhodou se reakce provádí za heterogenní bazické katalýzy bezvodým zrnitým uhličitanem draselným nebo sodným.
Výhodou reakce je to, že ji lze provádět jednostupňově. Reakční schéma je následující:
Příprava chlorkarbonátů zmíněných fenolů je realizována tak, že k homogenní směsi fenolu s přebytkem fosgenu v organickém rozpouštědle, s výhodou v chlorovaném nebo aromatickém rozpouštědle, výhodněji v rozpouštědle vybraném ze skupiny zahrnující dichlormethan, chloroform, chlorbenzen, o-dichlorbenzen a toluen, je postupně a za míchání přidán bezvodý zrnitý uhličitan draselný nebo sodný. Na povrchu částic uhličitanu vzniká fenolátový aniont, který reaguje s rozpuštěným fosgenem za vzniku příslušného chlorkarbonátů, jenž přechází do roztoku. Povrch katalyzátoru je kontinuálně obnovován vznikajícím plynným oxidem uhličitým avymý30 váním produktu organickým rozpouštědlem z povrchu uhličitanu což umožňuje další vznik fenolátu a pokračování reakce. Reakce uhličitanu sodného nebo draselného se samotným fosgenem v rozpouštědle probíhá velmi bouřlivě. V přítomnosti fenolu však v průběhu reakce dochází k velmi mírnému pěnění vznikajícího oxidu uhličitého. Celý proces probíhá až do kompletní spotřeby výchozího fenolu. Konec reakce je v případě tvorby barevných fenolátů (např. 235 nitrofenol, 4-nitrofenol, 2,4-dinitrofenol) zcela zřetelně indikován odbarvením povrchu anorganické heterogenní fáze. Závěrem se oddestiluje část rozpouštědla s přebytkem fosgenu, a po chla-2CZ 303311 B6 zení se ze suspenze odfiltruje anorganický podíl (chlorid alkalického kovu). Filtrát obsahující příslušný chlorkarbonát se odpaří a produkt se vakuově destiluje, nebo se pouze zahustí ke krystalizaci. Experimentálně bylo dosaženo úplné konverze výchozích fenolů s praktickými výtěžky chlorkarbonátů 72 až 96 %.
Příklady provedení vynálezu io Příklad 1
Příprava 4-nitrofenylchiorkarbonátu
Ve 250 g dichlromethanu bylo rozpuštěno 9,9 g (0,10 mol) fosgenu. K tomuto roztoku byl přidán i? roztok 4-nitrofenolu (6,95 g; 0,05 mol) ve 150 g dichlormethanu. Pri teplotě 25 °C byl do tohoto roztoku postupně vsypán bezvodý zrnitý uhličitan draselný (7 g; 0,05 mol). Povrch uhličitanu se zbarvil žlutě, přičemž směs byla intenzivně míchána bez chlazení. Po 45 minutách došlo k odbarvení povrchu pevné fáze. Směs byla ještě cca 30 min míchána a pak bylo oddestilováno cca 100 ml dichlormethanu s přebytečným fosgenem. Po ochlazení byl pevný podíl (4 g) odfíl20 trován a z filtrátu bylo dále za sníženého tlaku z vodní lázně (max. 50 °C) oddestilováno 150 až 200 ml dichlormethanu. Po následném ochlazení na teplotu 0 až 5 °C došlo ke krystalizací produktu. Po filtraci a usušení bylo izolováno 9,2 g (92% výtěžek) nažloutlé krystalické látky o bodu tání 78 až 80 °C (lit. 81 až 82 °C Iwakura Y., Nabeya A.: J. Org. Chem. 25, 1118 (1960)).
'H NMR (400.13 MHz, CDCf): δ 8,32 (2H, d, 7= 9,1 Hz, H3, H5); 7,45 (2H d, J= 9,1 Hz, H2,
H6).
I3C NMR (100.62 MHz, CDCI3): δ 155,3; 148,8; 146,0; 125,5; 121,4.
Příklad 2
Příprava 2-nitrofenylchlorkarbonátu
Ve 250 g o-dichlorbenzenu bylo rozpuštěno 9,9 g (0,10 mol) fosgenu. K tomuto roztoku byl přidán roztok 2-nitrofenolu (6,95 g; 0,05 mol) ve 150 g o-dichlorbenzenu. Při teplotě 25 °C byl do tohoto roztoku postupně vsypán bezvodý zrnitý uhličitan sodný (5,3 g; 0,05 mol). Povrch sody se zbarvil žlutě, přičemž směs byla intenzivně míchána bez chlazení, po 45 minutách došlo k odbarvení povrchu pevné fáze. Směs byla ještě cca 30 min míchána a pak bylo vakuově oddestilováno cca 100 ml o-dichlorbenzenu s přebytečným fosgenem. Po ochlazení byl pevný podíl (4 g) odfiltrován a z filtrátu byl za sníženého tlaku z vodní lázně (max. 50 °C) oddestilován veškerý o-d ichlor benzen. Produkt byl izolován destilací za sníženého tlaku. Byla jímána frakce 131 až 133 °C/7 mm (lit. 131,5 až 132,5 C/7 mm Iwakura Y., Ishizuka Y., Saito T.: Nippon Kagaku Zasshi, 76, 1108 (1955)). Bylo připraveno 8,6 g (86% výtěžek) nažloutlé kapaliny.
lH NMR (400.13 MHz, CDCl3): δ 8,15 (IH, dd,7=8,2 Hz, 7 = 1,6 Hz, H3); 7,74 (IH, dt, J= 8,2 Hz, 7= 1,6 Hz, H4); 7,52 (IH, dt,7=8,2 Hz, 7= 1,3 Hz, H5); 7,38 (IH, dd,7=8,2 Hz, 7= 1,3
Hz, H6).
13C NMR (100.62 MHz, CDC13): δ 155,1; 149,3; 143,9; 135,6; 128,5; 126,4; 124,4.
Příklad 3
Příprava 2,4—dinitrofenylchlorkarbonátu
Ve 250 g chlorbenzenu bylo rozpuštěno 9,9 g (0,10 mol) fosgenu. K tomuto roztoku byl přidán roztok 2,4-d i nitrofenol u (9,2 g, 0,05 mol) ve 150 g chlorbenzenu. Při teplotě 25 °C byl do tohoto
-3CZ 303311 B6 roztoku postupně vsypán bezvodý zrnitý uhličitan draselný (7 g, 0,05 mol). Povrch uhličitanu se zbarvil žlutě, přičemž směs byla intenzivně míchána bez chlazení. Asi po 45 minutách došlo k odbarvení povrchu pevné fáze. Směs byla ještě cca 30 min míchána a pak bylo z reakční směsi vakuově oddestilováno cca lOOml chlorbenzenu spřebytečným fosgenem. Po ochlazení byl pevný podíl (4 g) odfiltrován a z filtrátu bylo dále za sníženého tlaku z vodní lázně (max. 50 °C) oddestilováno 150 až 200 ml chlorbenzenu. Po následném ochlazení na teplotu 0 až 5 °C došlo ke krystalizací produktu. Po filtraci a usušení bylo izolováno 8,8 g (72% výtěžek) nažloutlé krystalické látky o bodu tání 57 až 59 °C (lit. 57,4 °C Konrat, J.P.; Le Roux, L.: DE 2109683 (1971)).
Ή NMR (400.13 MHz, CDCh): δ 9,05 (IH, d, J = 2,i Hz, H3); 8,48 (IH, dd, J= 9,2 Hz, ./=2,8 Hz, H5); 7,72 (IH, d. 7=9.3 Hz, H6).
I3C NMR (100.62 MHz, CDCh): δ 155,5; 149,8; 143,3; 138,5; 129,8; 123,6.
Příklad 4
Příprava pentafluorfenylchlorkarbonátu
Ve 250 g toluenu bylo rozpuštěno 9,9 g (0,10 mol) fosgenu. K tomuto roztoku byl přidán roztok pentafiuorfenolu (9,2 g, 0,05 mol) ve 150 g dichlormethanu. Při teplotě 25 °C byl do tohoto roztoku postupně vsypán bezvodý zrnitý uhličitan draselný (7 g, 0,05 mol). Reakční směs byla intenzivně míchána bez chlazení 1,5 hodin. Pak bylo z reakční směsi vakuově oddestilováno cca 100 ml toluenu s přebytečným fosgenem. Po ochlazení byl pevný podíl (4 g) odfiltrován a z filtrátu byl za sníženého tlaku z vodní lázně (max. 50 °C) oddestilován veškerý toluen. Produkt byl izolován destilací za sníženého tlaku. Byla jímána frakce 68 až 70 °C/20 mm (lit. 53 °C/13 mm Lynch E.R., Cummings W.: GB 1099646 (1968)). Bylo připraveno 10,5 g (85% výtěžek) bezbarvé kapaliny.
L,C NMR (100.62 MHz, CDCh): δ 148,4 (s); l42,0(m); 139,2(m); 136,6(m); 130,9(m).
I9FNMR (376.46 MHz, CDCh): δ -152,4 (2F, d, J= 16,9 Hz); -155,3 (IF, t, 7=21,5 Hz); -161,2 (2F,t, 7= 19,6 Hz).
Průmyslová využitelnost
Jednostupňová syntéza chlorkarbonátů, odvozených od kyselých fenolů (pKa < 10), bez nutnosti použití jejich solí separátně připravených nebo bez nutnosti použití organických bází podstatně zjednodušuje dosavadně popsané a průmyslově používané postupy přípravy. Syntézy lze realizovat v jednom reaktoru (one-pot). Zmíněné chlorkarbonáty mají použití v agrochemii, farmaceutické chemii, nanochemii nebo v biotechnologiích jako významná činidla a meziprodukty.