CS272631B1 - Method of dehydrogenation catalyst's copper coating - Google Patents

Method of dehydrogenation catalyst's copper coating Download PDF

Info

Publication number
CS272631B1
CS272631B1 CS875788A CS875788A CS272631B1 CS 272631 B1 CS272631 B1 CS 272631B1 CS 875788 A CS875788 A CS 875788A CS 875788 A CS875788 A CS 875788A CS 272631 B1 CS272631 B1 CS 272631B1
Authority
CS
Czechoslovakia
Prior art keywords
catalyst
ammonia
zinc
copper coating
dehydrogenation catalyst
Prior art date
Application number
CS875788A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS875788A1 (en
Inventor
Stanislav Ing Csc Juhas
Vincent Ing Olejnik
Milan Ing Csc Lichvar
Gabriel Ing Molnar
Jozef Cervenak
Michal Ing Csc Kellner
Jan Ing Chovanec
Bohumil Ing Filip
Jan Ing Kolesar
Frantisek Ing Ambroz
Milan Ing Csc Hronec
Imrich Ing Petrik
Jan Bindas
Vladimir Ing Mikitka
Original Assignee
Juhas Stanislav
Olejnik Vincent
Lichvar Milan
Molnar Gabriel
Jozef Cervenak
Michal Ing Csc Kellner
Chovanec Jan
Filip Bohumil
Kolesar Jan
Ambroz Frantisek
Hronec Milan
Imrich Ing Petrik
Jan Bindas
Mikitka Vladimir
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juhas Stanislav, Olejnik Vincent, Lichvar Milan, Molnar Gabriel, Jozef Cervenak, Michal Ing Csc Kellner, Chovanec Jan, Filip Bohumil, Kolesar Jan, Ambroz Frantisek, Hronec Milan, Imrich Ing Petrik, Jan Bindas, Mikitka Vladimir filed Critical Juhas Stanislav
Priority to CS875788A priority Critical patent/CS272631B1/en
Publication of CS875788A1 publication Critical patent/CS875788A1/en
Publication of CS272631B1 publication Critical patent/CS272631B1/en

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The subject of the solution consists in the method of copper coating of catalyser zinc on iron and in good quality of copper layer on the catalyser surface. The above mentioned purpose is achieved by regulation of the copper coating by development of coppering operations in time.<IMAGE>

Description

(54)(54)

Spásob pomeJovania dehydrogenačného katalyzátóraMethod for reducing the dehydrogenation catalyst

Í57l účelom rašení je eposob poneflovania 'Katalyzátora zinok na železe a dobrou kvalitou medenej vrstvičky ne povrchu katalyzátore. Uvedeného účelu sa dosiahne tým,· že pomeďovanie aa reguluje časovým priebehom loperácii pomeňovania.The purpose of the sputtering is the epoxy process of the zinc catalyst on iron and the good quality of the copper layer on the catalyst surface. This is accomplished by the fact that the a?

CS 272631 BlCS 272631 Bl

CS 272631 BlCS 272631 Bl

Vynález rieši epoeob pomečovania dehydrogenačného katalyzátora·The present invention solves an epoeobic dipping of a dehydrogenation catalyst.

Medziprodukt výroby kaprolaktasu cyklohexanón aa vo světověj produkcil vyrába hlavně oxidáciou cyklohexánu, potom dehydrogenáciou fenolu, V oboch pripadoch je potřeba dehydrogenovat cyklohexanol na cyklohexanón,The intermediate of caprolactase production cyclohexanone and produced worldwide mainly by oxidation of cyclohexane, then by dehydrogenation of phenol. In both cases it is necessary to dehydrogenate cyclohexanol to cyclohexanone,

Procee dehydrogenácie cyklohexanolu sa uekutočříuje katalyticky pri teplote 550 K až 750 K.The cyclohexanol dehydrogenation process is carried out catalytically at a temperature of 550 K to 750 K.

C6Hll0H ~~~ C6H10° * H2 ah65 k0//mo1 C 6 H 11 0H C 6 H 10 ° * H 2 and h " 65 k0 // mo1

Reakcia Je endotermická,- uekutočříuje sa v trubkovom reaktore,' pričom teplo sa najčaetejšie dodává spalnými plynmi z horenia zemného plynu alebo horenia vodika z vlastného procesu·The reaction is endothermic - it takes place in a tubular reactor, the heat being most often supplied by combustion gases from natural gas combustion or hydrogen combustion from the process itself ·

Prídavok vody (RO 79 492, DE 2 347 097) retarduje dehydrogenáciou cyklohexanolu na cyklohaxén, može však přinášet energetické nevýhody, Prídavok kyslíka (PL 136 018) dovoluje procee uekutočřfovat adiabsticky/ avšak za vysokých nárokov na bezpečnost·The addition of water (RO 79 492, DE 2 347 097) retardes by dehydrogenation of cyclohexanol to cyclohaxene, but may present energy disadvantages. The addition of oxygen (PL 136 018) allows the process to be carried out adiabstically / but with high safety requirements.

Ekonomiku procesu dehydrogenácie cyklohexanolu na cyklohexanón vo významnej miere určuje použitý katalyzátor. Z hladiska zloženie je známy celý rad skůmaných,· ako aj priemyelovo využívaných katalyzátorov.The economics of the process of dehydrogenating cyclohexanol to cyclohexanone is largely determined by the catalyst used. In terms of composition, a variety of catalysts, both grained and industrially utilized, are known.

Na báze foafidov je známy niklový katalyzátor najčastejšie promotovaný eodíkora (SU 716 583) vo formě hydroxidu a kobaltový katalyzátor sa najčastejšie používá vo formě naneeenej na prírodný nosič tzv. pletený turf (SU 697 177, SU 856 939). Tiež sú známe hořčíkový katalyzátor (Emeljanov N.P.: DAN BSSR 12 1968/ 10/ 914-7) a paládiovo-reténiový membránový katalyzátor-(Basov N.L. ··.: -Sov. - fd. seminář po ketalizu, Sb. Dokl. Moskva 1983/34-7).On the basis of foaphides, the nickel catalyst most commonly promoted by eodicorum (SU 716 583) in the form of hydroxide is known, and the cobalt catalyst is most often used in the form deposited on a natural carrier, so-called. knit turf (SU 697 177, SU 856 939). Also known are the magnesium catalyst (Emeljanov NP: DAN BSSR 12 1968/10 / 914-7) and the palladium-retenium membrane catalyst (Basov NL ·· .: -Sov. - fd. Seminar after ketalization, Sb. Dokl. Moscow 1983) / 34-7).

Zinkový katalyzátor može byt nanesený na uhliku (SU 249 354),- vo forma oxidu zinočnatého (RO 66 847)/ v zliatine s chrómem (Glozmann S,S. ····: Tr. Vesa. Nuč, Iesled. Proč·, Xnat.-Monomérov'l 1969, 1, 82-9)/ Zakrevskij V.K. ··.: Chim. prom. et. Moskva 1980, 9, 527-8) alebo vo forma chromenu-zinočnatého (SU 348 540, RO 79 942).The zinc catalyst can be deposited on carbon (SU 249 354), - in the form of zinc oxide (RO 66 847) / in a chromium alloy (Glozmann S, S. ····: Tr. Vesa. Nuč, Iesled. Why ·, Xnat.-Monomerov (1969, 1, 82-9) / Zakrevsky VK ·· .: Chim. prom. et. Moscow 1980, 9, 527-8) or in the form of zinc chromene (SU 348 540, RO 79 942).

Klasicky uvádzaný měděný katalyzátor pre titulný proces si vyžaduje nízké teploty s na požadovaná konverziu je nutná malé zařeženie (Orizarsky 1,: Geterogenyje Katalyzátory Trudy Meždunarodnogo Simpózia 3 rd, 1975, publ.-1978 Izd. BAN Sofia, Vladee R. ·,·> Rav. Chim, 30 1980/ 8/ 759-62),Classically mentioned copper catalyst for the title process requires low temperatures with little conversion required for conversion (Orizarsky 1,: Geterogenyje Catalysts Trudy Međunarodnogo Simpozia 3 rd, 1975, publ. -BAN Sofia, Vladee R. ·, ·> Rav Chim, 30 (1980/8 / 759-62),

Z uvedeného dovodu je nutné meč používat ako katalyzátor vo forma zliatin alebo nanesená na nosič, Sú známe katalyzátory mel v kombinácii s manganem (SU 697 179, SU 979 324)/ a horčlkom (SU 411 888/ Zrblova 1.0. ..·$ Chámi. prom. st. Moskva 1979/ 12, 713 14) 8 vápnikom (Kozlov N.S.-··.·: Vesci AN SSSR, Ser. chim, navuk 1978, 5, 84-6). Měděný katalyzátor v kombinácii a hlinikom je buÓ vo formě zliatiny (Petrova V. ...: Chim. Ing·. Sofia 1983/ 9, 401-3) alebo vo formě naneeenej na alumina (SU 522 853). V kombinácii a kramíkom je promotovaný oxídom draselným (Belskaja R.I, ···: Vašci AN BSSR, Ser. chim. navuk 1975/ 2/ 97-102) alebo vo forma naneeenej na silikagel (Kocurkova L. ....: Chem. Prum. 30 1980, 2/ 71-4). Na uhlíku je meč nanesená e paládiom (Červený L. ....: Chem, prum. 29 1979, 3, 127-8) připadne je me? nanesená na tzv. šungite/ čo je prírodná zmes oxidov (SU 910 178). Oxid mačnatý-ako katalyzátor je najčastejšie používaný v kombinácii 8 oxidora chromí tým (3P 83 157 741) promotovaný oxidora barnatým (FR 1 513 220) alebo oxidora barnatým a grafitem (SU 574 433). Dobrým katalyzátorom sa javí aj maff v kombinácii a chromom a horčlkom (Belakaja R.Io .·«·: Vesci AN BSSR/ Ser, chim. navuk 1977, 4, 41-5), připadne a kobaltom (3P 80 136241)/ β kobaltom na báze foafidov (SU 891 145)/ alebo β kobaltom na nosiče tzv. plstenom turfe (SU 936 989)0 For this reason, it is necessary to use the sword as an alloy in the form of alloys or supported on it. Catalysts in combination with manganese (SU 697 179, SU 979 324) / and magnesium (SU 411 888 / Zrblova 1.0.) Are known. Moscow 1979/12, 713 14) 8 Calcium (Kozlov NS- ··. ·: Vesci AN USSR, Ser. chim, navuk 1978, 5, 84-6). The copper catalyst in combination with aluminum is either in the form of an alloy (Petrova V. ... Chim. Ing. Sofia 1983/9, 401-3) or in the form coated on alumina (SU 522 853). In combination with a pot, it is promoted by potassium oxide (Belskaya RI, ···: Vasci AN BSSR, Ser. Chim. Navuk 1975/2 / 97-102) or in a silica gel coated form (Kocurkova L. ....: Chem. Prum. 30 1980, 2 / 71-4). On the carbon the sword is deposited with palladium (Red L. ....: Chem, pr. 29 1979, 3, 127-8) or is it me? applied to the so-called. shungite / which is a natural mixture of oxides (SU 910 178). Catalyst oxide as the catalyst is most commonly used in combination of 8 chromium oxide (3P 83 157 741) promoted by barium oxide (FR 1 513 220) or barium oxide and graphite (SU 574 433). Maff in combination with chromium and fever also appears to be a good catalyst (Belakaja R.Io. · «·: Vesci AN BSSR / Ser, chim. Navuk 1977, 4, 41-5), possibly with cobalt (3P 80 136241) / β cobalt-based cobalt (SU 891 145) / or β cobalt-coated cobalt. turf felt (SU 936 989) 0

Najviac publikované a pravděpodobně aj využívané sú katalyzátory meJ na oxide zinočnatom (CS 151 166/ Emeljanov N.P.t DAN BSSR II 1967, 3, 233-6) pričom meč može byt nanesená vo formě oxalatu (FR 2 030 602/ US 3 652 460) a následnou oxidáciou e hydrogeκ * CS 272631 Bl 2 néciou katalyzátore v troch cykloch. Modifikovaný m6že byť pomocou oxidu barnatého a rutiničslého v pomere 2 : 1 (SU 978 909) připadne pomocou uhličitanu sodného (GB 1 060 484), Katalyzátor z médi a zinku može byť modifikovaný chrómom (Medvědova O.N, Pr,-vo organ, produktov,' Moskva 1982, 15-22) alebo vápnikom, báriom a etronciom (BaXskaja R,I,The most widely reported and probably used are catalysts of meJ on zinc oxide (CS 151 166 / Emeljanov NPt DAN BSSR II 1967, 3, 233-6), whereby the sword can be applied in the form of oxalate (FR 2 030 602 / US 3,652,460) and by subsequent oxidation of the hydrogenation of the catalyst in three cycles. Modified can be 2: 1 (SU 978 909) using barium oxide and routine, optionally with sodium carbonate (GB 1 060 484). The catalyst of the medium and zinc can be modified with chromium (Bear's ON, Pr, -vo organ, products, 'Moscow 1982, 15-22) or calcium, barium and etronium (Baxskaya R, I,

Veeci AN BSSR/ Ser, chim» navuk 1981,· 5, 112-6),Veeci AN BSSR / Ser, chim navuk 1981, 5, 112-6),

Známy je BASF katalyzátor H 5-10 chemickým zloženim oxid zinočnatý aktivovaný promotormi, Oe vo formě extrudórov o priemere 4 mm alebo 6 mm. Vyznačuje sa objemovou hustotou přibližné 1 550 kg/ra a mechanickou pevnoafou viac ako 10 kg,Known is the BASF catalyst H 5-10 chemical composition zinc oxide promoter activated Oe in the form of extruders with a diameter of 4 mm or 6 mm. It is characterized by a bulk density of approximately 1 550 kg / a and a mechanical strength of more than 10 kg,

Nižšou objemovou hustotou přibližné 1 400 kg/m2 sa vyznačuje katalyzátor připravený z pozinkovaného nizkouMíkového železnatého plechu střiháním a formováním do tvaru neuzavretých ruriek o približnom rozmere 0 7 mm x 7 mm x 0,5 mm. Obsah zinku v katalyzátore ja přibližné 7 % hmot. Uvedeným eposobom připravený katalyzátor v mieate střihu plechu má obnažený železný nosič, Priemerná konverzia cyklohexanolu pri teplote cca 673 K je přibližné 75 %, Zvyšovanie teploty v reakcii umožffuje zvýéiť konverziu avšak úměrná klesá selektivita reakcie a v dosledku toho vzrastajú surovinové náklady a komplikuje sa proces čistenie cyklohexanónu. Tiež je žiaduca dlžka regenerócia katalyzátora, ktorá spočiva vo vypalovaní tzv, polymerných až zuholnatených smol pomocou vzduchu.A lower bulk density of approximately 1400 kg / m &lt; 2 &gt; is characterized by a catalyst prepared from a galvanized low-ferrous iron sheet by shearing and forming into the form of non-closed tubes of approximately 7 mm x 7 mm x 0.5 mm. The zinc content of the catalyst is about 7% by weight. The average conversion of cyclohexanol at about 673 K is approximately 75%. Increasing the temperature in the reaction makes it possible to increase the conversion but proportionally decreases the selectivity of the reaction and consequently increases the raw material costs and complicates the process of cyclohexanone purification. . It is also desirable to have a catalyst regeneration time consisting of firing the so-called polymer to charred pitch with air.

Tento katalyzátor je vylepšený (PL 102 493) nanesením médi v množstve od 0,001 do 0,5 kg na meter štvorcový povrchu katalyzátora, Pomeffovanie sa uskutočffuje ponorom katalyzátore do roztoku raeffnatej soli alebo amomeffnatej soli připadne sa polieva roztokom, Priemerná konverzia cyklohexanolu pri teplota cca 673 K Je přibližné 80 %,This catalyst is improved (PL 102 493) by the application of medium in an amount of 0.001 to 0.5 kg per square meter of catalyst surface. The effervescence is carried out by immersing the catalyst in a solution of raffinate or ammonium salt or pouring the solution. K Is approximately 80%,

Podstatou tohoto vynálezu je sposob pomeffovania dehydrogenaČného katalyzátora zinkom na železe chemickým vylučováním médi z roztoku jej anorganických aoli o koncentrácii v rozsahu od 0,02 molu na liter do 2 mólov na liter v přítomnosti amoniaku s mólovým pomerom amoniaku ku médi v rozsahu od 0,2 do 20, Vyznačuje sa tým, že na premiešavané částice katalyzátora sa v prvej sedmina doby pomeffovania p3sobí amoniakálnou vodou a vo zvyšných šiestich sedminách doby pomeffovania amoniakálnou vodou a meffnatou solou, ktoré se pridé do amoniakélnej vody v kryštalickej formě v druhej sedmino doby pomeffovania.SUMMARY OF THE INVENTION The present invention is directed to a method of zinc-iron plating of a dehydrogenation catalyst by chemical precipitation of a medium from a solution of its inorganic aols at a concentration ranging from 0.02 mole per liter to 2 moles per liter in the presence of ammonia. It is characterized in that the agitated catalyst particles are treated with ammonia water in the first seventh time and in the remaining six sevenths of the time of ammoniacal water and m.p.

Výhodou pomeffovania podlá tohoto postupu je pomalá tvorba vrstvičky médi,' čo spSsobuje, že táto je rovnoměrná a pevne prichytené.The advantage of the coating according to this process is the slow formation of a layer of media, which makes it uniform and firmly attached.

PřikladExample

Oo pomeffovacleho zariadenia sa predsadi 75 kg katalyzátora z pozinkovaného nlzkouhlikového železného plechu připraveného střiháním a formováním do tvaru neuzavretých ruriek o približnom rozmere (? 7 mm x 7 mra x 0,5 mm s obsahbm zinku přibližné 7 % hmot. Katalyzátor sa překryje vodou v množstvo 45 kg β přidá ea 2/8 kg amoniakélnej vody o koncentrácii amoniaku přibližné 25 % hmot. Za miešania sa po minúte přidá 1 kg síranu meffnatóho (CuSO^ x 5 HgO). Po odfarbení roztoku přibližné po době 7 minút sa roztok zdekentuje a premyje vodou pffřkrót v množstve cca 45 kg. Katalyzátor sa vyauši pri teplote nad 50 °C s výhodou v teplovzdušnej sušiarni. Použitý katalyzátor sa vyznačuje 99 %-nou selektivitou v reakcii dehydrogenácie cyklohexanolu, spotřebou zemného plynu 27,46 m2 na tonu vyrobeného cyklohexanónu,· životnosfou 1,5 roka a minimálně mesačným pracovným cyklom.75 kg of a galvanized, low-carbon iron sheet prepared by shearing and molding into open tubes having an approximate size (? 7 mm x 7 m x 0.5 mm with a zinc content of approximately 7% by weight) are pre-charged with a coater. 45 kg of β is added and 2/8 kg of ammonia water with an ammonia concentration of approximately 25% by weight, 1 kg of meffnatate sulphate (CuSO 4 x 5 HgO) is added after stirring for 1 minute. The catalyst used is characterized by a 99% selectivity in the cyclohexanol dehydrogenation reaction, a natural gas consumption of 27.46 m 2 per tonne of cyclohexanone produced, and the catalyst is dried at a temperature above 50 ° C. · With a service life of 1.5 years and at least a monthly duty cycle.

Claims (1)

PREOMET VYNALEZUPREOMET OF THE INVENTION Sposob pomeffovania dehydrogenaČného katalyzátora zinok na železe chemickým vylučováním médi z roztokov Jsj anorganických soli o koncentrácii v rozsahu od 0,02 raólu na liter do 2 mólov na liter v přítomnosti amoniaku s mólovým pomerom amoniaku ku raadi v rozsa3Method of coefficient of zinc-on-iron dehydrogenation catalyst by chemical exclusion of media from solutions of inorganic salts with a concentration ranging from 0.02 mol per liter to 2 mol per liter in the presence of ammonia with a molar ratio of ammonia to CS.272631 Sl hu od 0^,2 do 20 vyznačujúci ea týa, že ne premieSané částice katalyzátore sa v prvej sedmine doby poaečovania posobi amoniakálnou vodou a vo zvyšných šiestich sedminách doby pomečovania amoniakálnou vodou a meďnatou aolou, ktorá sa přidá do amoniakálnej vody v krystalickéj formě v druhej sedmine doby pomsffovania·CS.272631 Services of 0, 2 to 20, characterized in that the unmixed catalyst particles are treated with ammonia water in the first seventh of the treatment period and the remaining six sevenths of the soaking time with ammonia water and copper aol added to the ammonia water in crystalline form in the second seventh time of pomsffing ·
CS875788A 1988-12-27 1988-12-27 Method of dehydrogenation catalyst's copper coating CS272631B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS875788A CS272631B1 (en) 1988-12-27 1988-12-27 Method of dehydrogenation catalyst's copper coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS875788A CS272631B1 (en) 1988-12-27 1988-12-27 Method of dehydrogenation catalyst's copper coating

Publications (2)

Publication Number Publication Date
CS875788A1 CS875788A1 (en) 1990-05-14
CS272631B1 true CS272631B1 (en) 1991-02-12

Family

ID=5438606

Family Applications (1)

Application Number Title Priority Date Filing Date
CS875788A CS272631B1 (en) 1988-12-27 1988-12-27 Method of dehydrogenation catalyst's copper coating

Country Status (1)

Country Link
CS (1) CS272631B1 (en)

Also Published As

Publication number Publication date
CS875788A1 (en) 1990-05-14

Similar Documents

Publication Publication Date Title
CA1120456A (en) Non-oxidative dehydrogenation process
EP0323756B1 (en) Corrosion-resistant plated composite steel strip and method of producing same
US5603913A (en) Catalysts and process for selective oxidation of hydrogen sulfide to elemental sulfur
CS272631B1 (en) Method of dehydrogenation catalyst&#39;s copper coating
US4503251A (en) Raney nickel catalysis of aromatic amines
US4933509A (en) Method of ortho-alkylating phenol
CN101524643B (en) Method for preparing catalyst for use in production of o-phenylphenol
CA1242987A (en) Process for preparing improved zn-ni-alloy electroplated steel sheets
CN107961812B (en) A kind of preparation method of self-supporting metal modified ZSM-5 molecular sieve and its application in synthesizing isoprene
US3725472A (en) Process for preparing {60 ,{62 -unsaturated carboxylic acids
CS272632B1 (en) Method of dehydrogenation catalyst&#39;s copper coating
GB2106415A (en) A method of preparing a supported catalyst
RU2050975C1 (en) Method of hydrogen producing and a method of catalyst preparing for hydrogen producing
PL120510B1 (en) Method of manufacture of acetic acid,ethanol,acetic aldehyde and possibly derivative productsal&#39;degida i ikh proizvodnykh produktov
JPS6261640A (en) Sulfur resistant methanation catalyst
US3461140A (en) Production of ethylene oxide
US2647138A (en) Catalyst for the hydrogenation of carbon monoxide
US4673693A (en) Process for preparing oxygen-containing organic compounds
PL112437B1 (en) Method of manufacturing a catalyst for carbon monoxide reduction
CN117884113B (en) Preparation of mercaptan-induced protection synthesis diatomic catalyst and application of catalyst in tertiary dodecyl mercaptan synthesis
SU1530642A1 (en) Chrome-plating electrolyte
JPS5946229B2 (en) Method for producing ethylene oxide
CN107899608B (en) A kind of preparation method of self-supporting metal modified Beta molecular sieve and its application in synthesizing isoprene
JPH0515778A (en) Methanol reforming catalyst
SU293628A1 (en) CATALYST FOR POLYMERIZATION OF ETHYLENE