JPS6261640A - Sulfur resistant methanation catalyst - Google Patents

Sulfur resistant methanation catalyst

Info

Publication number
JPS6261640A
JPS6261640A JP60203009A JP20300985A JPS6261640A JP S6261640 A JPS6261640 A JP S6261640A JP 60203009 A JP60203009 A JP 60203009A JP 20300985 A JP20300985 A JP 20300985A JP S6261640 A JPS6261640 A JP S6261640A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
supported
amount
methanation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60203009A
Other languages
Japanese (ja)
Inventor
Masakatsu Nomura
野村 正勝
Mikio Miyake
幹夫 三宅
Tamiharu Sakai
酒井 民春
Taku Aokata
青方 卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60203009A priority Critical patent/JPS6261640A/en
Publication of JPS6261640A publication Critical patent/JPS6261640A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Industrial Gases (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To enhance methanating reaction activity and to prolong the life of a catalyst, by forming a sulfur resistant methanation catalyst by supporting a specific amount of Ni and Co by a carrier consisting of a specific amount of Al2O3, SiO2 and alkali metal oxide. CONSTITUTION:A sulfur resistant methanation catalyst is prepared by supporting 8-25wt% of a catalyst carrier of Ni and 20-65wt% of Ni of Co by the catalyst carrier consisting of 55-89wt% of Al2O3, 8-30wt% of SiO2 and 3-15wt% of alkali metal oxide. Further, the sulfur resistant methanation catalyst can be also prepared by supporting 8-25wt% of the carrier of Ni and 5-40wt% of Ni of Mo by the catalyst carrier consisting of 55-89wt% of Al2O3, 8-30wt% of SiO2 and 3-15wt% of alkali metal oxide.

Description

【発明の詳細な説明】[Detailed description of the invention]

C1t業上の利用分野〕 未発IJIは耐硫性の優れたメタン化触媒に関し、詳細
には、石炭ガスやコークス炉ガスの如く微量の硫黄化合
物を含むCo、CO2、H2混合ガスをメタン化する際
に使用する耐硫性の優れたメタン化触媒に関するもので
ある。 [従来の技術] 本発明触媒が使用されるメタン化反応とは、例えば石炭
ガスやコークス炉ガスの如くC01C02及びH2を含
む混合ガスを下記の反応によってメタンに転換させる反
応を言い、この反応はガスの発熱量を増大させる方法と
して広く実用化されている。 CO+3H2→CH4+H20 CO2+41(2→CH,+2H20 ところでメタン化反応を促進させる為の触媒としてはN
iが最も汎用されており、通常はアルミナ等の触媒担体
にNiを担持させたペレット状物或は粒状物として実用
に供されている。但しNi触媒には、硫黄化合物によっ
て簡単に被毒され失活するという問題があり、触媒に要
する費用を増大する要因となっている。即ち石炭ガスや
コークス炉ガスの生rk、源である石炭中には多量の硫
黄化合物が含まれているので、石炭を原料とする上記の
様なガス中にもH2S、CO3,C32、メルカプタン
、スルフィド、チオフェン等の硫黄化合物が含まれてお
り、メタン化反応に当たってはその予備処理工程で脱硫
処理を行なっているが、当該予備処理で硫黄化合物を完
全に除去することは至難の技であり、除去しきれなかっ
た硫黄化合物によってNi触媒のメタン化活性は徐々に
低下し、ついには失活してしまう。 そこでメタン化反応を実用化する為には、Ni系触媒の
耐硫性を改善し寿命を延長することが非常に重要となる
。こうした状況のもとてNi系触媒の耐硫性改善対策に
ついても種々の研究が行なわれており、例えば「ジャー
ナル拳オブ・キャタリシス」第60巻、第257〜26
9頁(1979年)には、Ni触媒にMoやCoを加え
て耐硫性を改善する技術が提案されている。また特開昭
51−10803号や同51−147491号公報には
、Mo又はCoをNiと組合せてメタン化触媒とする技
術も開示されてい一方Ni系触媒を実用化するに当たっ
ては、これを適当な担体に担持させて使用することは先
に述べた通りであり、担体として最も一般的なのはアル
ミナである。
Field of application in the C1t industry] Undeveloped IJI is related to methanation catalysts with excellent sulfur resistance. Specifically, it is used for methanation of Co, CO2, and H2 mixed gases that contain trace amounts of sulfur compounds, such as coal gas and coke oven gas. The present invention relates to a methanation catalyst with excellent sulfur resistance used in the production of methanation. [Prior Art] The methanation reaction in which the catalyst of the present invention is used refers to a reaction in which a mixed gas containing CO1C02 and H2, such as coal gas or coke oven gas, is converted into methane by the following reaction. It has been widely put into practical use as a method to increase the calorific value of gas. CO+3H2→CH4+H20 CO2+41(2→CH,+2H20 By the way, N is used as a catalyst to promote the methanation reaction.
i is the most commonly used, and is usually put into practical use in the form of pellets or granules in which Ni is supported on a catalyst carrier such as alumina. However, the Ni catalyst has the problem that it is easily poisoned and deactivated by sulfur compounds, which is a factor that increases the cost required for the catalyst. In other words, coal, which is the raw rk and source of coal gas and coke oven gas, contains a large amount of sulfur compounds, so the above-mentioned gases made from coal also contain H2S, CO3, C32, mercaptan, It contains sulfur compounds such as sulfides and thiophenes, and desulfurization treatment is performed in the pretreatment process during the methanation reaction, but it is extremely difficult to completely remove sulfur compounds in the pretreatment process. Due to the sulfur compounds that could not be completely removed, the methanation activity of the Ni catalyst gradually decreases and eventually becomes deactivated. Therefore, in order to put the methanation reaction into practical use, it is very important to improve the sulfur resistance of the Ni-based catalyst and extend its life. Under these circumstances, various studies have been conducted on measures to improve the sulfur resistance of Ni-based catalysts.
9 (1979) proposes a technique for improving sulfur resistance by adding Mo or Co to a Ni catalyst. Furthermore, Japanese Patent Application Laid-open Nos. 51-10803 and 51-147491 disclose techniques for using Mo or Co as a methanation catalyst in combination with Ni. As mentioned above, it is used by supporting it on a carrier, and the most common carrier is alumina.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

本発明者等もかねてよりNi系のメタン化触媒について
研究を行なっているが、最近得られた知見によると、N
l系触媒の耐硫性やメタン化反応活性はNi系触媒その
ものの成分組成のみによって決まる訳ではなく、担体の
種類や該担体への触媒担持量によって著しく変わるとい
う事実をつきとめた。即ちメタン化反応を優れた触媒寿
命のもとて効率良く進める為には、触媒の成分組成もさ
ることながら、これと組合される担体の種類や触媒担持
量についても十分に考慮しなければならない、しかしな
がらこの種の分野における従来の研究では、触媒自体の
成分組成に主眼を置いた研究がなされているだけであり
、担体との組合せまでも考慮に入れた研究は不十分であ
ると言わざるを得ない。 本発明はこの様な事情に着目してなされたものであって
、その目的は、触媒の成分m或はもとよりこれと組合さ
れるべき担体の成分組成や該担体に対する触媒担持酸等
についても十分に配慮し、触媒寿命及びメタン化反応活
性の卓越した触媒を提供しようとするこのである。 し問題点を解決する為の手段] 本発明に係る耐硫性メタン化触媒とは、Al2O3:5
5〜89重量%、SiO2:8〜30%、アルカリ金属
酸化物:3〜15%からなる触媒担体に、該担体に対し
8〜25%のNiと、該Niに対し20〜65%のCo
或は回Niに対し5〜40%のMoを担持させてなると
ころに要旨を有するものである。 [作用] 本発明では上記の様に触媒担体の成分組成を特定すると
共に、Ni、Co、Moの各担持量を特定したところに
特徴を有するものであり、以下それらの設定理由を説明
する。 まず担体を構成するA 1203は例えば水酸化アルミ
ニウム[A l (OH) 3 ]或は含水アルミナを
原料とするものであり、これらは500〜800℃で焼
成するとγ−A1203に変!ムし。 Ni系触媒の担体マトリックスとして機走するばかりで
なく、Ni系触媒を活性化する作用を発揮してメタン化
反応率の向上に寄与するもので、目的達成の為には担体
の55%以上をAl2O3によって構成しなければなら
ない、しかし89%を越えると、後述するSiO2やア
ルカリ金属酸化物の絶対量が不足気味となって担体とし
ての強度が乏しくなり、使用中に少しずつ粉化して通気
性が悪化し、メタン化反応の進行が著しく抑制される。 しかも本発明触媒を例えば管壁型触媒(詳細は後述)と
して使用する場合には担体被覆の強度不足によって脱落
し易くなり、長期使用に耐え難くなる。またSiO2は
固着剤として用いる木ガラスやシリカゲル等として配合
されるものであるが、その配合量が8%未満では担体の
強度が乏しくなって使用中に粉化したり、管壁型触媒と
じて用いた場合に担体被覆が脱落し易くなる。しかしS
iO2量が30%を超えると担体調製時における均一分
散が困難となり、偏在水分が焼成工程で突沸的に蒸発す
る現象が起こり、ペレット状或は管壁型の如何を問わず
触媒担持層が脆弱となって寿命が低下する。またアルカ
リ金属酸化物は、固着剤として使用される水ガラスから
Na2O。 K2O或はLi2O等として配合される成分であり、担
体中の含有率が3%未PXI4〒は担体としての強度が
乏しくなって使用時に粉化或は管壁からの剥離を生じ易
くなり、一方15%を超えると長時間使用中に触媒活性
が劣化し易くなりメタン化反応率が低下してくる。 本発明では上記の様にAl2O3,SiO2及びアルカ
リ金属酸化物を夫々適正範囲で含有させることを必須と
するものであり、いずれか1つが欠除し、或は上記成分
のいずれか1つでも上記含有率範囲を外れる場合は所期
の目的を達成することができない。 次に上記担体に担持させるNiはメタン化反応触奴の主
成分となるものであり、満足の行くメタン化反応率を確
保する為には上記担体の組改着に対して10%以上担持
させなければならない、しかし25%を超えて担持させ
ることは、担持工程でNi源として用いられる硝酸ニッ
ケルの溶解度や担体の含水率等の観点から非常に困難で
あり、例えば浸m−担持工程でいったん担持されたNi
成分が逆に溶出したり、或は乾燥・焼成工程でNiが担
体表面へ粉状に析出してくるといった現象が起こり、経
済性から言っても又触媒活性の点からも得策とは言えな
い、Co又はMOは硫黄化合物によるNiの被毒を防止
するうえで欠くことのできない元素であり、その担持量
はNiの担持量を基準にして決めるべきである。即ちC
Oの場合は少なくとも20%(対Ni)、Moの場合は
少なくとも5%(対Ni)夫々担持させなければ上方な
寿命延長効果が得られない、但しNi担持量に対してM
oが40%を超えると、メタン化反応率自体が低下傾向
を示すので好ましくない。 尚担体にNi及びCo又はMoを担持させる方法は特に
制限されないが最も一般的な方法を例示すると下記の通
りである。 即ち(a) A I203  、 S i02及びアル
カリ金属酸化物よりなる担体をNi又はCOの硝酸塩[
Ni (NO3)2 *6H20,Co (NO3)2
・6H201或はパラモリブデン酸アンモニウム[(N
H4)6 Mot 02s* 4H203等の水溶液に
浸清し、加熱蒸発させた後常圧或は減圧下で乾燥する。 (b)次いで金属塩を含んだ担体を空気中で加熱して金
属塩を酸化物に変換した後、(c)H2″R囲気中で加
熱して活性金属に還元する。或は(b−2)金属塩を含
んだ担体をH2雰囲気中で直接加熱し、金属塩を分解・
還元する。 但し本発明ではNi、Co、Moの担持方法そのものは
特に限定されないから、他の方法で担持させることも勿
論可能である。 また本発明の触媒は通常のペレット状として使用するこ
とも勿論可能であるが1例えば熱交換管の内面又は外面
に触媒被覆層を形成し、鎖管の内面或は外面側に混合ガ
スを導通させることによってメタン化反応を進め、鎖管
の外面又は内面側より加熱してメタン化反応速潰を一段
と高める様な方法で使用される所謂管壁型触媒としても
非常に優れた効果を発揮し得るものである。 [実施例] 実施例1(担体成分組成の決定−1) 金属管としてステンレス鋼製パイプ(StJS316、
外径16mm’)を用い、水酸化アルミニウムに固着剤
として水ガラスとシリカゲルを加えて混練して製造した
被覆剤を上記パイプの外周に乾燥厚さが1.0 mlと
なる様に塗布し、これを650℃で焼成した後被覆剤(
担体)の脱落、形状欠陥の有無を調査した。その結果を
m1表に示す、第1表中S−t〜S−4は従来例を示し
、T−1〜T−5は本発明の実施例を示している。 尚第1表中O印は脱落又は形状欠陥が無いことを示して
おり、X印は脱落又は形状欠陥が有ることを示している
。 第  1  表 !R1表から下記のことが理解される。S−1はSiO
2が本発明の範囲外であり、S−2はアルカリ金属酸化
物が本発明の範囲外である為、何れも被覆剤の強度が不
足して脱落を生じている。またS−3ではSiO2が本
発明の範囲外であるため、被覆剤の表面に形状欠陥が生
じている。更にS−4ではSiO2及びアルカリ金属酸
化物が本発明の範囲外であるため、脱落及び形状欠陥を
生じている。これらに対しT−1−T−5は各化合物の
配合率が伺れも本発明の規定範囲内である為、被覆剤の
強度が十分で脱落はなく、その表面に形状欠陥等は全く
認められない。 実施例2(担体成分組成の決定−2) 本発明で使用する担体における必須成分の1つであるア
ルカリ金属酸化物について、その触媒(Ni単独)活性
に与える影!をメタン生成反応について調査した。即ち
水酸化アルミニウムに固着剤として水ガラスを各種量配
合・混練して被覆剤を調製した後、該被覆剤をステンレ
ス鋼製パイプ(SUS31 B 、外径12■l−)に
塗布して650℃で焼成した。得られた担持層に触媒と
して既述の方法でNiを担持させた後、下記の条件でメ
タン生成反応を行ない、メタン生成率を測定した。結果
を第1図に示す。 (メタン生成反応の条件) ガス組成: H55%、CH430% 残部 C01CO2,N2 反応温度:  300〜500℃ ガス流N 二1.OXm’ /hr 第1図から理解されるように、アルカリ金属酸化物の配
合率が増すにつれてメタン生成率が低下し、1つ時間の
経過と共にメタン生成率が低下する傾向が見られる。特
にアルカリ金属酸化物の配合率が16%の場合は、15
0時間経過後にメタン生成率が0.4%となり溶射法と
大差なく本発明の有意性が認められなくなる。この様な
ところから本発明ではアルカリ金属化合物の配合率の上
限を15重量%と定めた。 実施例3(担体成分組成の決定−3) 更に本発明者らは、担持層中における Al2O3の含有量とメタン生成率の関係を明確にすべ
く実験を行なった。装造・焼成の条件は実施例2と基本
的に同様とし、Al2O3量の異なる数種類の管壁触媒
担持層を形成し、夫々について前記と同様にしてNi単
独触媒を担持させた後、メタン生成反応を行なった。第
2図はその結果を示したグラフであり、5000時間経
過後にIFしたものであるが、Al2O3が60%未満
ではメタン生成率を有意に高めることができず、本発明
の目的を果し得ない、即ち被覆剤中のAl2O3配合率
を60重量%以上とすることは触媒活性を高めるうえで
不可欠の要件である。 実施例4(一般のアルミナとの比較) 市販のアルミナ系担体であるNeobed C−4(A
 l 203 : 99.8%、5t02:0.2%粒
状3m−、BET表面積139m2/g)及び本発明の
要件を満たす担体(A 1203 : 80%。 5L02:15%、Na2O:551円柱状2amφX
5mm、BET表面積69s27g)を使用し、夫々の
担体に常法に従って10%のNiを担持させた後、下記
の条件でメタン化反応を行ない、夫々のメタン生成*(
対平衡炭素換算)を比較した。 メタン化反応条件 温   度: 400℃ 反応ガス: N2 /C0=3.0 、 241/ h
 rその結果、市販のアルミナ系担体を用いた場合のメ
タン生成率は72%であるのに対し、本発明の要件を満
たす担体を用いた場合のメタン生成率は100%を示し
た。即ち本発明で規定する成分組成の担体を用いた場合
は、市販担体に比べてBET表面積が約局であるのにも
かかわらず非常に高いメタン生成率が得られており、本
発明で規定する担体がNE系触媒のメタン化反応活性を
効果的に高め得るものであることが分かる。 実施例5(担体に対するNi担持量の影響)外径61の
SUS  304製管材の表面に、実施例4で用いたの
と同一成分組成のA1203−S i02−Na20系
担体層を約0.51の厚さで形成し、該担体コーティン
グ層に$2表に示す量のNiを担持せしめ、下記の条件
でメタン化反応を行なった。 各実験で採用した触媒層長さ及び得られたメタン生成率
を第2表に一括して示す。 く反応条件〉 反応ガス組ffl:H2=53%、CH4=31%、C
0=7%、C02=5 %、N2冨4% 反応ガス圧カニ 2.Okg/c+s2G反応ガス流N
 : 1.5 Xs3/hr反応ガス温度:350℃ :fS2表 第2表からも明らかな様に、Ni相持量が多くなるにつ
れてメタン生成率は概して高い値を示す様になり、Ni
担持量を8%以上としてやれば一応満足し得るメタン生
成率が確保できる。しかしNi担持量が8%未満になる
とメタン生成率は3%以下の低い値しか得られなくなる
。 一方Ni担持量を25%超とすることは、前述の如く硝
酸Ni等を用いた担持処理時の効率が著しく低下する他
、担持形態も悪化して安定した触媒活性が得られ滌くな
るので、実用性を考えればNi担持量の上限は25%程
度と考えられる。 実施例6(硫黄化合物によるNi触媒被#j)本発明の
要件を満たす担体を用いて実施例4と同様にして作製し
た粒状触媒(Ni担持1i:l。 %)を使用し、硫黄化合物としてH2Sを用いた場合の
触媒被毒状況を調べた。但しメタン化反応温度は350
℃、原料ガスとしてはN2 /C0=3.0  (61
/hr)を用い、H2Sガスに対する#i露前・後のメ
タン生成率より被毒の程度を調べた。但し以後の実施例
では反応ガス流速を約7×10−’m/secに設定し
触媒層における滞留時間を長くすることによりメタン生
成率を高めた。 結果は下記第3表に示す通りであり、Ni触媒のメタン
化渣はH2Sとの接触によって急激に低下し、0.51
のH2S添加によりメタン収率は約8%に、また11の
H2S添加により回収率は約0.01%にまで激減して
いる。 実施例7(Coによる被毒抑制効果) 担体に対し10%のNiと該Niに対し5〜100%の
Coを担持させた他は実施例6と同様にして粒状触媒を
作製し、且つ実施例6と同様にしてH2Sによる触媒被
毒前・後におけるメタン生成率を調べた。 結果は第4表及び第3図に示す通りであり、Niと共に
適贋のCoを担持させると触媒の被毒は著しく抑制され
、特にNi担持量に対して20〜60fi51%のCo
を併用した場合は、H2S=0.51接触の場合でメタ
ン生成率の低下を50%以下に、またH2S=1mlの
場合で同低下率を90%以下に抑えることができる。ま
たメタン化の初期反応活性自体はCodには殆んど影響
を受けることなくほぼ一定の値が得られている。 第   4   表 実施例8(Moによる被毒抑制効果) 担体に対し10%のNiと該Niに対し5〜50%のM
oを担持させた他は実施例7と同様にして、H2Sによ
る触媒被毒前・後におけるメタン生成率を調べた。 結果は第5表及び第4図に示す通りであり、Niと共に
適位のMoを担持させると触媒の被毒は著しく抑制され
、特にNI相持量に対して5重量%以上のMoを併用し
た場合は、H2S接触後におけるメタン生at<の低下
を著しく抑制することができる。但しMoの相持量がN
i量に対し40%を超えると、触媒全体の初期メタン化
活性が著しく悪化する傾向があるので、Moの相持量は
40%以下に抑えるべきである。 第5表 [発明の効果] 本発明は以上の様に構成されるが、要は担体の成分組成
を特定する他、該担体へのNi担持量及びCo又はMO
の担持量を夫々厳密に規定することによって、高レベル
の初期メタン化反応活性を示すばかりでなく、硫黄化合
物に対しても優れた耐被毒作用を発揮して高いメタン化
反応活性を維持する触媒を提供し得ることになった。殊
に本発明の触媒が管壁型触媒として適したものであるこ
とは先に説明した通りであるが、この管壁型触媒はその
構造上触媒が反応器内へ固定されている為その取り替え
が與常に困難である。これに対し反応器単位体積当たり
の触媒使用量が通常の粒状触媒に比べて少なくてすむと
いう特徴を有しているが、本発明により触媒の被毒を抑
制してその寿命を延長することにより、触媒の取り替え
頻度を激減することができるので、管壁型触媒として実
用化する場合もメンテナンス性を大幅に改善することが
でき、その特長を有効に活用することができまた管壁型
或はペレット状更には粒状等の形状の如何を問わず、触
媒の耐硫性向上によりメタン化装置の前・後に設けられ
る脱硫設備の要求能力を緩和することができ、ひいては
脱硫処理自体をも簡略化し得るといった利益も享受する
ことができる。
The present inventors have also been conducting research on Ni-based methanation catalysts for some time, but according to recent findings, N
It has been found that the sulfur resistance and methanation reaction activity of the Ni-based catalyst are not determined only by the component composition of the Ni-based catalyst itself, but vary significantly depending on the type of support and the amount of catalyst supported on the support. In other words, in order to efficiently carry out the methanation reaction with an excellent catalyst life, it is necessary to give sufficient consideration not only to the component composition of the catalyst, but also to the type of carrier to be combined with it and the amount of catalyst supported. However, conventional research in this type of field has only focused on the component composition of the catalyst itself, and it must be said that research that takes into consideration the combination with a support is insufficient. I don't get it. The present invention has been made in view of these circumstances, and its purpose is to provide sufficient information regarding the component m of the catalyst, the component composition of the carrier to be combined with it, and the catalyst supporting acid on the carrier. This is an attempt to provide a catalyst with excellent catalyst life and methanation reaction activity. [Means for solving the problem] The sulfur-resistant methanation catalyst according to the present invention is an Al2O3:5
A catalyst carrier consisting of 5 to 89% by weight, SiO2: 8 to 30%, and alkali metal oxide: 3 to 15%, Ni in an amount of 8 to 25% with respect to the carrier, and Co in an amount of 20 to 65% with respect to the Ni.
Alternatively, the gist is that Mo is supported in an amount of 5 to 40% relative to Ni. [Function] The present invention is characterized in that the component composition of the catalyst carrier is specified as described above, and the amounts of each of Ni, Co, and Mo supported are specified, and the reasons for these settings will be explained below. First, the A1203 that constitutes the carrier is made from, for example, aluminum hydroxide [A1(OH)3] or hydrated alumina, and when fired at 500 to 800°C, it changes to γ-A1203! Mushi. It not only acts as a carrier matrix for Ni-based catalysts, but also acts to activate the Ni-based catalysts and contributes to improving the methanation reaction rate. It must be composed of Al2O3, but if it exceeds 89%, the absolute amount of SiO2 and alkali metal oxide, which will be described later, will be insufficient, resulting in poor strength as a carrier, and it will gradually powder during use, resulting in poor breathability. becomes worse, and the progress of the methanation reaction is significantly suppressed. Moreover, when the catalyst of the present invention is used, for example, as a tube wall type catalyst (details will be described later), the carrier coating tends to fall off due to insufficient strength, making it difficult to withstand long-term use. Furthermore, SiO2 is blended as wood glass, silica gel, etc. used as a fixing agent, but if the blended amount is less than 8%, the strength of the support becomes poor and it may powder during use or may not be used as a tube wall type catalyst. If the carrier coating is removed, the carrier coating will easily fall off. However, S
If the amount of iO2 exceeds 30%, uniform dispersion during carrier preparation becomes difficult, and a phenomenon occurs in which unevenly distributed moisture evaporates in a bumping manner during the calcination process, making the catalyst support layer fragile regardless of whether it is in the form of pellets or tube walls. This reduces the lifespan. Alkali metal oxides include Na2O from water glass, which is used as a fixing agent. It is a component blended as K2O or Li2O, etc., and PXI4 with a content of 3% in the carrier has poor strength as a carrier and is likely to powder or peel off from the tube wall during use. If it exceeds 15%, the catalyst activity tends to deteriorate during long-term use and the methanation reaction rate decreases. In the present invention, as mentioned above, it is essential to contain Al2O3, SiO2, and alkali metal oxides in appropriate ranges, and if any one of the above components is omitted, or even if any one of the above components is If the content is outside the range, the intended purpose cannot be achieved. Next, Ni to be supported on the above carrier is the main component of the methanation reaction catalyst, and in order to ensure a satisfactory methanation reaction rate, Ni should be supported at 10% or more with respect to the recombination of the above carrier. However, it is extremely difficult to support more than 25% of nickel in terms of the solubility of nickel nitrate used as a Ni source in the supporting process and the water content of the carrier. Supported Ni
Phenomena such as components eluting backwards or Ni depositing in powder form on the surface of the carrier during the drying/calcination process occur, so it is not a good idea from an economic point of view or from a catalytic activity point of view. , Co or MO are indispensable elements for preventing Ni from being poisoned by sulfur compounds, and their supported amounts should be determined based on the supported amount of Ni. That is, C
An upward life extension effect cannot be obtained unless O is supported at least 20% (relative to Ni) and Mo is supported at least 5% (relative to Ni). However, if M is supported relative to the amount of Ni supported,
If o exceeds 40%, the methanation reaction rate itself tends to decrease, which is not preferable. The method for supporting Ni and Co or Mo on the carrier is not particularly limited, but the most common method is as follows. That is, (a) a support consisting of A I203, S i02 and an alkali metal oxide is mixed with Ni or CO nitrate [
Ni (NO3)2 *6H20, Co (NO3)2
・6H201 or ammonium paramolybdate [(N
It is immersed in an aqueous solution such as H4)6 Mot 02s* 4H203, heated and evaporated, and then dried under normal pressure or reduced pressure. (b) The support containing the metal salt is then heated in air to convert the metal salt to an oxide, and (c) heated in an H2''R atmosphere to reduce it to the active metal. Alternatively, (b- 2) Directly heat the carrier containing metal salts in an H2 atmosphere to decompose and decompose the metal salts.
Give back. However, in the present invention, the method of supporting Ni, Co, and Mo is not particularly limited, so it is of course possible to support them by other methods. Although the catalyst of the present invention can of course be used in the form of ordinary pellets, it is also possible to form a catalyst coating layer on the inner or outer surface of a heat exchange tube, and to conduct the mixed gas through the inner or outer surface of a chain tube. It also exhibits an extremely excellent effect as a so-called tube wall type catalyst, which is used in a method where the methanation reaction is advanced by heating from the outside or inside of the chain pipe to further increase the speed of the methanation reaction. It's something you get. [Example] Example 1 (Determination of carrier component composition-1) A stainless steel pipe (StJS316,
Using a pipe with an outer diameter of 16 mm', a coating material prepared by adding and kneading water glass and silica gel as adhesion agents to aluminum hydroxide was applied to the outer periphery of the pipe to a dry thickness of 1.0 ml, After baking this at 650℃, the coating material (
The presence or absence of falling off of the carrier (carrier) and shape defects was investigated. The results are shown in Table m1. In Table 1, S-t to S-4 show conventional examples, and T-1 to T-5 show examples of the present invention. Note that in Table 1, the O mark indicates that there is no falling off or shape defect, and the X mark indicates that there is falling off or shape defect. Table 1! The following is understood from the R1 table. S-1 is SiO
2 is outside the scope of the present invention, and S-2 has an alkali metal oxide outside the scope of the present invention, so in both cases, the strength of the coating material was insufficient and the coating material fell off. Further, in S-3, since SiO2 is outside the scope of the present invention, shape defects occur on the surface of the coating material. Furthermore, in S-4, SiO2 and alkali metal oxides are outside the scope of the present invention, resulting in drop-offs and shape defects. On the other hand, in T-1 to T-5, the compounding ratio of each compound is within the specified range of the present invention, so the coating has sufficient strength and does not fall off, and no shape defects are observed on the surface. I can't do it. Example 2 (Determination of carrier component composition-2) Effect of alkali metal oxide, which is one of the essential components in the carrier used in the present invention, on the catalytic activity (Ni alone)! was investigated for the methane production reaction. That is, after preparing a coating agent by mixing and kneading various amounts of water glass as a fixing agent with aluminum hydroxide, the coating agent was applied to a stainless steel pipe (SUS31 B, outer diameter 12 l-) and heated at 650°C. It was fired in After Ni was supported as a catalyst on the obtained support layer by the method described above, a methane production reaction was carried out under the following conditions, and the methane production rate was measured. The results are shown in Figure 1. (Conditions for methane production reaction) Gas composition: H55%, CH430% balance C01CO2, N2 Reaction temperature: 300-500°C Gas flow N 21. OXm' /hr As understood from FIG. 1, as the blending ratio of alkali metal oxide increases, the methane production rate decreases, and there is a tendency for the methane production rate to decrease as time passes. In particular, when the alkali metal oxide content is 16%, 15%
After 0 hours, the methane production rate is 0.4%, which is not much different from the thermal spraying method, and the significance of the present invention is no longer recognized. For this reason, in the present invention, the upper limit of the blending ratio of the alkali metal compound is set at 15% by weight. Example 3 (Determination of carrier component composition-3) Furthermore, the present inventors conducted an experiment to clarify the relationship between the content of Al2O3 in the carrier layer and the methane production rate. The conditions for packing and firing were basically the same as in Example 2, and several types of tube wall catalyst supporting layers with different amounts of Al2O3 were formed, and after supporting each of them a single Ni catalyst in the same manner as above, methane production was performed. The reaction was carried out. Figure 2 is a graph showing the results, which was obtained by IF after 5000 hours, and it is found that if Al2O3 is less than 60%, the methane production rate cannot be significantly increased, and the purpose of the present invention cannot be achieved. In other words, it is an essential requirement for increasing the catalyst activity that the Al2O3 content in the coating material be 60% by weight or more. Example 4 (Comparison with general alumina) Neobed C-4 (A
l203: 99.8%, 5t02: 0.2% granular 3m-, BET surface area 139m2/g) and a carrier that meets the requirements of the present invention (A1203: 80%. 5L02: 15%, Na2O: 551 cylindrical 2amφX
5 mm, BET surface area 69 s 27 g), each carrier was loaded with 10% Ni according to a conventional method, and then a methanation reaction was carried out under the following conditions to produce each methane*(
(vs. equilibrium carbon equivalent). Methanation reaction conditions Temperature: 400°C Reaction gas: N2/C0=3.0, 241/h
As a result, the methane production rate when using a commercially available alumina-based carrier was 72%, whereas the methane production rate when using a carrier that met the requirements of the present invention was 100%. That is, when a carrier having the component composition specified in the present invention is used, a very high methane production rate is obtained even though the BET surface area is about the same as that of a commercially available carrier. It can be seen that the carrier can effectively enhance the methanation reaction activity of the NE catalyst. Example 5 (Influence of the amount of Ni supported on the carrier) An A1203-S i02-Na20 carrier layer having the same composition as that used in Example 4 was applied to the surface of a SUS 304 pipe material having an outer diameter of 61 mm by approximately 0.51 mm. The carrier coating layer was made to carry Ni in the amount shown in Table 2, and a methanation reaction was carried out under the following conditions. The length of the catalyst layer adopted in each experiment and the obtained methane production rate are summarized in Table 2. Reaction conditions> Reaction gas set ffl: H2 = 53%, CH4 = 31%, C
0=7%, C02=5%, N2 richness 4% Reaction gas pressure crab 2. Okg/c+s2G reaction gas flow N
: 1.5
If the supported amount is 8% or more, a satisfactory methane production rate can be ensured. However, when the amount of Ni supported is less than 8%, the methane production rate can only be as low as 3% or less. On the other hand, if the amount of Ni supported is more than 25%, as mentioned above, the efficiency during the supporting treatment using Ni nitrate etc. will be significantly reduced, and the supported form will also deteriorate, making it difficult to obtain stable catalytic activity. Considering practicality, the upper limit of the amount of Ni supported is considered to be about 25%. Example 6 (Ni catalyst #j with sulfur compound) Using a granular catalyst (Ni supported 1i:l.%) prepared in the same manner as in Example 4 using a carrier that satisfies the requirements of the present invention, a sulfur compound was used. The catalyst poisoning situation when using H2S was investigated. However, the methanation reaction temperature is 350
℃, raw material gas is N2/C0=3.0 (61
/hr), and the degree of poisoning was investigated from the methane production rate before and after #i exposure to H2S gas. However, in the following examples, the methane production rate was increased by setting the reaction gas flow rate to about 7 x 10-' m/sec and lengthening the residence time in the catalyst layer. The results are shown in Table 3 below, and the methanation residue of the Ni catalyst rapidly decreased by contact with H2S, reaching 0.51.
The methane yield was reduced to about 8% by the addition of H2S at 1, and the recovery rate was drastically reduced to about 0.01% by the addition of H2S at 11. Example 7 (Poisoning Suppression Effect by Co) A granular catalyst was produced in the same manner as in Example 6, except that 10% Ni was supported on the carrier and 5 to 100% Co was supported on the Ni, and the same procedure was carried out. The methane production rate before and after catalyst poisoning with H2S was examined in the same manner as in Example 6. The results are shown in Table 4 and Figure 3, and when an appropriate amount of Co is supported along with Ni, the poisoning of the catalyst is significantly suppressed.
When used in combination, the reduction in methane production rate can be suppressed to 50% or less when H2S = 0.51 contact, and to 90% or less when H2S = 1 ml. Moreover, the initial reaction activity of methanation itself is hardly affected by Cod, and a substantially constant value is obtained. Table 4 Example 8 (Poisoning suppression effect by Mo) 10% Ni to carrier and 5 to 50% M to Ni
The methane production rate before and after the catalyst poisoning with H2S was investigated in the same manner as in Example 7 except that o was supported. The results are shown in Table 5 and Figure 4. Poisoning of the catalyst was significantly suppressed when an appropriate amount of Mo was supported together with Ni, especially when Mo was used in an amount of 5% by weight or more based on the amount of Ni supported. In this case, the decrease in methane production at< after contact with H2S can be significantly suppressed. However, the mutual amount of Mo is N
If it exceeds 40% of the amount of i, the initial methanation activity of the entire catalyst tends to deteriorate significantly, so the amount of Mo supported should be suppressed to 40% or less. Table 5 [Effects of the Invention] The present invention is configured as described above, but the important point is to specify the component composition of the carrier, and also to determine the amount of Ni supported on the carrier and the amount of Co or MO.
By strictly regulating the supported amount of each, it not only shows a high level of initial methanation reaction activity, but also exhibits excellent poisoning resistance against sulfur compounds and maintains high methanation reaction activity. It was possible to provide a catalyst. As explained above, the catalyst of the present invention is particularly suitable as a tube wall type catalyst, but because the structure of the tube wall type catalyst means that the catalyst is fixed inside the reactor, it cannot be replaced. However, it is always difficult. On the other hand, it has the characteristic that the amount of catalyst used per unit volume of the reactor is smaller than that of ordinary granular catalysts, but the present invention suppresses poisoning of the catalyst and extends its life. Since the frequency of replacing the catalyst can be drastically reduced, maintenance efficiency can be greatly improved even when it is put into practical use as a tube wall type catalyst, and its features can be effectively utilized. Regardless of the shape of the catalyst, such as pellets or granules, improving the sulfur resistance of the catalyst can reduce the required capacity of the desulfurization equipment installed before and after the methanation equipment, and in turn, simplify the desulfurization process itself. You can also enjoy benefits such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は担体中のアルカリ金属酸化物量を変えた場合(
Ni触媒担持)におけるメタン生成率の経時変化を示す
グラフ、第2図は担体中のAl2O3含有率とメタン生
成率の関係を示すグラフ、第3,4図はCo又はMoの
担持量とH2S被毒抑制効果の関係を示すグラフである
Figure 1 shows the case where the amount of alkali metal oxide in the carrier is changed (
Figure 2 is a graph showing the relationship between the Al2O3 content in the carrier and the methane production rate, and Figures 3 and 4 are graphs showing the relationship between the amount of Co or Mo supported and the H2S coverage. It is a graph showing the relationship between poison suppression effects.

Claims (2)

【特許請求の範囲】[Claims] (1)Al_2O_3:55〜89重量%(以下単に%
と記す)、SiO_2:8〜30%、アルカリ金属酸化
物:3〜15%からなる触媒担体に、該担体に対し8〜
25%のNiと、該Niに対し20〜65%のCoを担
持させてなることを特徴とする耐硫性メタン化触媒。
(1) Al_2O_3: 55-89% by weight (hereinafter simply %
), SiO_2: 8 to 30%, and alkali metal oxide: 3 to 15%.
A sulfur-resistant methanation catalyst comprising 25% Ni and 20 to 65% Co supported on the Ni.
(2)Al_2O_3:55〜89重量%、SiO_2
:8〜30%、アルカリ金属酸化物:3〜15%からな
る触媒担体に、該担体に対し8〜25%のNiと、該N
iに対し5〜40%のMoを担持させてなることを特徴
とする耐硫性メタン化触媒。
(2) Al_2O_3: 55-89% by weight, SiO_2
: 8 to 30%, alkali metal oxide: 3 to 15%, Ni in an amount of 8 to 25% with respect to the carrier, and the N
A sulfur-resistant methanation catalyst characterized by supporting 5 to 40% of Mo based on i.
JP60203009A 1985-09-12 1985-09-12 Sulfur resistant methanation catalyst Pending JPS6261640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203009A JPS6261640A (en) 1985-09-12 1985-09-12 Sulfur resistant methanation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203009A JPS6261640A (en) 1985-09-12 1985-09-12 Sulfur resistant methanation catalyst

Publications (1)

Publication Number Publication Date
JPS6261640A true JPS6261640A (en) 1987-03-18

Family

ID=16466821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203009A Pending JPS6261640A (en) 1985-09-12 1985-09-12 Sulfur resistant methanation catalyst

Country Status (1)

Country Link
JP (1) JPS6261640A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014158095A1 (en) * 2013-03-28 2014-10-02 Agency For Science, Technology And Research Methanation catalyst
CN104549336A (en) * 2013-10-15 2015-04-29 中国石油化工股份有限公司 Activated carbon-based sulfur tolerant shift catalyst and preparation method thereof
US9908104B2 (en) 2013-06-28 2018-03-06 Agency For Science, Technology And Research Methanation catalyst
CN108636412A (en) * 2018-02-08 2018-10-12 贵州理工学院 Methane and carbon dioxide reforms the preparation method of multinuclear shell hollow type catalyst nickel-nisiloy hydrochlorate
CN110252363A (en) * 2019-06-25 2019-09-20 北京三聚环保新材料股份有限公司 A kind of Ni-based methanation catalyst and preparation method thereof and application
CN110339856A (en) * 2018-04-03 2019-10-18 华东理工大学 One kind is with mesoporous SiO2Molecular sieve KIT-6 is the Ni-based methanation catalyst and the preparation method and application thereof of carrier
JP2020179347A (en) * 2019-04-25 2020-11-05 株式会社豊田中央研究所 Catalyst for hydrocarbon synthesis
KR20230058834A (en) * 2021-10-25 2023-05-03 (주)헬퍼로보텍 The filling system of soft-pot with natural soil for planting flower using road side landscaping

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014158095A1 (en) * 2013-03-28 2014-10-02 Agency For Science, Technology And Research Methanation catalyst
JP2016515470A (en) * 2013-03-28 2016-05-30 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ Methanation catalyst
US9802872B2 (en) 2013-03-28 2017-10-31 Agency For Science, Technology And Research Methanation catalyst
US9908104B2 (en) 2013-06-28 2018-03-06 Agency For Science, Technology And Research Methanation catalyst
CN104549336A (en) * 2013-10-15 2015-04-29 中国石油化工股份有限公司 Activated carbon-based sulfur tolerant shift catalyst and preparation method thereof
CN104549336B (en) * 2013-10-15 2017-01-25 中国石油化工股份有限公司 Activated carbon-based sulfur tolerant shift catalyst and preparation method thereof
CN108636412A (en) * 2018-02-08 2018-10-12 贵州理工学院 Methane and carbon dioxide reforms the preparation method of multinuclear shell hollow type catalyst nickel-nisiloy hydrochlorate
CN108636412B (en) * 2018-02-08 2020-11-13 贵州理工学院 Preparation method of multi-core-shell hollow catalyst nickel-nickel silicate for methane and carbon dioxide reforming
CN110339856A (en) * 2018-04-03 2019-10-18 华东理工大学 One kind is with mesoporous SiO2Molecular sieve KIT-6 is the Ni-based methanation catalyst and the preparation method and application thereof of carrier
JP2020179347A (en) * 2019-04-25 2020-11-05 株式会社豊田中央研究所 Catalyst for hydrocarbon synthesis
CN110252363A (en) * 2019-06-25 2019-09-20 北京三聚环保新材料股份有限公司 A kind of Ni-based methanation catalyst and preparation method thereof and application
KR20230058834A (en) * 2021-10-25 2023-05-03 (주)헬퍼로보텍 The filling system of soft-pot with natural soil for planting flower using road side landscaping

Similar Documents

Publication Publication Date Title
US4268488A (en) Process for the catalytic reduction of nitrogen oxides in gaseous mixtures
JPS58174237A (en) Reforming catalyst of methanol
Dry et al. Factors influencing the formation of carbon on iron Fischer-Tropsch catalysts: I. The influence of promoters
IL45571A (en) Process for the catalytic conversion of sulphur compounds in industrial gases to sulphur by the claus reaction
JPS6261640A (en) Sulfur resistant methanation catalyst
JP2930409B2 (en) Purification method of sulfide-containing gas
US4091076A (en) Method of removing sulfur emissions from a fluidized-bed combustion process
US3533963A (en) Catalytic compositions used in steam reforming and methods for their production
US5466427A (en) Catalysis and treatment of gases with the catalysts
CN113731391A (en) High-antioxidant low-temperature organic sulfur hydrolysis catalyst and preparation method thereof
JPS63248442A (en) Supported catalyst and its production
US4119703A (en) Process for removal of nitrogen oxides from waste gas
CN105903324A (en) Copper oxide loaded active carbon desulfurizing agent and preparation process thereof
US4460553A (en) Process for the hydrodesulfurization of natural gas containing organic sulfur compounds and oxygen
CN100415344C (en) Active carbon desulfurizing agent and application thereof
CZ5399A3 (en) Coated catalyst containing metal oxides and catalytic decomposition process of ammonia and hydrogen cyanide in coke-oven gas
JP2734481B2 (en) Methanol reforming method
JP2738975B2 (en) Methanol reforming method
US4024075A (en) Carbon and erosion-resistant catalyst
RU2375114C1 (en) Method of producing catalyst for vapour conversion of methane-containing hydrocarbons
CN109590001B (en) Anti-carbon deposition catalyst for preparing synthesis gas by methane reforming and preparation method thereof
US4257918A (en) Catalyst mixture for the catalytic reduction of nitrogen oxides in gaseous mixtures
JPS63248444A (en) Steam reforming and/or partial oxidation catalyst for hydrocarbon
CN105582943A (en) Desulphurization catalyst and preparation method thereof as well as hydrocarbon oil desulfurizing method
JPS61245838A (en) Desulfurizing agent and its preparation