CS272632B1 - Method of dehydrogenation catalyst's copper coating - Google Patents

Method of dehydrogenation catalyst's copper coating Download PDF

Info

Publication number
CS272632B1
CS272632B1 CS875888A CS875888A CS272632B1 CS 272632 B1 CS272632 B1 CS 272632B1 CS 875888 A CS875888 A CS 875888A CS 875888 A CS875888 A CS 875888A CS 272632 B1 CS272632 B1 CS 272632B1
Authority
CS
Czechoslovakia
Prior art keywords
particles
catalyst
solution
copper
zinc
Prior art date
Application number
CS875888A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS875888A1 (en
Inventor
Stanislav Ing Csc Juhas
Vincent Ing Olejnik
Jan Ing Chovanec
Bohumil Ing Filip
Milan Ing Csc Hronec
Imrich Ing Petrik
Jan Bindas
Vladimir Ing Mikitka
Original Assignee
Juhas Stanislav
Olejnik Vincent
Chovanec Jan
Filip Bohumil
Hronec Milan
Imrich Ing Petrik
Jan Bindas
Mikitka Vladimir
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juhas Stanislav, Olejnik Vincent, Chovanec Jan, Filip Bohumil, Hronec Milan, Imrich Ing Petrik, Jan Bindas, Mikitka Vladimir filed Critical Juhas Stanislav
Priority to CS875888A priority Critical patent/CS272632B1/en
Publication of CS875888A1 publication Critical patent/CS875888A1/en
Publication of CS272632B1 publication Critical patent/CS272632B1/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The subject of solution consists in copper coating of zinc on iron catalyser with improved quality of copper layer on the catalyser surface. The above mentioned purpose is achieved by copper solution treatment of the moving particles of the coppered catalyser, whose motion is generated by gravitational sedimentation forced by rotation of coppering tank. The average speed of particle movement among one another ranges from 0.6 m/s to 3 m/s and the time of motion of the frictioning particles in the solution ranges from 0.2 to 0.8 of the copper coating process and during the remaining time the particles are frictioned out of the solution.<IMAGE>

Description

Vynález rieši sposob porasďovania katalyzátore dehydrogenácie.The invention solves a method of matching the dehydrogenation catalyst.

Medziprodukt výroby kaprolaktamu cyklohexanón sa vo světověj produkcii vyrába hlavně oxidáciou cyklohexanu potom dehydrogenácíou fenolu. V oboch připadoch je potřeba de— hydrogenovaf cyklohexanol na cyklohexanón.The intermediate product of caprolactam cyclohexanone production in the world is mainly produced by oxidation of cyclohexane followed by dehydrogenation of phenol. In both cases, dehydrogenation of cyclohexanol to cyclohexanone is required.

Proces dehydrogenácie cyklohexanolu sa uskutočďuje katalyticky při teplota S5O K až 750 K.The cyclohexanol dehydrogenation process is carried out catalytically at a temperature S5O of K to 750 K.

C6Hll0H ~ C6H10° + H2 δΗ - 65 kO/mol C 6 H 11 0H ~ C 6 H 10 ° + H 2 δ Η - 65 kO / mol

Reakcia je endotermická,! uskutočfíuje 3a v trubkovom reaktore',1 pričom teplo sa najčastejšie dodává spalnými plynmi z horenia zemného plynu alebo horenia vodika z vlaetného procesu.The reaction is endothermic! 3a in a tubular reactor 1, whereby heat is most often supplied by combustion gases from natural gas combustion or hydrogen combustion from a flight process.

Prídavok vody /RO 79 492/ retarduje dehydrogenéciu cyklohexanolu na cyklohexen.The addition of water (RO 79 492) retards the dehydrogenation of cyclohexanol to cyclohexene.

Značný prídavok vody /OE 2 347 097/ može však priniest energetické nevýhody. Prídavok kyslíka /PL 136 018/ dovoluje proces uskutočfíovaf adiabatieky avšak za vysokých nárokoch na bezpečnost.However, the considerable addition of water (OE 2 347 097) can lead to energy disadvantages. The addition of oxygen (PL 136 018) allows the process to carry out adiabatics, but with high safety demands.

Ekonomiku procesu dehydrogenácie cyklohexanolu na cyklohexanón vo významnej miere určuje použitý katalyzátor. Z hladiska zloženia je známy celý rád skúmaných ako-aj priemyslovo využívaných katalyzátorov.The economics of the process of dehydrogenating cyclohexanol to cyclohexanone is largely determined by the catalyst used. A variety of catalysts, as well as industrially utilized, are known in the composition.

Na báze fosfidov je známy niklový katalyzátor najčastejšie proraotovaný sodikom /SU 716 583/ vo forma hydroxidu a kobaltový katalyzátor /SU 632 387/. Kobaltový katalyzátor sa najčastejšie používá vo formě nanesenej na prirodný nosič tzv. pletený turf /SU 697 177/ /SU 856 939/. Tiež sú známe hořčíkový katalyzátor /Emeljanov N.P.j DAN BSSR 12 1968, 10,! 914-7/ a paládiovo-ruténiový membránový katalyzátor /Basov N.L.On the basis of phosphides, the known nickel catalyst is most commonly prorated with sodium (SU 716 583) in the form of hydroxide and the cobalt catalyst (SU 632 387). The cobalt catalyst is most often used in the form of a so-called natural catalyst. knitted turf / SU 697 177 / / SU 856 939 /. Also known are magnesium catalyst / Emelian N.P. DAN BSSR 12 1968, 10; 914-7) and a palladium-ruthenium membrane catalyst (Basow N.L.

SOV. - fr. seminář po katalizu, Sb. Dokl. Moskva 1983, 34-7/.SOV. - fr. seminar after catalysis, Sb. Dokl. Moscow 1983, 34-7].

Zinkový katalyzátor može byt nanesený na uhlíku /SU 249 354/,· vo formě oxidu zinočnatého /RO 66 847/, v zliatine s chromom /Glozman S.S. ...·: Tr. Vass. Nuč. Issled. Proč., Inst. Monomerov 1 1969,· 1, 82-9, Zakrevskij V.K. ....: Chira, prom. st. Moekva 1980, 9,The zinc catalyst can be deposited on carbon (SU 249 354), in the form of zinc oxide (RO 66 847), in a chromium alloy (Glozman S.S. ... · Tr. Vass. Suction filter. Issled. Why., Inst. Monomerov 1 1969, 1, 82-9, Zakrevsky V.K. Chira, prom. st. Moekva 1980 9

527 - 8/ alsbo vo forma chromenu zinočnatého /SU 348 540, RO 79 942/,527 - 8 (alsbo in the form of zinc chromene / SU 348 540, RO 79 942),

Klasický uvádzaný nedaný katalyzátor pre titulný-proces si vyžaduje nizke teploty a na požadovaná konverziu je nutné malé zafaženie /Orizarsky I,t Geterogenyje Katalyzátory Trudy Meždu narodnogo Simpózia 3 rd« 1975,' publ, 1978 Izd. BAN Sofia/ Vladea R. ···> Rev. Chin. 30 1980/ 8/ 759-62/, ...The classical non-given catalyst for the title-process requires low temperatures and low conversion is required for the conversion required. Orizarsky I, t Geterogenyje Catalysts Trudy Meždu narodnogo Simpozia 3 rd «1975, 'publ, 1978 Izd. BAN Sofia / Vladea R. ··· Chin. 30 1980/8 / 759-62 / ...

Z uvedeného dovodu.je nutné meď používat ako katalyzátor vo formě zliatin alebo na*· neseni na nosič. Sú známe katalyzátory meď v kombinácii s mangánom /SU 697 179, SU 979 324/, e horčikom /SU 411 888, Zrblova I.P. ....: Chim. promst. Moekva 1979,* 12/ 713-14/ a vápnikom /Kozlov N.S. ...j Vesci AN BSSR/ Ser, chim. navuk 1978/ 5/ 84-6/. Měděný katalyzátor v kombinácii s hlínikom je buď vo formě zliatiny /Petrova V. ....: Chim. Ind. Sofia 1983, 9/ 401-3/ alebo vo formě nanesenej na aluraine /SU 522 853/. V kombinácii s kremikom je promotovaný oxidom draselným /Belskaja R.I. ...·: Vesci AN BSSR,' Ser. chim. navuk 1975/ 2/ 97-102/ alebo vo formě nanesenej na silikagel /Kocurkova L. ....: Chem. prura. 30For this reason, copper must be used as an alloy in the form of alloys or supported on a support. Copper catalysts are known in combination with manganese (SU 697 179, SU 979 324) and magnesium (SU 411 888, Zrblova I.P. ....: Chim. Proms. Moekva 1979, * 12 (713-14) and calcium (Kozlov N.S. ... j Vesci AN BSSR / Ser, chim. navuk 1978 (5). The copper catalyst in combination with the aluminum is either in the form of an alloy / Peter V.: Chim. Ind. Sofia 1983, 9 (401-3) or in the form of aluraine (SU 522 853). In combination with silicon, it is promoted by potassium oxide / Belskaya R.I. ... ·: Vesci AN BSSR, Ser. chim. navuk 1975 (2) (97-102) or in the form of silica gel (Kocurkova L. .... Chem. pruritus. 30

1980.1 2/ 71-4/. Na uhlíku je meď nanesená s paládiom /Červený L. ·...: Chem.prum. 291980.1 2 (71-4). Copper is deposited on the carbon with palladium / Red L. · ...: Chem.prum. 29

1979.1 3/ 127-8/ připadne je meď nanesená na tzv, sungite/ čo je prirodná zmes oxidov /SU 910 178/,1979.1 3 (127-8) or copper is deposited on so-called sungite (which is a natural mixture of oxides (SU 910 178)),

Oxid meďnatý ako katalyzátor je najčastejšie používaný v kombinácii s oxidom chromitým /OP 83 157 741/ promotovaný oxidom bárnatým /FR. 1 513 220/ alebo oxidom bárnatým a grafitom /SU 574 433/. Dobrým katalyzátorom sa javí pj meď v kombinácii s chromom a horčikom /Belakaja R.I. ...: Vesci AN BSSR/ Ser. chim. navuk 1977,- 4/ 41-5/,· připadne rf *Copper oxide as a catalyst is most commonly used in combination with chromium trioxide (OP 83 157 741) promoted by barium oxide (FR). Or barium oxide and graphite (SU 574 433). Copper in combination with chromium and magnesium / Belakaja R.I. ...: Vesci AN BSSR / Ser. chim. navuk 1977, - 4 / 41-5 /, · eventually rf *

CS 272632 Bl kobaltom /OP 80 136 241/a kobaltom na báze foefodov /SU 936 989/.CS 272632 B1 cobalt (OP 80 136 241) and cefalt based on phobodies (SU 936 989).

Najvlac publikované a pravděpodobně aj využívané aú katalyzátory meJ na oxide zinočnatom /CS 151 166ji Emeljanov NjP: DAN BSSR 11 1967, 3,* 233-6// pričom med može byť zanesená vo formě oxalatu /FR 2 030 602,'· US 3 652 460/ s následnou oxldáciou a hydrogenáciou katalyzátore v troch cykloch. Modifikovaný može byf pomocou oxidu barnatého a ruteničetého v pomere 2:1 /SU 978 909/ připadne pomocou uhličitanu sodného /GB 1 060 484/ Katalyzátor z médi a zinku može byf modifikovaný chrómom /Medvědova O.N. Prvo organ produktov,* Moskva 1982,1 15-22/ alebo vápnikom, báriom a stronciom /BeXskaja R.I......Most published and probably used as catalysts of meJ on zinc oxide / CS 151 166ji Emeljanov NjP: DAN BSSR 11 1967, 3, * 233-6 // whereby honey may be clogged in the form of oxalate / FR 2 030 602, US 3 652 460 / followed by oxldation and hydrogenation of the catalyst in three cycles. The modified may be barium / ruthenium oxide in a ratio of 2: 1 (SU 978 909) or sodium carbonate (GB 1 060 484). The catalyst of the medium and zinc may be chromium-modified (Bear's O.N.). First organ products, * Moscow 1982,1 15-22 / or calcium, barium and strontium / BeXskaja R.I ......

Vesel AN BSSR, , Ser. Chim. navuk 1981,' 6,' 112-6/.Vesel AN BSSR,, Ser. Chim. navuk 1981, 6, 112-6).

Známy ja BASF katalyzátor H 5 - 10 chemickým zloženim oxid zlnočnatý aktivovaný promotormi, 3e vo formě axtrudórov o priemere 4 mm alebo 6 mm. Vyznačuje sa objemovou hustotou přibližné 1 650 kg/m a mechanickou pavnoefou viac ako 10 kg,Known is the BASF catalyst H 5-10 chemical composition of promoter activated zinc oxide, 3e in the form of axtrudors having a diameter of 4 mm or 6 mm. It is characterized by a bulk density of approximately 1 650 kg / m and a mechanical pavnoef of more than 10 kg,

Nižšou objemovou hustotou přibližné 1 400 kg /m aa vyznačuje katalyzátor připravený z pozinkovaného nízkouhlíkového železného plechu střiháním a formováním do tvaru neuzavretých rúriek o približnom rozmere / 7 mra x 7 mm x 0/5 mm. Obsah zinku v katalyzátore Je přibližné 7 % hmot. Uvedeným sposobom připravený katalyzátor v mieste střihu plechu má obnažený železný nosič. Priemerná konverzia cyklohexanolu pri teplote cca 673 K Je přibližné 75 %, Zvyšovanie teploty v reakci! umožňuje zvýšiť konverziu, avšak úměrně klesá selektivita reakcie a v dosledku toho vzrastajú surovinové náklady a komplikuje sa proces čistenia oyklohexanónu, Tiež Je žiaduca dlháia rsgenerácia katalyzátora,' ktorá spočívá vo vypalovaní tzv. polymerných až zuholnatených smol pomocou vzduchu.A lower bulk density of approximately 1400 kg / m aa indicates a catalyst prepared from a galvanized low carbon iron sheet by shearing and forming into non-enclosed tubes of approximately 7 m x 7 mm x 0/5 mm. The zinc content of the catalyst is approximately 7% by weight. The above-prepared catalyst at the shear point of the sheet has an exposed iron support. The average conversion of cyclohexanol at a temperature of about 673 K is about 75%. It allows the conversion to be increased, but the selectivity of the reaction decreases proportionally and, consequently, the raw material costs increase and the purification process of the cyclohexanone is complicated. polymer to charred pitch using air.

Tento katalyzátor je vylepěený /PL 102 493/ nanesením médi v množetve od 0,001 do 0/5 kg na meter štvorcový povrchu katalyzátore. Priemerná konverzia cyklohexanolu ako aj selektivita premeny na cyklohexanón je o niečo vyššia ako pri použiti katalyzátore zinok na· .železe,* ale napriek tomu ekonomika procesu je poznačená už uvedenými nedoetatkami.This catalyst is improved (PL 102 493) by depositing the medium in an amount of 0.001 to 0/5 kg per square meter of catalyst surface. The average conversion of cyclohexanol as well as the selectivity of conversion to cyclohexanone is somewhat higher than with the use of a zinc-iron catalyst, but nevertheless the economics of the process are marked by the abovementioned shortcomings.

Podstatou tohoto vynálezu je sposob pomedovania katalyzátore dehydrogenácie zonok na železe chemickým vylučováním médi v přítomnosti amoniaku v pomedovacom roztoku. Vyznačuje sa tým/ že pomedovacim roztokom v množstve od 0,3 kg do 1 kg s obsahom médi odIt is an object of the present invention to provide a process for sizing a zon-on-iron dehydrogenation catalyst by chemical precipitation of a medium in the presence of ammonia in a sizing solution. It is characterized in that the mixing solution is in an amount of from 0.3 kg to 1 kg with a media content of from 0.3 kg to 1 kg

3.10 ^kg do 2.10 a amoniaku od 3.10-^kg do 2.10~^kg sa posobí na Jeden kilogram častíc, majůcich zinok v rozsahu od 2 % hmot. do 20 % hmot. na povrchu železa,* ktoré sa vzájomne otierajú v tesnej zosuvne pohyblivej vrstvě/ střednou rýchlosfou pohybu častíc medzi sebou v rozsahu od 0/6 m/s do 3 m/β po dobu od 2 minút do 20 minút,’ pričom doba pohybu otierajúcich sa částic v roztoku je v rozsahu od 0/2 do 0/8 doby pomeffovania a zvySok doby sa částice otierajú mimo roztok. Tiež sa vyznačuje tým/ že pohyb častíc a ich gravitačně sposobený návrat v tesnej/ zosuvne pohyblivej vrstvě sa vynucuje rotáciou zariade· nia priemeru od 0/2 do 1 m okolo oei v uhle od 0° do 50° od horizontály rýchlosťou stáčania od 0,6 otáčok za minútu do 60 otáčok za minútu.^ 3.10 kg to 2.10, and ammonia from 3:10 - ^ kg and 10.2 kg ~ ^ is treated per kg of particles having zinc in the range of from 2% by weight. up to 20 wt. on the surface of the iron, which rub against each other in a tightly movable layer / mean particle velocity between 0/6 m / s to 3 m / β for a period of from 2 minutes to 20 minutes, wherein the movement time of the rubbing The amount of particles in the solution ranges from 0/2 to 0/8 the puffing time and the remainder of the time the particles rub off the solution. It is also characterized in that the movement of the particles and their gravitationally-induced return in the tight / slidable layer is forced by rotating a 0/2 to 1 m diameter device about 0 to 50 degrees from the horizontal at a rotation speed of 0, 6 rpm to 60 rpm.

Výhodou pomeďovania podlá tohoto postupu Je, že medzi jednotlivými častiacami pomeíovanóho katalyzátore nie sú trvalé styčné plochy, preto pomedovanie je dostatočné rovnoměrné vo vzťahu ku pevrchu katalyzátore. Taktlež poměděná vrstvička nedostatočne pevne vylúčená aa oderte a znovu sa spristupní povrch pre ňalšie pomeďovanie. Použitie takéhoto katalyzátore v reakcii dehydrogenácil cyklohexan si vyžaduje, nízkou spotřebu zemného plynu pre priebeh reakcie/ pričom reakcia prebieha s vysokou selektivitou.An advantage of the process of this process is that there is no permanent contact area between the individual catalyst particles, so that the copper plating is sufficiently uniform with respect to the catalyst surface. Also, the copper-plated layer is not sufficiently firmly deposited, and the surface is abraded and re-accessed for further coppering. The use of such a catalyst in the cyclohexane dehydrogenation reaction requires a low consumption of natural gas for the course of the reaction (the reaction proceeds with high selectivity).

PřikladExample

Oo pomeďovacieho zariadenia priemeru 70 cm výšky 80 cm sa predsadl 75 kg katalyzátore zinok na železe/ 45 kg vody a 2,8 kg amoniakalnej vody v koncentrácii amoniaku vody v koncentrácii amoniaku přibližné 25 % hmot. PomeSovacie zariadenia sa v oei nakloní tak/ že oa zariadenia zvlera 8 horizontálou 45° a po přidáni 1 kg síranu meSnaκ.75 kg of zinc-on-iron catalyst / 45 kg of water and 2.8 kg of ammonia water at a concentration of ammonia of water at an ammonia concentration of about 25% by weight were screened for a 70 cm diameter 80 cm exchange device. The sizing equipment is tilted in the eye by sliding the sizing device through a horizontal of 45 ° and after adding 1 kg of meSnaκ sulphate.

CS 272632 Bl tého sa zariadenie otéča rýchloatou 26 otáčok za minútu po dobu 7 minút. Částice katalyzátora sa takto neustále vynášajú z pomečfovacieho roztoku a gravitačným vplyvom sa naspat do roztoku po sobe zosúvajú. Po zastaveni otáčania 3a roztok zdekantuje a katalyzátor sa premyje vodou pSfkrát vždy v množstve 45 kg za otáčania sa zariadenia ako pri samotnom pomečfovani. Katalyzátor sa vysuši pri teplota nad 50 °C s výhodou v teplovzdušnej sušiarni. Použitie tohoto katalyzátora v reakcii dehydrogenácie cyklohexanolu na cyklohexanán sa vyznačuje 99 %-nou selektivitou a spotřebou 27/46 m3 zemného plynu na jednu tonu vyrobeného cyklohexanónu/ pričom pracovný cyklus je minimálně 30 dni a životnost minimálně 1/5 roka.CS 272632 Blt, the device is rotated at a speed of 26 rpm for 7 minutes. Thus, the catalyst particles are constantly discharged from the dipping solution and slipped back into the solution by gravity. After stopping the rotation 3a, the solution decanted off and the catalyst was washed with water pSf times at a rate of 45 kg each time while rotating the apparatus as in the dipping alone. The catalyst is dried at a temperature above 50 ° C, preferably in a hot-air oven. The use of this catalyst in the reaction of dehydrogenation of cyclohexanol to cyclohexanane is characterized by 99% selectivity and a consumption of 27/46 m 3 of natural gas per tonne of cyclohexanone produced (with a duty cycle of at least 30 days and a life of at least 1/5 year).

Claims (2)

PREDMET VYNALEZUOBJECT OF THE INVENTION 1. Sposob pomečfovania katalyzátora dehydrogenácie zinok na železe chemickým vylučováním médi v přítomnosti amoniaku vyznačujúci sa tým/- že pomeSovacim roztokom v množstve1. Method of dipping a zinc-on-iron dehydrogenation catalyst by chemical deposition of a medium in the presence of ammonia, characterized in that: J «V Λ od 0,-3 kg do 1 kg 8 obsahom médi od 3.10 kg do 2.10“Jkg a amoniaku od 3.10” kg do 2.10”2kg sa posobí na jeden kilogram častíc,· majúcich zinok v rozsahu od 2 % hmot, do 20 % hmot. na povrchu železa/ ktoré sa vzájomné otierajú v tesnej/ zosuvne pohyblivaj vrstvě/ střednou rýchloatou pohybu častíc medzi sebou v rozsahu od 0,6 m/a do 3 m/s po dobu od 2 minút do 20.minút, pričom doba pohybu otiarajúoioh sa čaetic v roztoku je v rozsahu od 0,-2 do 0/8 doby pomsSovania a zvyšofc doby sa částice otierajú mimo roztok.J «V Λ from 0 · 3 kg to 1 kg 8 with a media content of 3.10 kg to 2.10“ J kg and ammonia from 3.10 ”kg to 2.10” 2 kg is crimped per kilogram of particles · having zinc in the range of 2% % to 20 wt. on the surface of the iron (which rub against each other in a tight / sliding layer) / medium rapid movement of the particles between themselves in the range of 0.6 m / a to 3 m / s for 2 minutes to 20 minutes, the time of movement is opaque The amount of time in the solution ranges from 0.2 to 0/8 of the mixing time, and for the remainder of the time the particles are rubbed off the solution. 2. Sposob pomeSovanía katalyzátora podía bodu 1 vyznačujúci aa tými že pohyb častíc a ich gravitačně spósobený návrat v tesnej, zosuvne pohyblivej vrstvo/ oa vynucuje rotáciou zariadenia/ priemeru od 0/2 m do 1 m/ okolo Osi v uhle od 0° do 60° od horizontály/ rýchlostou otáčania od 0/6 otáčok za minútu do 60 otáčok za minútu.2. Catalyst reduction method according to claim 1, characterized in that the movement of the particles and their gravitationally-induced return in the tight, movable layer (s) and forces the device / diameter from 0/2 m to 1 m / about the axis to rotate at 0 ° to 60 ° from horizontal / rotational speed from 0/6 rpm to 60 rpm.
CS875888A 1988-12-27 1988-12-27 Method of dehydrogenation catalyst's copper coating CS272632B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS875888A CS272632B1 (en) 1988-12-27 1988-12-27 Method of dehydrogenation catalyst's copper coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS875888A CS272632B1 (en) 1988-12-27 1988-12-27 Method of dehydrogenation catalyst's copper coating

Publications (2)

Publication Number Publication Date
CS875888A1 CS875888A1 (en) 1990-05-14
CS272632B1 true CS272632B1 (en) 1991-02-12

Family

ID=5438614

Family Applications (1)

Application Number Title Priority Date Filing Date
CS875888A CS272632B1 (en) 1988-12-27 1988-12-27 Method of dehydrogenation catalyst's copper coating

Country Status (1)

Country Link
CS (1) CS272632B1 (en)

Also Published As

Publication number Publication date
CS875888A1 (en) 1990-05-14

Similar Documents

Publication Publication Date Title
US4513149A (en) Raney nickel alloy expanded mesh hydrogenation catalysts
US3743607A (en) Palladium-gold catalyst
JPH04277030A (en) Ethylbenzene dehydrogenation catalyst
CA1120456A (en) Non-oxidative dehydrogenation process
CA1192536A (en) Methanation process and raney catalyst therefor
EP0091028B1 (en) Raney nickel catalysis used in hydrogenation of aromatic amines
US3798178A (en) Self-regenerative dehydrogenation catalyst
CS272632B1 (en) Method of dehydrogenation catalyst&#39;s copper coating
US2502678A (en) Method for preparing acrylonitrile by vapor phase catalytic reaction of acetylene and hydrogen cyanide
US3725472A (en) Process for preparing {60 ,{62 -unsaturated carboxylic acids
RU2050975C1 (en) Method of hydrogen producing and a method of catalyst preparing for hydrogen producing
CN111499540B (en) Method for preparing 2,4,6-trichlorobenzonitrile by ammoxidation method, special catalyst and preparation method
US2593437A (en) Manufacture of unsaturated aldehydes
US3524874A (en) Process for the production of phenylacrylonitriles
JPS5822129B2 (en) Manufacturing method of ethylbenzene
CS272631B1 (en) Method of dehydrogenation catalyst&#39;s copper coating
US2039543A (en) Process for the manufacture of acetone
JPS6245544A (en) Method for producing cycloolefin
PL112437B1 (en) Method of manufacturing a catalyst for carbon monoxide reduction
EP0180933B1 (en) Process for preparing oxygen-containing organic compounds
PL108159B1 (en) METHOD OF REMOVING CHLORINE AND ETHYLENE FROM THE GAZMETHOD OF REMOVING CHLORINE AND ETHYLENE FROM THE WASTE FROM THE CHLORATION PROCESS OR OXYGLORSTREAM OF WASTE GASES FROM THE CHLORINATION PROCESS OR OXENIDATION ETHLORE OFWANIA ETHLORE OFWANIA
US2420563A (en) Catalyst and process for dehydrogenation of hydrocarbons
JPS5946229B2 (en) Method for producing ethylene oxide
CN100391605C (en) Dehydrogenating catalyst for preparing alkyl alkenyl arene
JPH02196733A (en) Production method of ethylbenzene and styrene