JPS6245544A - Production of cycloolefin - Google Patents

Production of cycloolefin

Info

Publication number
JPS6245544A
JPS6245544A JP60182964A JP18296485A JPS6245544A JP S6245544 A JPS6245544 A JP S6245544A JP 60182964 A JP60182964 A JP 60182964A JP 18296485 A JP18296485 A JP 18296485A JP S6245544 A JPS6245544 A JP S6245544A
Authority
JP
Japan
Prior art keywords
zinc
water
catalyst
ruthenium
hydrogenation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60182964A
Other languages
Japanese (ja)
Other versions
JPH0216736B2 (en
Inventor
Hajime Nagahara
肇 永原
Mitsuo Konishi
満月男 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60182964A priority Critical patent/JPS6245544A/en
Publication of JPS6245544A publication Critical patent/JPS6245544A/en
Publication of JPH0216736B2 publication Critical patent/JPH0216736B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the aimed substance in high selectivity and yield, by partially reducing a monocyclic aromatic hydrocarbon in the presence of reduced Ru prepared by previously incorporating zinc therein as a hydrogenation catalyst and coexisting water and a water-soluble zinc compound under acidic conditions. CONSTITUTION:A monocyclic aromatic hydrocarbon, e.g. benzene or toluene, is reduced in the presence of a hydrogenation catalyst, water and a water-soluble zinc compound at 100-200 deg.C under 10-100kg/cm<2>G hydrogen pressure to give the aimed substance. The hydrogenation catalyst is preferably reduced Ru prepared by previously incorporating zinc therein and obtained by reducing a valent Ru compound containing 0.1-50wt%, preferably 2-20wt%, based on Ru, zinc until the Ru attains metallic state. The catalyst having <=200Angstrom , preferably <=100Angstrom average crystal diameter is suitable. USE:A raw material for polyamides and lysine.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、単環芳香族炭化水素を部分還元し、高選択率
、高収率で対応するシクロオレフィン類。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides cycloolefins that partially reduce monocyclic aromatic hydrocarbons with high selectivity and high yield.

特にシクロヘキセン類ヲ製造する方法に関するものであ
る。
In particular, it relates to a method for producing cyclohexenes.

シクロヘキセン類は有機化学工業製品の中間原料として
その価値が高く、特にポリアミド原料、リジン原料など
として重要である。
Cyclohexenes have high value as intermediate raw materials for organic chemical industrial products, and are particularly important as raw materials for polyamides, lysine, etc.

(従来の技術) かかるシクロヘキセン類の製造方法として!″i、例え
ば、+1)水およびアルカリ剤と周期表第■)(元素を
含有する触媒組成物音用いる方法(特公昭56−228
50号公報)、(2)ニッケル、コバルト、クロム、チ
タンまたはジルコニウムの酸1し物に担持し友ルテニウ
ム触媒を用い、アルコールまたはエステル全添加剤とし
て用いる方法(丑寸公i+352−5955号公報)1
31鋼、銀、コバルトまたはカリウムを含有するルテニ
ウム触媒と、水およびリン酸塩化合物を使用する方f:
:(%分路56−4556号公報)、(4)ルテニウム
触媒ならひに周期表のiA族金X、HA族金属、マンガ
ン、亜鉛およびアンモニアより選ばれた少なくとも1d
の陽イオンの塩を含む中性筒たit酸性水溶液の存布下
に反応を行う方法(特開昭50−142536号公報)
、(5)ルテニウムおよびロジウムの少なくとも1種を
主成分とする固体触媒を周期表IA族金属、[A族金属
、マンガン、鉄および亜鉛よりなる群から選ばれた少な
くとも1種の陽イオンの塩を含む水浴液で予め処理した
ものを用い、水の存在下に反応を行う方法(%開開51
−98245号公報) 、(61ルテニウム融媒を用い
、酸化亜鉛および水酸化亜鉛の少なくとも1椙を反1も
系に活性化成分として添加して反Gk行う方法(%開開
59−184138号公報)などが提案されて^る。
(Prior art) As a method for producing such cyclohexanes! ``i, e.g. +1) Water and an alkali agent and a method using a catalyst composition containing the elements No.
(2) A method in which a ruthenium catalyst is supported on a nickel, cobalt, chromium, titanium or zirconium acid and used as an alcohol or ester total additive (Usunko I+352-5955) 1
31 steel, using a ruthenium catalyst containing silver, cobalt or potassium, water and a phosphate compound f:
(% Shuro No. 56-4556), (4) Ruthenium catalyst is at least 1d selected from metals of group IA of the periodic table, metals of group HA, manganese, zinc, and ammonia.
A method of conducting a reaction in the presence of an acidic aqueous solution containing a cationic salt in a neutral cylinder (Japanese Patent Application Laid-Open No. 142536/1983)
, (5) a solid catalyst containing at least one of ruthenium and rhodium as a main component, a group IA metal of the periodic table, a salt of at least one cation selected from the group consisting of group A metals, manganese, iron and zinc; A method in which the reaction is carried out in the presence of water using a water bath solution containing
-98245 Publication), (A method of performing anti-Gk by using a 61 ruthenium flux and adding at least 1 scoop of zinc oxide and zinc hydroxide to the system as an activating component (%Kokai No. 59-184138) ) have been proposed.

(発明が解決しようとする問題点) しかし、これらの従来公知の方法においては、目的とす
るシクロヘキセン類の選択率を高める九めに、原料の転
fヒ率を著しく抑える必要があったり、反応速度が極め
て小さいなど、一般に、シクロヘキセン類の収率ならび
に生産性が低く、実用的なシクロヘキセ7類の製造方法
となっていないのが現状である。
(Problems to be Solved by the Invention) However, in these conventionally known methods, in order to increase the selectivity of the target cyclohexene, it is necessary to significantly suppress the conversion rate of the raw material, or to increase the reaction rate. At present, the yield and productivity of cyclohexenes are generally low, such as the speed is extremely low, and it is not a practical method for producing cyclohexanes 7.

(問題点を解決する定めの手段) 本発明者らは、かかる問題点′fc解決すべく、シクロ
ヘキセン類の選択率および収率向上のため、単環芳香族
炭化水素の部分還元法における水素化触媒を鋭意検討し
た結果、本発明に到達したものでおる。すなわち、水素
rヒ触媒として、あらかじめ亜鉛を含有させたルテニウ
ムの還元物を用い、水および少なくとも1種の水溶性亜
鉛1ヒ合吻の共存下、酸性条件下において反Ck行なわ
せることにより、従来にない極めて梗れfc選択率およ
び収率でシクロヘキセン類が得られることを見い出した
のである。
(Determined means for solving the problem) In order to solve the problem 'fc, the present inventors have proposed hydrogenation in a partial reduction method of monocyclic aromatic hydrocarbons in order to improve the selectivity and yield of cyclohexene. As a result of extensive research into catalysts, we have arrived at the present invention. That is, by using a reduced product of ruthenium containing zinc in advance as a hydrogen hydrogen catalyst and carrying out the anti-Ck reaction under acidic conditions in the coexistence of water and at least one type of water-soluble zinc compound, They have discovered that cyclohexenes can be obtained with extremely low fc selectivity and yield, which is unprecedented.

以下、本発明の具体的な実施態様を説明する。Hereinafter, specific embodiments of the present invention will be described.

本発明の原料となる単壌芳香族炭fヒ水素とは。What is the monoaromatic aromatic carbon arsenide that is the raw material of the present invention?

ベンゼン、トルエン、キシレンa、低級アルキルベンゼ
ン類をいう。
Refers to benzene, toluene, xylene a, and lower alkylbenzenes.

本発明における水素比触媒は、あらかじめ亜鉛を含有さ
せたルテニウムの還元物である。
The hydrogen ratio catalyst in the present invention is a reduced product of ruthenium containing zinc in advance.

さらに具体的には、かかる触媒は、あらかじめ有価のル
テニウム化合物に亜鉛化合物を含有させ友後、還元して
得られる還元物であり、ルテニウムは金属状態1で還元
され友ものである。使用できる有価のルテニウム化合物
は、例えば、塩化物。
More specifically, such a catalyst is a reduced product obtained by pre-containing a zinc compound in a valuable ruthenium compound, followed by reduction, and ruthenium is reduced in the metallic state 1. Valuable ruthenium compounds that can be used are, for example, chlorides.

<旧酸塩2硫酸塩などの塩、アンミン錯塩などの錯体、
水酸化物、酸化物などであるが、特に3価もしくは4価
のルテニウムの化合物が入手もしやすく、また、取扱い
上も容易であるので好ましい。
<Salts such as old acid salt disulfate, complexes such as ammine complex salts,
Among the hydroxides, oxides, etc., trivalent or tetravalent ruthenium compounds are particularly preferred because they are easily available and easy to handle.

また、使用できる亜鉛化合物は、塩化物、硝酸塩、硫酸
塩などの塩、アンミン錯塩などの錯体、水酸化物、酸化
物など巾広いものが使用可能である。
Further, a wide range of zinc compounds can be used, including salts such as chlorides, nitrates, and sulfates, complexes such as ammine complexes, hydroxides, and oxides.

このような触媒がシクロオレフィンの製造のための触媒
として何故有効であるかは、必ずしも定かではないが、
有価のルテニウム化合物が金属状態に還元される過程に
おいて、共存する亜鉛rヒ合物がシクロオレフィンの生
成に有利な活性点全現出あるいは増加させていると考え
ることができる。
It is not necessarily clear why such catalysts are effective as catalysts for the production of cycloolefins, but
It can be considered that during the process in which a valuable ruthenium compound is reduced to a metallic state, the coexisting zinc r-arsenium compound reveals or increases the total number of active sites that are advantageous for the production of cycloolefins.

本発明における触媒中の亜鉛含有証は、生成分であるル
テニウムに対してJ1〜50 Mf4 % 、好ましく
は2〜20重ftチに調整される。したがって、触媒の
主構成要素は、あくまでルテニウムであり、亜鉛は担体
ではない。
The zinc content in the catalyst in the present invention is adjusted to J1 to 50 Mf4%, preferably 2 to 20 Ft, based on the ruthenium product. Therefore, the main component of the catalyst is ruthenium, and zinc is not a carrier.

また、特開昭51−98243号公報においては、ルテ
ニウム触媒を亜鉛の陽イオンの塩を含む水溶液で処理し
たものを用いるとよいとの記載があるが、亜鉛の含有の
有無に関する記載はなく、また、触媒の処理はすべて還
元された触媒になされているものであって、本発明に使
用される触媒とは根本的に異なることが明らかである。
Further, in JP-A-51-98243, there is a statement that it is preferable to use a ruthenium catalyst treated with an aqueous solution containing a salt of a zinc cation, but there is no mention of whether or not zinc is contained. It is also clear that all catalyst treatments are performed on reduced catalysts, which are fundamentally different from the catalysts used in the present invention.

そして、かかる還元物の平均結晶子径が小さいほど、本
発明は、さらに有用なものとなり、具体的には200A
以下、好ましくは100八以下のものがシクロオレフィ
ンの選択率を向上させるために望ましい。
The smaller the average crystallite diameter of the reduced product, the more useful the present invention becomes.
Below, preferably 1008 or less is desirable in order to improve the selectivity of cycloolefin.

本発明における亜鉛を含有する有価のルテニウム化合物
に、亜鉛およびルテニウムの化合物の混合浴液を用いて
、一般的な共沈法などによってニ一体として得てもよい
し、あるいは均一溶液の状憑で得てもよい。本発明にお
ける触媒は、かかる亜鉛全含有する有価のルテニウム化
合物を、ルテニウムが金属状梠になるまで還元すること
により調整されるが、還元方法としては、一般的なルテ
ニウムの還元方法ヲラ用することができる。例えば、気
相において水素で還元する方法、液相において水素もし
くは適当な化学還元剤、例えば、NaBH。
The valuable ruthenium compound containing zinc in the present invention may be obtained as a two-piece product by a general coprecipitation method using a mixed bath solution of zinc and ruthenium compounds, or in the form of a homogeneous solution. You may get it. The catalyst of the present invention is prepared by reducing the valuable ruthenium compound containing all of zinc until the ruthenium becomes a metal layer. As the reduction method, a general ruthenium reduction method may be used. I can do it. For example, methods of reduction with hydrogen in the gas phase, hydrogen or a suitable chemical reducing agent, such as NaBH, in the liquid phase.

やホルマリンなど音用いて還元する方法が好1しく[δ
用され、水素により気相もしくは液相で還元する方法1
”を特に好壕しb0気相において水素で還元する場合は
、結晶子径の増加全行ける意味で、極度の^温?避けた
り、あるいは水素を他の不活性気体で希釈するなどの工
夫をするとよい。また、゛液相で還元する場合には、水
やアルコール類に、亜鉛を含有する有価のルテニウム化
合物の固体を分散させて行なってもよいし、もしくは均
一溶液の状態で行なってもよい。この際、還元をよりよ
く進行させるために、攪拌、加熱などを適当に行なうと
よい。また、水のかわりにアルカリ水溶液や適当な金属
塩水溶液、例えば、アルカリ金属塩水溶液など音用いて
もよい。
A method of reduction using sound, such as formalin or formalin, is preferable [δ
Method 1: Reduction using hydrogen in gas phase or liquid phase
When reducing with hydrogen in the b0 gas phase, it is necessary to avoid extreme temperatures or dilute the hydrogen with other inert gases in order to increase the crystallite size. In addition, when reducing in a liquid phase, it may be carried out by dispersing a solid valuable ruthenium compound containing zinc in water or alcohol, or it may be carried out in the form of a homogeneous solution. At this time, it is recommended to perform appropriate stirring, heating, etc. in order to make the reduction proceed better. Also, instead of water, use an aqueous alkali solution or a suitable aqueous metal salt solution, such as an aqueous alkali metal salt solution. Good too.

ここで、触媒の結晶子径は一般的方法、すなわち、X線
回折法によって得られる回折線巾の拡]つ;りから、5
cherrerの式より算出されるものである。
Here, the crystallite diameter of the catalyst is determined by a general method, that is, from the expansion of the diffraction line width obtained by X-ray diffraction method;
It is calculated using Cherrer's formula.

具体的には、CuKα線をX線源として用いた場合には
、回折角(2θ)で44°付近に極大全もつta+折線
の拡がりから算出されるものである。
Specifically, when CuKα rays are used as the X-ray source, it is calculated from the spread of the ta+ fold line, which has a maximum total around 44° at the diffraction angle (2θ).

前述の如く、平均結晶子径は200X以下、好ましくは
100八以下であって、下限値は理論上の結晶単位より
も大きな値であり、現実的シζは10A以上Cある。
As mentioned above, the average crystallite diameter is 200X or less, preferably 1008 or less, and the lower limit is larger than the theoretical crystal unit, and the practical size ζ is 10A or moreC.

本発明においては、水の共存が必要である。水の址とし
ては、反し形式によって、gなるが、一般的に用いる単
墳芳香族炭fヒ水素に対して0.01〜100重前暗共
存させることができる。ただし、反16条件下において
、原料および生成物を主成分とする有機液相と、水を含
む液相とが2相全形成することが好1しく1反応条件下
において均一相となるような極く微量の水の共存、もし
く l−1極く多量の水の共存は、効果(i−減少εへ
17こ、水の量が多すき゛ると、反応器を大きくする心
安性も生ずるので、実用的には0.5〜20重量倍共存
させることが望ましい。
In the present invention, the coexistence of water is necessary. Depending on the type of water, it can be mixed in amounts of 0.01 to 100 times the amount of aromatic carbon and arsenic used in general. However, under anti-16 conditions, it is preferable that two phases, an organic liquid phase mainly composed of raw materials and products, and a liquid phase containing water, form a homogeneous phase under one reaction condition. The coexistence of an extremely small amount of water or the coexistence of an extremely large amount of l-1 water has the effect (i-reduction ε17).If the amount of water is large, there is a sense of security in enlarging the reactor. Practically speaking, it is desirable that they coexist by 0.5 to 20 times by weight.

本発明においては、水素化触媒、水の他に少なくとも1
種の水溶性亜鉛化合物の存在が必要である。ここで水溶
性亜鉛化合物としては、各種塩類例えば、炭酸塩、酢酸
塩などの弱酸塩、塩酸塩、硝酸塩、硫酸塩などの強酸塩
が使用される。また、酸化亜鉛、水酸化亜鉛も有効に使
用される。使用ちれる量は5反応中に共存する水に対し
I X 10−5〜o、s M量倍、好ましくはlX1
0−’〜υ、1M蛍倍である。使用された亜鉛化合物は
、反応中に共存する水に全量が溶解している必要は特に
ない。
In the present invention, in addition to the hydrogenation catalyst and water, at least one
The presence of a species of water-soluble zinc compound is required. Here, as the water-soluble zinc compound, various salts are used, such as weak acid salts such as carbonates and acetates, and strong acid salts such as hydrochlorides, nitrates, and sulfates. Zinc oxide and zinc hydroxide are also effectively used. The amount to be used is 1 x 10-5 to 1 times the amount of water coexisting during the reaction, preferably 1 x 1
0-'~υ, 1M fluorescence magnification. It is not particularly necessary that the entire amount of the zinc compound used be dissolved in the water coexisting during the reaction.

このように亜鉛fヒ合物を水中に共存させるものとして
は5例えば、特開昭50−142536号公報に記述が
あるが、触媒はルテニウムもしくはロジウム金担持した
触媒を使用しており、本発明とは触媒そのものが異なり
、また、シクロオレフィンの選択率が低いなど本発明と
は大きく異なるものである。−1た、酸rヒ亜鉛および
水酸化亜鉛の少なくとも一万を添加する例(特開昭59
−184138号公報)においても、使用される触媒は
異なり、かつアルカリ性条件下で行なうことが好ましい
とされているなど、やはり本発明とは異質のものである
For example, there is a description in Japanese Patent Application Laid-open No. 142536/1983 that allows zinc f-arsenide to coexist in water, but a catalyst supported by ruthenium or rhodium gold is used, and the present invention The catalyst itself is different from that of the present invention, and the selectivity of cycloolefin is low. -1 Example of adding at least 10,000 of zinc arsenic acid and zinc hydroxide (JP-A-59
184138), the catalyst used is different and it is said that it is preferable to carry out the process under alkaline conditions, which is different from the present invention.

ま之、反[5系には水溶性亜鉛rヒ合物の他に、すでに
提案されている公知の方法のように、各椋金属、例えば
、周期表IA族元素、lA族元J・]やマンガン、コバ
ルト、銅などの塩を共存させてもよい。
[5] In addition to water-soluble zinc and arsenic compounds, various metals, such as periodic table IA group elements, IA group elements J.] Salts such as manganese, cobalt, and copper may also be present.

また、本発明においては、共存する水相ゲσ工′セの条
件下で反応きせることで好ましい結果を与、り一る。水
相全中性もしくはアルカリ性とするζ、反応速度は著し
く低下し、現実的な人造方法とは:一り難い。また、酸
性にするために、通常の酸、ダ!jえば、塩酸、、硝酸
、硫酸、酢酸、リン酸など金;Jilえてさしつかえな
い。特に硫酸は2反応器ば27.勇めるのに極めて効果
的である。このようにし2てl・え芯系へ導入される水
相のpHは0.5〜7.0未満、好ましくは2〜6.5
である。
Further, in the present invention, preferable results can be obtained by carrying out the reaction under the conditions of a coexisting aqueous phase. If the aqueous phase is made completely neutral or alkaline, the reaction rate will drop significantly, making it difficult to find a realistic artificial method. Also, to make it acidic, use regular acid, da! For example, hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid, etc. are acceptable. In particular, sulfuric acid requires 2 reactors. It is extremely effective in encouraging courage. The pH of the aqueous phase thus introduced into the l·Ecore system is between 0.5 and less than 7.0, preferably between 2 and 6.5.
It is.

本発明方法における部分還元反[6は、)烏L:; *
 託相懸濁法で連続的または回分的に行なわれるが、固
定相式でも行なうことができる。反応条件は、使用する
触媒や添加物の種類や量によって適宜選択されるが、通
常、水素圧は1〜200 kg/clG、好ましくは1
0〜100 kg/crdGの範囲であり、反応温度は
室温〜250C,好ましくは100〜200Cの範囲で
ある。IL反厄時間は、目的とするシクロヘキセン類の
選択率や、収率の実質的な目標値を定め、適宜選択すれ
ばよく、特に制限はないが、通常、数秒ないし数時間で
ある。
Partial reduction reaction [6 is) Karasu L in the method of the present invention:; *
It is carried out continuously or batchwise by a suspended phase suspension method, but it can also be carried out by a stationary phase method. The reaction conditions are appropriately selected depending on the type and amount of the catalyst and additives used, but the hydrogen pressure is usually 1 to 200 kg/clG, preferably 1
The reaction temperature is in the range of 0 to 100 kg/crdG, and the reaction temperature is in the range of room temperature to 250C, preferably 100 to 200C. The IL reaction time may be selected as appropriate by determining the selectivity of the desired cyclohexene and the substantial target value of the yield, and is not particularly limited, but is usually several seconds to several hours.

(発明の効果) 本発明によれば、シクロオレフィンを従来にない高い選
択率、収率で得ることができ、工業的に極めて価値の高
いものである。
(Effects of the Invention) According to the present invention, cycloolefins can be obtained with unprecedentedly high selectivity and yield, and are of extremely high value industrially.

(実施例) 以下、実施例をもって本発明をさらに詳細に説明するが
、本発明は、これら実施例によってなんら限定されるも
のではない。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 塩化ルテニウム(RuC4−3H,O) 5.0 ?お
よび塩化亜鉛13.Ofを水500−に溶解、攪拌し、
これに30%のカセイソーダ水溶液7〇−全瞬時に加え
た後、この混合液180Cとして2時間攪拌音読は友。
Example 1 Ruthenium chloride (RuC4-3H,O) 5.0? and zinc chloride13. Dissolve Of in 500% of water and stir,
Add a 30% aqueous solution of caustic soda to this at a temperature of 70°C, and stir the mixture for 2 hours at 180C.

冷却、静置後、沈降する黒色沈澱物をデカンテーション
操作により、1NのNaOH水溶液で3回洗浄した。こ
の黒色沈澱物は、大部分はZn(OH)t k含有する
Ru(OH)、であり、一部は塩化物の状態で存在して
い友。この黒色沈澱物音5チのカセイソーダ水溶液50
0m1に分散させ、内面にテフロンコーティングを施し
た内容積1tのオートクレーブに仕込んだ後、水素によ
り全圧を50ゆ/daとし、150Cで12時間還元し
た。
After cooling and standing, the black precipitate that settled was washed three times with 1N NaOH aqueous solution by decantation. This black precipitate is mostly Ru(OH) containing Zn(OH), and some of it exists in the form of chloride. Caustic soda aqueous solution of this black precipitate sound 50
After dispersing the mixture in an area of 0 ml and charging it into an autoclave with an inner volume of 1 ton and whose inner surface was coated with Teflon, the total pressure was brought to 50 Y/da with hydrogen, and the mixture was reduced at 150 C for 12 hours.

冷却後、得られた黒色粉体をアルゴン雰囲気下で、30
チのNaOH水溶液で洗浄後、さらに水洗し、これを真
空乾燥し、黒色の水素比触媒2.3yを得友。
After cooling, the obtained black powder was heated under an argon atmosphere for 30 minutes.
After washing with an aqueous NaOH solution, the mixture was further washed with water and vacuum dried to obtain a black catalyst with a hydrogen ratio of 2.3y.

この触媒をX線回折法で解析したところ、結晶の成長が
みられ、その平均結晶子径は55Xであった。一方、こ
の触媒中の亜鉛含量をケイ光X線法で求めたところ、7
.4重i%であった。
When this catalyst was analyzed by X-ray diffraction, crystal growth was observed, and the average crystallite diameter was 55X. On the other hand, when the zinc content in this catalyst was determined by fluorescent X-ray method, it was found to be 7.
.. It was 4 times i%.

次に、この触媒を用いてベンゼンの部分還元を行なった
Next, partial reduction of benzene was performed using this catalyst.

上記触媒0.47、水620−1ZnSO,・7 H,
014,49およびベンゼン80m1.内面にテフロン
コーティングを施し友内容積1tのオートクレーブに仕
込み、150C−iで昇温後、水素を圧入して全圧50
に9/crdGとし、高速攪拌下に反応させた。この反
応液を経時的に抜き出し、ガスクロマトグラフィーによ
り、油相の組成を分析し九結果を以下に示す。
The above catalyst 0.47, water 620-1ZnSO, 7 H,
014,49 and benzene 80ml1. The inner surface was coated with Teflon and placed in an autoclave with an internal volume of 1 ton. After heating at 150C-i, hydrogen was injected to bring the total pressure to 50.
9/crdG, and the reaction was carried out under high speed stirring. This reaction solution was extracted over time, and the composition of the oil phase was analyzed by gas chromatography.The results are shown below.

15分  22,1   87,8    19.43
0分  39.0    B 4.0    32.8
60分  60.5   78,7    47.5副
生成物はシクロヘキサンであった。
15 minutes 22.1 87.8 19.43
0 min 39.0 B 4.0 32.8
60 minutes 60.5 78.7 47.5 The by-product was cyclohexane.

実施例2 還元前の黒色沈澱物iAr気流中で乾燥後、気相におい
て水素で還元した他は、実施例1と同様の操作を行なっ
た。結果を以下に示す。
Example 2 The same operation as in Example 1 was performed, except that the black precipitate before reduction was dried in an iAr stream and then reduced with hydrogen in the gas phase. The results are shown below.

15分  20.4   83,9   17.130
分  56,0   80.1   28.860分 
 56.1   75,3   42.2実施例3 塩化ルテニウム(RuC1,’3H!O) 1,56 
L?、硫酸亜鉛(Zn5O,−7H!0 ) 0.26
 ? f水500−に溶解、攪拌し、これに、水素比ホ
ウ素す) IJウム0.9vを水100iに溶解し友も
の金加えて還元し、洗浄、乾燥して水素化触媒0.61
を得た。亜鉛含量は2.6重量%、平均結晶子径は40
人であった。
15 minutes 20.4 83.9 17.130
Minutes 56.0 80.1 28.860 minutes
56.1 75,3 42.2 Example 3 Ruthenium chloride (RuC1,'3H!O) 1,56
L? , zinc sulfate (Zn5O, -7H!0) 0.26
? Dissolve 0.9v of IJium in 100ml of water, add gold to reduce, wash and dry to obtain a hydrogenation catalyst of 0.61.
I got it. Zinc content is 2.6% by weight, average crystallite size is 40
It was a person.

この水素化触媒を用すて、実施例1と同様にして反応さ
せた。その結果を以下に示す。
A reaction was carried out in the same manner as in Example 1 using this hydrogenation catalyst. The results are shown below.

15分  25,8   80.9    20.93
0分  44.1   75,2    53.260
分  68,5   66,9    45.8比較例
1 水素化触媒として日本エンゲル/%ルド社裂のルテニウ
ムメタル(平均結晶子径5ooi以上)0、!M”i使
用し友他は、実施例1と同様の操作を行なつ友。結果を
以下に示す。
15 minutes 25.8 80.9 20.93
0 minutes 44.1 75.2 53.260
Minutes 68,5 66,9 45.8 Comparative Example 1 Ruthenium metal from Nippon Engel/%Rudosha (average crystallite diameter 5ooi or more) as a hydrogenation catalyst 0,! The friends using M"i performed the same operations as in Example 1. The results are shown below.

50分   7.8   15.5    1.260
分  14.5    6,4    0.9120分
   27.7     2.5     0.7本発
明方法における水素化触媒の有効性が歴然としている。
50 minutes 7.8 15.5 1.260
min 14.5 6.4 0.9120 min 27.7 2.5 0.7 The effectiveness of the hydrogenation catalyst in the process of the invention is evident.

比較例2 触媒調製時に塩化亜鉛なしで実施例1と類似の方法で、
平均結晶子径59人の金属ルテニウム金調饗し、これを
水素化触媒として用いた他は、実施例1と同様に反応さ
せ友。その結果を以下に示す。
Comparative Example 2 In a similar manner to Example 1 without zinc chloride during catalyst preparation,
The reaction was carried out in the same manner as in Example 1, except that metal ruthenium gold with an average crystallite size of 59 was prepared and used as a hydrogenation catalyst. The results are shown below.

15分  23.4   73,0    17.13
0分  40.3   67.0    27.060
分  62.1   52,5    32.にれより
、はぼ同一の平均結晶子径を有する触媒にあって、本発
明方法における触媒の優位性が明らかである。
15 minutes 23.4 73.0 17.13
0 minutes 40.3 67.0 27.060
Minutes 62.1 52.5 32. This clearly shows the superiority of the catalyst in the method of the present invention among catalysts having approximately the same average crystallite diameter.

比較例3 塩化ルテニウム水溶液と酸化亜鉛粉末を用いて、通常の
液相吸看担持法によりルテニウムを担持した後、水素に
より還元し、酸化亜鉛に金属ルテニウム全1重量%担持
させた水素1ヒ触媒4.Ori用いた他は、実施例1と
同様に反応させた。その結果を以下に示す。
Comparative Example 3 Ruthenium was supported using a ruthenium chloride aqueous solution and zinc oxide powder by a normal liquid phase adsorption support method, and then reduced with hydrogen to make a hydrogen 1-hydrogen catalyst in which 1% by weight of metal ruthenium was supported on zinc oxide. 4. The reaction was carried out in the same manner as in Example 1, except that Ori was used. The results are shown below.

15分  20,5   40.5    8.330
分  36.7   24.8    9j60分  
5ζ2   14,9    7.にrLにより、亜鉛
全担体とする金属ルテニウム触媒と本発明における触媒
とは、大きく異なっていることが明らかである。
15 minutes 20.5 40.5 8.330
Minutes 36.7 24.8 9j60 minutes
5ζ2 14,9 7. It is clear that the metal ruthenium catalyst using all zinc as a carrier is significantly different from the catalyst of the present invention based on rL.

矢A例2〜7 水素化触媒の金属ルテニウムの結晶子径、亜鉛含量金変
比させ、様々な水浴液中で実施例1と同様の反応を行な
った結果を表1に示す。
Arrow A Examples 2 to 7 Table 1 shows the results of reactions similar to those in Example 1 carried out in various water bath solutions by changing the crystallite diameter of the metal ruthenium of the hydrogenation catalyst, the zinc content and the gold ratio.

以上の如く、極めて高い選択率、収率でシクロオレフィ
ンが得られることが判る。
As described above, it can be seen that cycloolefins can be obtained with extremely high selectivity and yield.

実施例8 1NのH,So、 1.6−を添加した他は、実施例1
と同様の操作を行なった。その結果を以下に示す。
Example 8 Example 1 except that 1N H, So, 1.6- was added.
The same operation was performed. The results are shown below.

5分    18.2   85,1   15.51
5分   41.8   82.0   34.560
分    64,5   74.5   47.9酸の
添加により、反りし速度を人中に上けることができるこ
とが判る。
5 minutes 18.2 85.1 15.51
5 minutes 41.8 82.0 34.560
Minutes 64.5 74.5 47.9 It can be seen that the warping speed can be increased to the philtrum by adding acid.

Claims (2)

【特許請求の範囲】[Claims] (1)単環芳香族炭化水素を水の共存下、水素により部
分還元するに際し、水素化触媒として、あらかじめ亜鉛
を含有させたルテニウムの還元物であつて、亜鉛含有量
がルテニウムに対し0.1〜50重量%である触媒を使
用し、少なくとも1種の水溶性亜鉛化合物の共存下、酸
性条件下において反応を行うことを特徴とするシクロオ
レフィンの製造方法。
(1) When a monocyclic aromatic hydrocarbon is partially reduced with hydrogen in the presence of water, a reduced product of ruthenium containing zinc in advance is used as a hydrogenation catalyst, and the zinc content is 0.0% relative to ruthenium. A method for producing a cycloolefin, which comprises using a catalyst in an amount of 1 to 50% by weight, and carrying out the reaction under acidic conditions in the coexistence of at least one water-soluble zinc compound.
(2)水素化触媒の平均結晶子径が200Å以下である
特許請求の範囲第1項記載のシクロオレフィンの製造方
法。
(2) The method for producing a cycloolefin according to claim 1, wherein the hydrogenation catalyst has an average crystallite diameter of 200 Å or less.
JP60182964A 1985-08-22 1985-08-22 Production of cycloolefin Granted JPS6245544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60182964A JPS6245544A (en) 1985-08-22 1985-08-22 Production of cycloolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60182964A JPS6245544A (en) 1985-08-22 1985-08-22 Production of cycloolefin

Publications (2)

Publication Number Publication Date
JPS6245544A true JPS6245544A (en) 1987-02-27
JPH0216736B2 JPH0216736B2 (en) 1990-04-18

Family

ID=16127401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60182964A Granted JPS6245544A (en) 1985-08-22 1985-08-22 Production of cycloolefin

Country Status (1)

Country Link
JP (1) JPS6245544A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923837A (en) * 1987-12-29 1990-05-08 Mitsui Petrochemical Industries, Ltd. Hydrogenation catalyst
US5180871A (en) * 1987-11-11 1993-01-19 Mitsui Petrochemical Industries, Ltd. Process for producing phenols
US5334790A (en) * 1992-02-26 1994-08-02 Catalytica Process and catalyst for partially hydrogenating aromatics to produce cycloolefins
US5414171A (en) * 1992-02-26 1995-05-09 Catalytica, Inc. Process and washed catalyst for partially hydrogenating aromatics to produce cycloolefins
WO2002060860A1 (en) * 2001-01-31 2002-08-08 Asahi Kasei Kabushiki Kaisha Process for producing cyclohexanone oxime
US7919659B2 (en) 2004-07-09 2011-04-05 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142536A (en) * 1974-05-09 1975-11-17
JPS57134422A (en) * 1980-12-31 1982-08-19 Stamicarbon Manufacture of cycloalkene by partial hydrogenation of corresponding aromatic hydrocarbons
JPS59184138A (en) * 1983-04-04 1984-10-19 Asahi Chem Ind Co Ltd Production of cycloolefin
JPS59186932A (en) * 1983-04-06 1984-10-23 Asahi Chem Ind Co Ltd Process for producing cycloolefin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142536A (en) * 1974-05-09 1975-11-17
JPS57134422A (en) * 1980-12-31 1982-08-19 Stamicarbon Manufacture of cycloalkene by partial hydrogenation of corresponding aromatic hydrocarbons
JPS59184138A (en) * 1983-04-04 1984-10-19 Asahi Chem Ind Co Ltd Production of cycloolefin
JPS59186932A (en) * 1983-04-06 1984-10-23 Asahi Chem Ind Co Ltd Process for producing cycloolefin

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180871A (en) * 1987-11-11 1993-01-19 Mitsui Petrochemical Industries, Ltd. Process for producing phenols
US4923837A (en) * 1987-12-29 1990-05-08 Mitsui Petrochemical Industries, Ltd. Hydrogenation catalyst
US5334790A (en) * 1992-02-26 1994-08-02 Catalytica Process and catalyst for partially hydrogenating aromatics to produce cycloolefins
US5414171A (en) * 1992-02-26 1995-05-09 Catalytica, Inc. Process and washed catalyst for partially hydrogenating aromatics to produce cycloolefins
US5424264A (en) * 1992-02-26 1995-06-13 Catalytica, Inc. Process and catalyst for partially hydrogenating aromatics to produce cycloolefins
WO2002060860A1 (en) * 2001-01-31 2002-08-08 Asahi Kasei Kabushiki Kaisha Process for producing cyclohexanone oxime
US6849765B2 (en) 2001-01-31 2005-02-01 Asahi Kasei Kabushiki Kaisha Process for producing cyclohexanone oxime
US7919659B2 (en) 2004-07-09 2011-04-05 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production

Also Published As

Publication number Publication date
JPH0216736B2 (en) 1990-04-18

Similar Documents

Publication Publication Date Title
JP7019813B2 (en) Catalyst for producing α-phenylethanol by hydrogenation of acetophenone, its production method and application
CN111250148B (en) Catalyst for preparing cyclohexylbenzene by benzene hydroalkylation and preparation method and application thereof
ITMI980857A1 (en) CATALYST CONTAINING AN AMORPHOUS ALLOY CONTAINING BORON ITS PREPARATION AND USE
US4923837A (en) Hydrogenation catalyst
CN113019393A (en) Platinum nano catalyst, preparation method thereof and method for synthesizing aromatic amine by selective hydrogenation of aromatic nitro compound
JPS6245544A (en) Production of cycloolefin
CN110975884B (en) Preparation method of transition metal-containing catalyst for preparing benzaldehyde by selectively oxidizing toluene
CN108246288A (en) For the metallic powder catalyst of hydrogenation process
JP4597024B2 (en) Cycloolefin production catalyst and cycloolefin production method
JP3897830B2 (en) Process for producing cycloolefin
JPH1129503A (en) Production of cycloolefin
JPH02104536A (en) Production of cyclohexenes and hydrogenation catalyst therefor
JP2892233B2 (en) Method for partial hydrogenation of monocyclic aromatic hydrocarbons
JPH0816073B2 (en) Method for producing cycloolefin
JPH0219098B2 (en)
CN109622006B (en) Catalyst for preparing low-grade aliphatic amine from ammonia-containing synthesis gas and preparation method thereof
JPS63243038A (en) Production of cycloolefin
JPS6245541A (en) Production of cycloolefin
JPS63243039A (en) Production of cycloolefin
JPH09118638A (en) Production of cycloolefin
JPH0639399B2 (en) Partial hydrogenation method for monocyclic aromatic hydrocarbons
JPS62205037A (en) Production of cycloolefin
CN117482952A (en) Nickel-based spinel catalyst and preparation method and application thereof
JP2932173B2 (en) Method for producing cycloolefin
CN115178257A (en) Preparation method and application of Pt-Ru-La/C multi-metal catalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term