CS263174B1 - Method of D-glycero-D-galacto-heptose and D-glycero-D-taloheptose Preparation - Google Patents
Method of D-glycero-D-galacto-heptose and D-glycero-D-taloheptose Preparation Download PDFInfo
- Publication number
- CS263174B1 CS263174B1 CS865666A CS566686A CS263174B1 CS 263174 B1 CS263174 B1 CS 263174B1 CS 865666 A CS865666 A CS 865666A CS 566686 A CS566686 A CS 566686A CS 263174 B1 CS263174 B1 CS 263174B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- glycero
- heptose
- galacto
- taloheptose
- solution
- Prior art date
Links
Landscapes
- Saccharide Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Účelom riešenia je zlepšenie spósobu přípravy D-glycero-D-galaktoheptózy a D- glyoero- -D-taloheptózy. Uvedeného účelu sa dosiahne tak, že tuhé sodné soli 1-deoxy-l-nitroheptitolov sa rozkladajú peroxidom vodíka za katalýzy molybdénanovými iónmi na odpovedajúce aldoheptózy. Spósob přípravy D-glycero-D-galaktoheptózy a D-glycero- -D-taloheptózy má použitie v organickej chémii a biochémii pri príprave sacharidov.The purpose of the solution is to improve the method of preparing D-glycero-D-galactoheptose and D-glycero- -D-taloheptose. The stated purpose is achieved by decomposing solid sodium salts of 1-deoxy-1-nitroheptitols with hydrogen peroxide under the catalysis of molybdenum ions to the corresponding aldoheptoses. The method of preparing D-glycero-D-galactoheptose and D-glycero- -D-taloheptose has applications in organic chemistry and biochemistry in the preparation of carbohydrates.
Description
263174 2
Vynález sa týká spósobu přípravy D-glycero-D-galaktoheptózy a D-glycero-D-taloheptózy.
Na přípravu D-glycero-D-galaktoheptózy a D-glycero-D-taloheptózy sa využivajú reakciezaložené na predlžovaní uhlíkatého reťazca D-manózy. Kyanhydrínovou syntézou a následnouhydrolýzou získané C-epimérne heptónové kyseliny sa rozdeíujú vo formě ich vápenatých resp.bárnatých solí, ktoré po redukcii poskytujú D-glycero-D-galaktoheptózu resp. D-glycero-D--taloheptózu [h. S. Isbell: J. Res. Nat. Bur. Stand. 20, 97 (1938),· E. M. Montgomery, C. S. Hudson: J. Amer. Chem. Soc. 64, 247 (1942)3- Nitrometánová syntéza sa uskutočňujev prostředí metanolového roztoku metanolátu sodného C. Sowden, R. Schaffer: J. Amer.
Chem. Soc. 73, 4 662 (1951)], alebo vodnom roztoku hydroxydu sodného [j. C. Sowden, R. R. Thomson: J. Amer. Chem. Soc. 80, 2 236 (1958)], získané C(2)-epimérne 1-deoxy-l-nitro-heptitoly sa rozdeíujú frakčnou kryštalizáciou a nakoniec sa izolované nitroheptitolyvo formě ich sodných solí rozkladajú Neffovou reakciou (kyselinou sírovou) na odpovedajúcealdoheptózy. Pre přípravu L-glycero-L-galaktoheptózy a L-glycero-L-taloheptózy sa tiežuplatnila reakcia nitrometánu a L-manózy v metanolovom roztoku za přítomnosti metanolátusodného a získané sodné soli nitroheptitolov sa rozpustia vo vodě a rozkladajú sa peroxidomvodíka za katalýzy molybdénanovými iónmi na odpovedajúce aldoheptózy, ktoré sa izolujúchromatografiou na štipci iónomeniča s funkčnými sulfoskupinami v bárnatom cykle [v. Bílik, D. Anderle, J. Alfoldi: Chem. zvěsti 28, 668 (1974)]. Pri nitrometánovej syntéze sa sodnésoli nitroheptitolov vo vodnom roztoku rozkladajú na východiskové zložky a tým sa znižujevýťažok požadovaných aldoheptčz.
Podstata spĎsobu přípravy D-glycero-D-galaktoheptózy a D-glycero-D-taloheptózy reakciouD-manózy a nitrometánu v metanolovom roztoku hydroxydu sodného, oxidačným rozkladom vovodnom roztoku, deionizáciou roztoku vymieňačmi iónov, skvasením D-manózy, kryštalizácioučasti D-glycero-D-galaktoheptózy z roztoku metanolu a kyseliny octovej a delením matečnéhoroztoku chromatografiou na iónomeniči s funkčnými sulfoskupinami vo vápenatom alebo bárnatomcykle spočívá v tom, že tuhé sodné soli 1-deoxy-l-nitro-D-glycero-D-galaktoheptitolu a 1-deoxy--1-nitro-D-glycero-D-taloheptitolu sa rozkladajú peroxidom vodíka za katalýzy molybdénanovýmiiónmi. Výhodou navrhovaného spdsobu přípravy D-glycero-D-galaktoheptózy a D-glycero-D-taloheptózyje, že je v technickom prevední velmi jednoduchý, všetky potřebné chemikálie sú bežnedostupné a nenáročný je na technologické zariadenie. Ďalšou výhodou je, že pri použitípevných sodných solí 1-deoxy-l-nitroheptitolov sú výtažky vyššie. Přidaná kyselina octovározkládá dusitany na oxidy dusíka, ktoré sa uvolnia a odstránia a tým sa predíží životnostpoužívaných iónomeničov. Příklad 1 V 500 ml metanolu sa rozpustí 100 g D-mánózy, přidá sa 200 ml nitrometánu a po častiach(t.j. po 30 ml) za miešania 750 ml 1,3 mol.l-^ metanolového roztoku hydroxydu sodného areakčná zmes sa mieša počas 7 hodin a potom nechá stát počas 20 hodin pri teplote 23 °C.Vylúěené sodné soli 1-deoxy-l-nitro-D-glycero-D-galaktoheptitolu a 1-deoxy-l-nitro-D-glycero--D-taloheptitolu sa odfiltrujú a premyjú metanolom. Do zmesi 1 000 ml 0,05 mol.l 1 vodnéhoroztoku hydroxydu sodného, 100 ml 30 % hmot. vodného roztoku peroxidu vodíka a 2 g molybdénanuamonného sa v priebehu 7 minút za miešania po častiach (t.j. 1 g) přidávájú sodné solinitroheptitolov. Oxidačný rozklad nitroheptitolov na aldoheptózy je reakcia mierne axotarmickáa preto reakčná zmes sa chladl, aby teplota nepresiahla 30 °C. Reakčná zmes sa nechá státpri teplote 23 °C počas 20 hodin. Potom sa přidá 10 ml 100 % hmot. kyseliny octovej aroztok prebubláva vzduchom. Roztok sa potom nechá stát 20 hodin a po přidaní 0,1 g 5 %hmot. paládia na uhlí sa nechá stát* dalších 20 hodin. Roztok sa přefiltruje a deonizujeprídavkom 500 ml iónomeniča s funkčnými sulfoskupinami (Ostion KS 0 210) a potom 500 mliónomeniča s funkčnými skupinami na báze terciálnych amínov (Ostion AT 0 209) v karbonátovomcykle. Deionizovaný roztok sa zahustí na 1 000 ml objem, přidá sa 1 000 ml pitnej vody,
10 g pekárskych kvasnic (Saccharpmyces cerevisiae) a zmes sa nechá stát pri teplote 23 °C
263174 2
The invention relates to a process for the preparation of D-glycero-D-galacto-heptose and D-glycero-D-taloheptose.
For the preparation of D-glycero-D-galactoheptose and D-glycero-D-taloheptose, the reaction based on the extension of the D-mannose carbon chain is utilized. The cyanohydrin synthesis and subsequent hydrolysis of the C-epimeric heptonic acids obtained are resolved in the form of their calcium or barium salts which, upon reduction, yield D-glycero-D-galacto-heptose, respectively. D-glycero-D-taloheptose [h. S. Isbell, J. Res. Nat. Bur. Stand. 20, 97 (1938), EM Montgomery, CS Hudson, J. Amer. Chem. Soc. 64, 247 (1942) 3- Nitromethane synthesis is carried out in a methanolic sodium methanolate solution C. Sowden, R. Schaffer: J. Amer.
Chem. Soc. 73, 4,662 (1951)], or an aqueous solution of sodium hydroxide. C. Sowden, RR Thomson: J. Amer. Chem. Soc. 80, 2236 (1958)], the obtained C (2) -epimeric 1-deoxy-1-nitro-heptitols are separated by fractional crystallization, and finally the isolated nitroheptitoly in the form of their sodium salts is decomposed by the Neff reaction (sulfuric acid) to the corresponding deheptoses. Also, the reaction of nitromethane and L-mannose in methanolic solution in the presence of methanolic sodium was used for the preparation of L-glycero-L-galacto-heptose and L-glycero-L-taloheptose, and the obtained sodium nitroheptitols were dissolved in water and the hydrogen peroxide decomposed to the corresponding molybdenum ions. aldoheptoses which are isolated by chromatography on an ion exchanger with functional sulfo groups in the barium ring [v. Bilik, D. Anderle, J. Alfoldi: Chem. rumors 28, 668 (1974)]. In nitromethane synthesis, the sodium salts of nitroheptitols in aqueous solution decompose to the starting materials, thereby reducing the yield of the desired aldoheptides.
The principle of the preparation of D-glycero-D-galacto-heptose and D-glycero-D-taloheptose by reaction of D-mannose and nitromethane in methanolic sodium hydroxide solution, oxidative decomposition of the aqueous solution, deionization of the solution by ion exchangers, fermentation of D-mannose, crystallization of D-glycero-D -galaktoheptose from a solution of methanol and acetic acid and by separation of the parent solution by ion exchange chromatography with functional sulfo groups in the calcium or barium ring, the solid sodium salts of 1-deoxy-1-nitro-D-glycero-D-galactoheptitol and 1-deoxy-- 1-nitro-D-glycero-D-taloheptitol is decomposed by hydrogen peroxide under the catalysis of molybdenum aniones. The advantage of the proposed method of preparing D-glycero-D-galacto-heptose and D-glycero-D-taloheptose is that it is very simple in technical terms, all the necessary chemicals are unavailable and low-tech. A further advantage is that when using solid sodium salts of 1-deoxy-1-nitroheptitols, the extracts are higher. The added acetic acid decomposes the nitrites to nitrogen oxides, which are released and removed, thereby avoiding the life of the ion exchangers used. EXAMPLE 1 100 g of D-mannose are dissolved in 500 ml of methanol, 200 ml of nitromethane is added, and 750 ml of 1.3 mol / L methanolic sodium hydroxide solution is added in portions (30 ml each) with stirring. hours and then allowed to stand for 20 hours at 23 ° C. The precipitated sodium salts of 1-deoxy-1-nitro-D-glycero-D-galacto-heptitol and 1-deoxy-1-nitro-D-glycero-D-taloheptitol were filtered and washed with methanol. To a mixture of 1000 ml of 0.05 mol / l aqueous sodium hydroxide solution, 100 ml of 30 wt. The aqueous solution of hydrogen peroxide and 2 g of molybdenum ammonium are added with sodium solitonitriles over a period of 7 minutes with stirring in portions (ie, 1 g). The oxidative decomposition of nitroheptitols to aldoheptose is a mildly axotarmic reaction and therefore the reaction mixture was cooled to a temperature not exceeding 30 ° C. The reaction mixture was allowed to stand at 23 ° C for 20 hours. Then 10 ml of 100 wt. acetic acid and solution bubbled through the air. The solution is then allowed to stand for 20 hours and after the addition of 0.1 g of 5 wt. Palladium on carbon is allowed to stand for another 20 hours. The solution is filtered and de-ionized by the addition of 500 ml of an ion exchanger with functional sulfo groups (Ostion KS 210) and then a 500-ion tertiary amine-functional ion exchanger (Ostion AT 0 209) in the carbonate ring. Concentrate the deionized solution to 1 000 ml of volume, add 1000 ml of drinking water,
10 g of baker's yeast (Saccharpmyces cerevisiae) and allow to stand at 23 ° C
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS865666A CS263174B1 (en) | 1986-07-28 | 1986-07-28 | Method of D-glycero-D-galacto-heptose and D-glycero-D-taloheptose Preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS865666A CS263174B1 (en) | 1986-07-28 | 1986-07-28 | Method of D-glycero-D-galacto-heptose and D-glycero-D-taloheptose Preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
CS566686A1 CS566686A1 (en) | 1988-09-16 |
CS263174B1 true CS263174B1 (en) | 1989-04-14 |
Family
ID=5401934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS865666A CS263174B1 (en) | 1986-07-28 | 1986-07-28 | Method of D-glycero-D-galacto-heptose and D-glycero-D-taloheptose Preparation |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS263174B1 (en) |
-
1986
- 1986-07-28 CS CS865666A patent/CS263174B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS566686A1 (en) | 1988-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0213785B1 (en) | Method for optical resolution of dl-cysteine and (r,s)-1-(1-naphthyl)ethylamine | |
US4355158A (en) | Process for the preparation of riboflavin | |
CN101781264B (en) | Production method of 1-methyl-5-mercapto-1,2,3,4-tetrazole | |
US2446192A (en) | Preparation of threonine and derivatives thereof | |
US4294766A (en) | Preparation of pure potassium ribonate and ribonolactone | |
CS263174B1 (en) | Method of D-glycero-D-galacto-heptose and D-glycero-D-taloheptose Preparation | |
NZ201412A (en) | Preparation of 4-aminobutyramide | |
RU2181719C2 (en) | N-nitrooxazolidines-1,3 and method of their synthesis | |
JPS6014033B2 (en) | Method for producing 4-methyloxazole | |
SU493472A1 (en) | Method for preparing 5/6 / -carboxylic acid esters of 2-arylbenzimidazole | |
RU2211841C1 (en) | Method for preparing d-glucuronic acid | |
US2779760A (en) | Lithium maltobionate and process for making same | |
MIKI et al. | STUDIES ON 5-KETO-D-GLUCONATE OBTAINED BY FERMENTATION RELATING TO L-ASCORBIC ACID I. CATALYTIC REDUCTION OF 5-KETO-D-GLUCONATE TO L-IDONATE | |
KR880001575B1 (en) | Purifying method for composite of 5-inosinaclid sodium and 5-guanylir sodium | |
SU545647A1 (en) | Method for preparing 0,0-dimethyl-0-2, 2-dichlorovinyl phosphate | |
HK68295A (en) | Process for the preparation of cephalosporin derivatives | |
RU1816755C (en) | Method of monochloroacetic acid synthesis | |
CN120647563A (en) | A preparation method of sodium S-sulfo-L-cysteine for cell culture medium | |
SU1565838A1 (en) | Method of obtaining 3, 4, 4'-triaminodiphenylsulfide | |
BABOR | Reactions of saccharides catalyzed by molybdate ions XXXII.* Efficient preparation of D-mannose and methyl aD-mannoside | |
US2796416A (en) | Process of preparing maltobionolactone | |
SU1182039A1 (en) | Method of producing 3-(benzothiazolyl-2)-thiapropansulfonate of alkali metal | |
KR810001104B1 (en) | Process for preparation of n-methyl moranoline | |
JPS5697239A (en) | Recovering method of isooctyl alcohol | |
CS274394B1 (en) | Method of optically active 2-deoxy-l-ribose preparation |