CS238921B1 - Process for the production of n-alkanone monocarboxylic acids - Google Patents

Process for the production of n-alkanone monocarboxylic acids Download PDF

Info

Publication number
CS238921B1
CS238921B1 CS837298A CS729883A CS238921B1 CS 238921 B1 CS238921 B1 CS 238921B1 CS 837298 A CS837298 A CS 837298A CS 729883 A CS729883 A CS 729883A CS 238921 B1 CS238921 B1 CS 238921B1
Authority
CS
Czechoslovakia
Prior art keywords
total
organ
monocarboxylic acids
nitric acid
alkanones
Prior art date
Application number
CS837298A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS729883A1 (en
Inventor
Mikulas Hrusovsky
Milina Cihova
Jan Vojtko
Jaroslava Skriniarova
Original Assignee
Mikulas Hrusovsky
Milina Cihova
Jan Vojtko
Jaroslava Skriniarova
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikulas Hrusovsky, Milina Cihova, Jan Vojtko, Jaroslava Skriniarova filed Critical Mikulas Hrusovsky
Priority to CS837298A priority Critical patent/CS238921B1/en
Publication of CS729883A1 publication Critical patent/CS729883A1/en
Publication of CS238921B1 publication Critical patent/CS238921B1/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Vynález rieši sposob výroby n-alkánmonokarboxylových kyselin štiepnou oxidáciou n-alkanónov. Postupuje sa tak, že n-alkanóny s počtom 5 až 11 atómov uhlíka v molekule sa oxidujú za premiešania 50 až 65% hmot. kyselinou dusičnou vo vodě pri teplote 70 až 100 °C a ďalej sa n-alkánmonokarboxylové kyseliny izolujú rozpiíštadlovou extrakciou, výhodné dietyléterom. Oxidácia sa móže uskutočniť za přítomnosti 0,01 až 0,18 % hmot. oxidu vanadičného. Alkánkarboxylové kyseliny s počtom 5 až 9 atómov uhlíka je možné použiť pre přípravu esterových mastiacich olejov na báze pentaerytritolu s alkánkarboxvlovými kyselinami.The invention solves a method of producing n-alkane monocarboxylic acids by splitting oxidation of n-alkanones. The procedure is such that n-alkanones with the number of 5 to 11 carbon atoms in the molecule are oxidized with mixing of 50 to 65% by mass. with nitric acid in water at a temperature of 70 to 100 °C and then the n-alkane monocarboxylic acids are isolated by solvent extraction, preferably with diethyl ether. The oxidation can be carried out in the presence of 0.01 to 0.18 wt.%. vanadium oxide. Alkanecarboxylic acids with 5 to 9 carbon atoms can be used for the preparation of ester lubricating oils based on pentaerythritol with alkanecarboxylic acids.

Description

(54) Spdsob výroby n-alkánmonokarboxylových kyselin(54) Process for the production of n-alkane monocarboxylic acids

Vynález rieši sposob výroby n-alkánmonokarboxylových kyselin štiepnou oxidáciou n-alkanónov. Postupuje sa tak, že n-alkanóny s počtom 5 až 11 atómov uhlíka v molekule sa oxidujú za premiešania 50 až 65% hmot. kyselinou dusičnou vo vodě pri teplote 70 až 100 °C a ďalej sa n-alkánmonokarboxylové kyseliny izolujú rozpiíštadlovou extrakciou, výhodné dietyléterom. Oxidácia sa móže uskutočniť za přítomnosti 0,01 až 0,18 % hmot. oxidu vanadičného.The invention provides a method for producing n-alkanemonocarboxylic acids by the cleavage oxidation of n-alkanones. The procedure is that n-alkanones with 5 to 11 carbon atoms in the molecule are oxidized with stirring with 50 to 65% by weight nitric acid in water at a temperature of 70 to 100 °C and then the n-alkanemonocarboxylic acids are isolated by solvent extraction, preferably diethyl ether. The oxidation can be carried out in the presence of 0.01 to 0.18% by weight vanadium pentoxide.

Alkánkarboxylové kyseliny s počtom 5 až 9 atómov uhlíka je možné použiť pre přípravu esterových mastiacich olejov na báze pentaerytritolu s alkánkarboxvlovými kyselinami.Alkanecarboxylic acids with 5 to 9 carbon atoms can be used for the preparation of pentaerythritol-based ester lubricating oils with alkanecarboxylic acids.

-238921-238921

II

Vynález sa týká spósobu výroby n-alkánmonokarboxylových kyselin štiepnou oxidáclou n-alkanónov.The invention relates to a method for the production of n-alkane monocarboxylic acids by splitting oxidizing n-alkanones.

Známe sú postupy oxidačnej premeny cyklanónov pósobením kyseliny duslčnej na alfa, Omega-alkándikarboxylové kyseliny o rovnakom počte atómov uhlíka v reťazcl, neboli však Zistené údaje o vhodnosti oxidačného štiepenia n-alkanónov kyselinou dusičnou na n-alkánmonokarboxylové kyseliny.There are known procedures for the oxidative conversion of cyclanones by the action of nitric acid to alpha, omega-alkanedicarboxylic acids with the same number of carbon atoms in the chain, but no data have been found on the suitability of the oxidative cleavage of n-alkanones by nitric acid to n-alkane monocarboxylic acids.

Kyselina dusičná používaná na oxidačně štiepenie oyklánónov C4_^2 sa používá v širokom koncentračnóm rozpStí, no optimálně jeho medze vyznačuje rozsah 50 až 70 %. Zahájenie oxidačného procesu sa ulehčuje prídavkom malého podielu dusitanu alkalického kovu.Nitric acid used for the oxidative cleavage of C 4 _^ 2 olefins is used in a wide concentration range, but its optimum range is 50 to 70%. The initiation of the oxidation process is facilitated by the addition of a small amount of alkali metal nitrite.

kolárny poměr kyseliny duslčnej voči ketonu bývá v rozpStí 4 až 6 : 1. Katalýzátormi sú viaceré prvkv premenllvého mocenstva, najmá V a Cu v rozpStí 0,01 až 1 %. Vstupná teplota reakcie mává rozpStie 15 až 100 °C, konečná teplota 50 až 120 °C.The molar ratio of nitric acid to ketone is usually 4 to 6:1 in solution. Catalysts are several elements of variable valency, especially V and Cu in solutions of 0.01 to 1%. The initial temperature of the reaction is usually 15 to 100 °C, the final temperature is 50 to 120 °C.

Dákovanie ketonu do kyseliny duslčnej trvá niekolko desiatok minút, celková doba reakcie 30 až 300 minút. Výtažky alkándikarboxylovej kyseliny kolišu v rozpStí 60 až 70 % teorie, kyselina dusičná sa v procese redukuje na NO a N2O4, ktoré reoxidáciou kyslíkom spolu s vodou regenerujú kyselinu dusičnú, část jej sa však mění na N2 a NjO, už neschopné takejto regeneráoie. Analogicky možno tiež oxidačně štiepiť aj cyklanoly.The addition of ketone to nitric acid takes several tens of minutes, the total reaction time is 30 to 300 minutes. The yields of alkane dicarboxylic acid vary in the range of 60 to 70% of theory, nitric acid is reduced in the process to NO and N 2 O 4 , which, by reoxidation with oxygen together with water, regenerate nitric acid, but part of it is converted to N 2 and NjO, no longer capable of such regeneration. Cyclanols can also be oxidatively cleaved in an analogous manner.

Uvedenú reakciu je možné analogicky použit na spósob výroby n-alkánmonokarboxylových kyselin štiepnou oxidáclou n-alkanónov podlá vynálezu, ktorého podstatou je, že n-alkanóny s počtom 5 až 11 atómov uhlíka v molekule sa oxldujú za premiešavania 50 až 65% kyselinou dusičnou vo vodě pri teplote 70 až 100 °C a ďalej sa aklánkarboxylové kyseliny izolujú rozpúšťadlovou extrakciou, výhodné dietyléterom.The above reaction can be analogously used for the method of producing n-alkanemonocarboxylic acids by the oxidative cleavage of n-alkanones according to the invention, the essence of which is that n-alkanones with 5 to 11 carbon atoms in the molecule are oxidized with stirring with 50 to 65% nitric acid in water at a temperature of 70 to 100 °C and further the alkanecarboxylic acids are isolated by solvent extraction, preferably with diethyl ether.

Postupovat sa može aj tak, že oxidácia sa uskutočňuje za přítomnosti 0,01 až 0,18 % hmotnostných oxidu vanadiřňého.It is also possible to proceed in such a way that the oxidation is carried out in the presence of 0.01 to 0.18% by weight of vanadium oxide.

Oxidácia n-alkanónov kyselinou důsiSnou je spojená s rozštiepením vazby C-C medzi karbonylovou skupinou v reťazci n-alkanónu so susediacim atómom uhlíka, vedúcej takto k tvorbě n-alkánmonokarboxylových kyselin. Základná schéma, podlá ktorej prebieha štiepenie alkanónov^ je takáto:Oxidation of n-alkanones with nitric acid is associated with the cleavage of the C-C bond between the carbonyl group in the n-alkanone chain with the adjacent carbon atom, thus leading to the formation of n-alkane monocarboxylic acids. The basic scheme according to which the cleavage of alkanones takes place is as follows:

- ->r1ch2cooh + r2cooh R1CH2COCH2R2'- ->r 1 ch 2 cooh + r 2 cooh R 1 CH 2 COCH 2 R 2'

- ->R1COOH + R2CH2COOH - -> R1COOH + R2CH2COOH

je skupina CHj až a je skupina CHj ažis a group CHj to and is a group CHj to

Calej móžu vznikat zo súboru alkánkarboxylových kyselin produkty ioh následného oxidačného odbúrania na příslušné nižšie alkánkarboxylové kyseliny. Podiel reakcie na jednej a na druhej straně karbonylovej skupiny v molekule ketÓnu bude podmienený relativnou pevnosťou vflzby C-H na susednom uhlíku: tak metyl-n-alkylketóny budú poskytovat z nižších karboxylových kyselin predovšetkým kyselinu octovú.The products of subsequent oxidative decomposition to the corresponding lower alkanecarboxylic acids can all be formed from a set of alkanecarboxylic acids. The proportion of reaction on one and the other side of the carbonyl group in the ketone molecule will be determined by the relative strength of the C-H bond on the adjacent carbon: thus methyl-n-alkyl ketones will yield primarily acetic acid from lower carboxylic acids.

Výhodou spósobu podlá vynálezu je, že sa získá-předpokládaný súbor alkánkarboxylových kyselin vo vysokom výtažku, okolo 90 % teorie, přitom u vyšších n-alkanónov prevažne časť produktu tvoří samostatné organickú fázu a iba menší podiel z něho sa nachádza vo vodnej fáze, ktorej podstatnou časťou je zriedená kyselina dusičná.The advantage of the method according to the invention is that the expected set of alkanecarboxylic acids is obtained in a high yield, around 90% of theory, while in the case of higher n-alkanones, a predominantly part of the product forms a separate organic phase and only a smaller portion of it is found in the aqueous phase, the essential part of which is diluted nitric acid.

Predmet vynálezu je konkretizovaný na príkladoch prevedeniaThe subject matter of the invention is specified in the examples of embodiments

3892 13892 1

Příklad 1Example 1

Použila sa štandardná aparatúra pozostávajúca z vyhrievanej 250 ml trojhrdlej banky, vybavenej KPG miešadlom, teplomerom, prikvapkávacím lievikom a spatným chladičom. Do banky sa nadávkovalo 0,28 molu 50 % hmot. kyseliny dusičnej /35,3 g/, ktorá sa vyhriala na 70 °C, a 0,05 g oxidu vanadičného.A standard apparatus consisting of a heated 250 ml three-necked flask equipped with a KPG stirrer, thermometer, dropping funnel and reflux condenser was used. 0.28 mol of 50 wt. % nitric acid /35.3 g/, heated to 70 °C, and 0.05 g of vanadium pentoxide were charged into the flask.

Potom sa počas 30 minút do banky dávkovalo 0,059 molu /10,0 g/ 4-undekanónu a teplota sa udržiavala na 70 °c, ako aj počas ďalšieho priebehu reakcie, ktorá trvala celkove 300 minút.Then, 0.059 mol (10.0 g) of 4-undecanone was dosed into the flask over 30 minutes and the temperature was maintained at 70°C throughout the reaction, which lasted a total of 300 minutes.

Surový reakčný produkt pozostával z dvoch kvapalných fáz; z organickej /12,42 g/, pozostávajúcej v podstatě z n-alkánkarboxylových kyselin C? až Cg, a z vodnej fáze, z ktorej po zneutralizovaní hydroxidom sodným sa získal trojnásobnou extrakciou vždy rovnakým objemom dietvléteru a jeho následným odpařením zvyšok /2,94 g/ pozostávajúci v podstatě takisto z n-alkánkarboxylových kyselin C2 až Cg; spolu 13,36 g n-alkánkarboxylových kyselin c2 až C8*The crude reaction product consisted of two liquid phases; an organic phase (12.42 g), consisting essentially of n-alkanecarboxylic acids C? to Cg, and an aqueous phase, from which, after neutralization with sodium hydroxide, a residue (2.94 g), consisting essentially also of n-alkanecarboxylic acids C2 to Cg, was obtained by three times extraction with the same volume of diethyl ether and its subsequent evaporation; a total of 13.36 g of n-alkanecarboxylic acids C2 to C8 *

Obsah jednotlivých n-alkánkarboxylových kyselin v reakčnom produkte z příkladu 1 /a aj ďalších príkladov 2 až 8/ je v tabulke 1.The content of individual n-alkanecarboxylic acids in the reaction product from Example 1 (and also other Examples 2 to 8) is given in Table 1.

Příklad 2Example 2

Postupovalo sa ako v příklade 1 s tým rozdielom, že reakcia prebiehala nri 100 °C 60 minút. Produkt tvořený organickou fázou mal 9,50 g a získaný z vodnej fáze mal 2,87 g; spolu 12,37 g.The procedure was as in Example 1 except that the reaction was carried out at 100°C for 60 minutes. The product formed from the organic phase was 9.50 g and that obtained from the aqueous phase was 2.87 g; a total of 12.37 g.

Príklad3Example3

Postupovalo sa ako v příklade 1 s tým rozdielom, že sa do banky nadávkovalo 30,5 58 % hmot. kyseliny dusičnej a reakcia prebiehala pri 70 °C 120 minút. Produkt tvořený organickou fázou mal 11,20 g a získaný z vodnej fáze mal 1,30 g. Spolu 12,50 g.The procedure was as in Example 1, except that 30.5 58 wt. % nitric acid was added to the flask and the reaction was carried out at 70 °C for 120 minutes. The product formed by the organic phase was 11.20 g and that obtained from the aqueous phase was 1.30 g. Total 12.50 g.

Příklad 4Example 4

Postupovalo sa ako v příklade 1 s tým rozdielom, že sado banky nadávkovalo 27,2 g 65 % hmot. kyseliny dusičnej a reakcia prebiehala pri 70 °C 120 minút. Produkt tvořený organickou fázou mal 11,50 g a získaný z vodnej fáze mal 2,13 g; spolu 13,63 g.The procedure was as in Example 1, except that 27.2 g of 65% by weight nitric acid was added to the flask and the reaction was carried out at 70°C for 120 minutes. The product formed by the organic phase was 11.50 g and that obtained from the aqueous phase was 2.13 g; a total of 13.63 g.

Příklad 5Example 5

Postupovalo sa ako v nríklade 2 s tým rozdielom, že do násady sa nepřidal oxid vanadičný. Produkt tvořený organickou fázou mal 11,47 g a získaný z vodnej fáze mal 1,23 g; spolu 12,70 g.The procedure was as in Example 2, except that vanadium oxide was not added to the batch. The product formed from the organic phase was 11.47 g and that obtained from the aqueous phase was 1.23 g; a total of 12.70 g.

Příklad 6Example 6

Postupovalo sa ako v příklade 2 s tým rozdielom, že sa do banky nadávkovalo 10,0 g 2-undekanónu /namiesto 10,0 g 4-undekanónu/. Produkt tvořený organickou fázou mal 8,94 g a získaný z vodnej fáze mal 2,90 g, spolu 11,84 g.The procedure was as in Example 2, except that 10.0 g of 2-undecanone was added to the flask (instead of 10.0 g of 4-undecanone). The product formed by the organic phase was 8.94 g and that obtained from the aqueous phase was 2.90 g, a total of 11.84 g.

Příklad 7Example 7

Postupovalo sa ako v příklade 6 s tým rozdielom, že do banky sa nadávkovalo 0,335 molu /42,3 g/ 50 % hmot. kyseliny dusičnej, 0,06 g oxidu vanadičného a ďalej 0,076 molu /10,0 g/ 5-nonanónu /namiesto 10,0 g 2-undekanónu/.The procedure was as in Example 6, with the difference that 0.335 mol (42.3 g) of 50 wt. % nitric acid, 0.06 g of vanadium pentoxide and further 0.076 mol (10.0 g) of 5-nonanone (instead of 10.0 g of 2-undecanone) were added to the flask.

Produkt tvořený organickou fázou mal 9,91 g a získaný z vodnej fáze mal 3,76 g; spolu 13,67 g.The product formed from the organic phase was 9.91 g and that obtained from the aqueous phase was 3.76 g; a total of 13.67 g.

Příklad 8Example 8

Postupovalo sa ako v příklade 6 s tým rozdielom, že do banky sa nadávkovalo 0,335 mólu /70,0 g/ 50% hmot. kyseliny dusičnej, 0,10 g oxidu vanadičného a ďalej 0,116 mólu /10,0 q/ 2-pentanónu /namiesto 10 g 2-undekanónu/.The procedure was as in Example 6, with the difference that 0.335 mol (70.0 g) of 50% by weight nitric acid, 0.10 g of vanadium pentoxide and further 0.116 mol (10.0 q) of 2-pentanone (instead of 10 g of 2-undecanone) were added to the flask.

Produkt pozostával z jednotnéj fáze, z ktorej po zneutralizovaní hydroxidem sodným sa získal trojnásobnou extrakciou vždy rovnakým objemom dietyléteru a jeho následným odpařením zvyšok, ktorý mal 15,02 g.The product consisted of a uniform phase, from which, after neutralization with sodium hydroxide, a residue of 15.02 g was obtained by three times extraction with the same volume of diethyl ether and its subsequent evaporation.

Claims (1)

238921 Produkt tvořený organickou fázou mal 9,91 g a získaný z vodnej fáze mal 3,76 g;spolu 13,67 g. Příklad 8 Postupovalo sa ako v příklade 6 s tým rozdielom, že do banky sa nadávkovalo 0,335molu /70,0 g/ 50% hmot. kyseliny dusičnej, 0,10 g oxidu vanadičného a ďalej 0,116 radlu/10,0 g/ 2-pentanónu /namiesto 10 g 2-undekanónu/. Produkt pozostával z jednotnéj fáze, z ktorej po zneutralizovaní hydroxidem sodnýmsa získal trojnásobnou extrakciou vždy rovnakým objemom dietyléteru a jeho následným odpa-řením zvyšok, ktorý mal 15,02 g. Tabulka 1 Příklad Produkt V ňom obsah čís. vo fáze C2 C3 C4 C5 organ. 0,03 0,87 1,76 0,06 1 vod. 0,13 0,85 1,07 0,09 spolu 0,16 1,72 2,85 0,15 organ. 0,35 0,99 1,76 0,16 2 vod. 0,09 0,99 1,10 0,02 spolu 0,44 1,98 2,86 0,18 organ. 0,07 0,83 2,02 0,04 3 vod. 0,04 0,38 0,44 0,02 spolu 0,11 1,15 2,46 0,06 organ. 0,05 1,01 2,23 0,66 4 vod. 0,05 0,45 0,51 0,03 spolu 0,10 1,46 2,74 0,69 organ. 0,09 0,85 1,60 0,02 5 vod. 0,03 0,32 0,35 0,01 spolu 0,12 1,17 1,95 0,03 organ. 0,59 0,17 0,14 0,16 6 vod. 1,57 0,22 0,21 0,07 spolu 2,16 0,39 0,35 0,23 organ. 0,70 0,69 3,02 4,10 7 vod. 0,20 0,33 1,62 1,27 spolu 0,90 1,02 4,64 5,37 organ. - - - - 8 vod. 1,92 7,48 4,53 - spolu 1,92 7,48 4,53 - jednotlivých n-alkánmonokarboxylových kyselin C6 /g/ C7 C8 C9 C10 spolu 0,20 2,52 3,08 - - 8,54 0,06 0,29 0,43 - - 2,94 0,26 2,81 3,51 - - 11,48 0,46 1 ,96 1,89 - - 9,50 0,02 0,28 0,30 - - 2 ,80 0,48 2,24 2,19 - - 12,30 0,22 2,37 2,65 - - 8,20 0,01 0,04 0,07 - - 1,00 0,23 2,41 2,72 - - 9,20 0,36 2,89 3,32 - - 10,52 0,06 0,24 0,78 - - 2,12 0,42 3,13 4,10 - - 12,64 0,64 1,88 2,14 - - 7,22 0,01 0,03 0,05 - - 0,80 0,65 1,91 2,19 - - 8,02 0,17 0,30 0,56 5,12 1,45 8,66 0,06 0,08 0,16 0,16 - 2,53 0,23 0,38 0,72 5,28 1,45 11,19 0,69 - - - - 9,20 - - - - - 3,42 0,69 - - - - 12,62 - - - - - - - 13,93 - - - 13,93 PREDMET VYNALEZU Spósob výroby n-alkánmonokarboxylových kyselin, vyznačujdci sa tým, že n-alkanónys počtom 5 až 11 atómov uhlíka v molekule sa oxidujú za premiešavania zriedenou kyselinoudusičnou o koncentrácii 50 až 65 % hmot. pri teplote 70 až 100 °C, popřípadě za přítomnostioxidu vanadičného. Severografia, n. p„ MOST Cena 2,40 KčsThe organic phase product was 9.91 g and obtained from the aqueous phase had 3.76 g, total 13.67 g. Example 8 The procedure was as in Example 6 except that 0.335 mol / 70.0 g was charged into the flask. % 50 wt. nitric acid, 0.10 g vanadium pentoxide and 0.116 radium (10.0 g) 2-pentanone (instead of 10 g 2-undecanone). The product consisted of a uniform phase from which, after being neutralized with sodium hydroxide, a residue of 15.02 g was obtained by extraction three times with an equal volume of diethyl ether and its subsequent evaporation. in phase C2 C3 C4 C5 organ. 0.03 0.87 1.76 0.06 1 aq. 0.13 0.85 1.07 0.09 total 0.16 1.72 2.85 0.15 organ. 0.35 0.99 1.76 0.16 2 W. 0.09 0.99 1.10 0.02 total 0.44 1.98 2.86 0.18 organ. 0.07 0.83 2.02 0.04 3 water. 0.04 0.38 0.44 0.02 total 0.11 1.15 2.46 0.06 organ. 0.05 1.01 2.23 0.66 4 W. 0.05 0.45 0.51 0.03 total 0.10 1.46 2.74 0.69 organ. 0.09 0.85 1.60 0.02 5 W. 0.03 0.32 0.35 0.01 total 0.12 1.17 1.95 0.03 organ. 0.59 0.17 0.14 0.16 6 W. 1.57 0.22 0.21 0.07 total 2.16 0.39 0.35 0.23 organ. 0.70 0.69 3.02 4.10 7 Waters. 0.20 0.33 1.62 1.27 Total 0.90 1.02 4.64 5.37 Organ. - - - - 8 Waters. 1.92 7.48 4.53 - total 1.92 7.48 4.53 - individual n-alkanone monocarboxylic acids C6 / g / C7 C8 C9 C10 total 0.20 2.52 3.08 - - 8.54 0 , 06 0.29 0.43 - - 2.94 0.26 2.81 3.51 - - 11.48 0.46 1, 96 1.89 - - 9.50 0.02 0.28 0.30 - - 2, 80 0.48 2.24 2.19 - - 12.30 0.22 2.37 2.65 - - 8.20 0.01 0.04 0.07 - - 1.00 0.23 2.41 2.72 - - 9.20 0.36 2.89 3.32 - - 10.52 0.06 0.24 0.78 - - 2.12 0.42 3.13 4.10 - - 12.64 0.64 1.88 2.14 - - 7.22 0.01 0.03 0.05 - - 0.80 0.65 1.91 2.19 - - 8.02 0.17 0, 30 0.56 5.12 1.45 8.66 0.06 0.08 0.16 0.16 - 2.53 0.23 0.38 0.72 5.28 1.45 11.19 0.69 - - - - 9,20 - - - - - 3,42 0,69 - - - - 12,62 - - - - - - - 13,93 - - - 13,93 SUBJECT MATERIAL Production method of n-alkan monocarboxylic acids characterized in that n-alkanones having from 5 to 11 carbon atoms in the molecule are oxidized under agitation with dilute acid-binding at a concentration of 50 to 65% by weight. at 70-100 ° C, optionally in the presence of vanadium pentoxide. Severografia, n. P „MOST Price 2.40 Kcs
CS837298A 1983-10-06 1983-10-06 Process for the production of n-alkanone monocarboxylic acids CS238921B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS837298A CS238921B1 (en) 1983-10-06 1983-10-06 Process for the production of n-alkanone monocarboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS837298A CS238921B1 (en) 1983-10-06 1983-10-06 Process for the production of n-alkanone monocarboxylic acids

Publications (2)

Publication Number Publication Date
CS729883A1 CS729883A1 (en) 1985-05-15
CS238921B1 true CS238921B1 (en) 1985-12-16

Family

ID=5421843

Family Applications (1)

Application Number Title Priority Date Filing Date
CS837298A CS238921B1 (en) 1983-10-06 1983-10-06 Process for the production of n-alkanone monocarboxylic acids

Country Status (1)

Country Link
CS (1) CS238921B1 (en)

Also Published As

Publication number Publication date
CS729883A1 (en) 1985-05-15

Similar Documents

Publication Publication Date Title
DE2220820B2 (en) Process for the production of acyclic alcohols and / or ketones
DE1443188C (en)
US2577208A (en) Production of ketonic bodies
CS238921B1 (en) Process for the production of n-alkanone monocarboxylic acids
US2528803A (en) Preparation of metallic soaps
JP3283587B2 (en) Method for producing 2-hydroxymandelic acid
DE2533387C2 (en) Process for the preparation of 2-hydroxy-3-butenoic acid esters
DE2533335C2 (en) 3-Methyl-3-aryl-pyruvic acid esters and process for the preparation of substituted pyruvic acid esters
DE1927233B2 (en) Process for the preparation of aliphatic or araliphatic carboxylic acids and / or lactones or esters
JPH01268663A (en) Production of monoglyceride
DE2621526C3 (en) Mixtures of polybranched monocarboxylic acids and processes for their preparation
JP3069297B2 (en) Polyester production method
US3661956A (en) Polymerised fatty acids and their esters
US3027400A (en) Manufacture of meta-and para-phthalic acid esters
Gast et al. Reactions of unsaturated fatty alcohols. VI. Guerbet reaction of soybean and linseed alcohols
US2622092A (en) Oil-soluble polyvalent metal salts of acids from oxidized hydrocarbons and process of making same
US3468945A (en) Production of carboxylic acids and nitriles
DE2436943C3 (en) o-Hydroxy-omega- (methylsulfinyl) acetonaphthones and process for their preparation
WO2001096277A1 (en) Method for producing 2,3,4,6-tetramethyl mandelic acid and 2,3,4,6-tetramethyl mandelic acid acetate
DE710130C (en) Process for the preparation of esters of 2-oxybutadiene-1,3
HUT74481A (en) Method for preparing of mono or di-2-substituted cyclopentanone and intermedier
DE888736C (en) Process for the production of highly effective dry substance combinations
US3702834A (en) Production of organic acids
US3754010A (en) Co-oxidation process for the production of synthetic fatty acids
JPH08507050A (en) Improved esterification method