CS205668B1 - Method for stabilizing formaldehyde in solutions - Google Patents

Method for stabilizing formaldehyde in solutions Download PDF

Info

Publication number
CS205668B1
CS205668B1 CS29879A CS29879A CS205668B1 CS 205668 B1 CS205668 B1 CS 205668B1 CS 29879 A CS29879 A CS 29879A CS 29879 A CS29879 A CS 29879A CS 205668 B1 CS205668 B1 CS 205668B1
Authority
CS
Czechoslovakia
Prior art keywords
formaldehyde
solutions
solution
kpa
syrups
Prior art date
Application number
CS29879A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Ladislav Komora
Jan Bobok
Vendelin Macho
Original Assignee
Ladislav Komora
Jan Bobok
Vendelin Macho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ladislav Komora, Jan Bobok, Vendelin Macho filed Critical Ladislav Komora
Priority to CS29879A priority Critical patent/CS205668B1/en
Publication of CS205668B1 publication Critical patent/CS205668B1/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Vynález rieši spdsob stabilizácie formaldehydu v roztokoch pri teplotáoh nad 100 °C, najmá pri tlakovoa oddestilovaní, alebo rektifikáoii formaldehydu z roztokov z výroby diolov až polyolov. Stábilizáoia formaldehydu sa uskutočňuje tak, že ea na roztok formaldehydu. pri teplotáoh 100 až 300 °C pdsobí aspoň jednorázové kyslíkom alebo ozónom, pričom sa tento privádza čistý alebo v zmesi s inertným plynom v množstve aspoň 1 dm3 na 1 kg formaldehydu.The invention solves the method of stabilizing formaldehyde in solutions at temperatures above 100 °C, especially during pressure distillation or rectification of formaldehyde from solutions from the production of diols to polyols. Stabilization of formaldehyde is carried out by adding ea to the formaldehyde solution. at a temperature range of 100 to 300 °C, it is treated at least once with oxygen or ozone, which is supplied pure or mixed with an inert gas in an amount of at least 1 dm3 per 1 kg of formaldehyde.

Description

Vynález rieši spdsob stabilizáoie formaldehydu v roztokooh pri teplotách nad 100 °C, najma pri tlakovom oddestilování, alebo rektifikáoii formaldehydu z roztokov z výroby diolov až pólyolov.The invention provides a method for stabilizing formaldehyde in solutions at temperatures above 100 ° C, in particular under pressure distillation, or rectifying formaldehyde from diol to polyol solution solutions.

Pri tepelnom namáhaní roztokov formaldehydu pri teplotáoh nad 100 °C, ktoré priohádzajú do úvahy najmá pri reakoiáoh formaldehydu za zvýšenej teploty nad 100 °C a to napr. pri výrobě akroleinu z acetaldehydu a formaldehydu, připadne pri jeho tlakovej rektifikáoii z vodných roztokov za účelom zakonoentrovania formaldehydu, připadne za účelom jeho odstránenia z vodnýoh roztokov za účelom izolácie hlavného produktu a to napr. pri výrobě.dl- až pólyolov, dochádza k stratám formaldehydu tvorbou kondenzátov z formaldehydu formóz.For thermal stresses of formaldehyde solutions at temperatures above 100 ° C, which may be considered, in particular, for formaldehyde reactants at elevated temperatures above 100 ° C, e.g. in the manufacture of acrolein from acetaldehyde and formaldehyde, optionally in its pressure rectification from aqueous solutions to encapsulate formaldehyde, or to remove it from aqueous solutions to isolate the main product, e.g. In the production of D1 to Polylols, formaldehyde is lost by the formation of condensates from formaldehyde forms.

Nakolko z priemysolného hladiska najčastejšie doohádza k oddelovaniu formaldehydu z reakčných roztokov polyolov, podrobnejšie sa rozoberá tento případ.Since, from an industrial viewpoint, formaldehyde is most often separated from reaction solutions of polyols, this case is discussed in more detail.

Di- až polyoly sa priemyselne výhodné pripravujú kondenzáciou formaldehydu s iným aldehydom a/alebo ketónom v zásaditom prostředí. Reakoia je všeobecná v tom zmysle, že takýmto spdsobom je možné kondenzovat’ všetky aldehydy alebo ketony, ktoré majú aspoň jeden vodík na X-uhlíku, vzhladom ku karbonylovej skupině.Di- to polyols are industrially advantageously prepared by condensation of formaldehyde with another aldehyde and / or ketone in a basic medium. Reakoia is general in the sense that in this way all aldehydes or ketones having at least one hydrogen on the X-carbon can be condensed with respect to the carbonyl group.

Vodíky sa postupné nahrádzajú metylovou skupinou z formaldehydu, pričom po úplnej substitúoii vodikov sa reakoia ukončuje redukciou karboxylovej skupiny zmiešanou Caínnizzarovou reakoiou, za súčásnej oxidáoié formaldehydu na kyselinu mravčiu. Týmto spdsobom sa z formaldehydu a z aoetaldehydu připravuje pentaerytritol, z propionaldehydu 1,1,1-tri metyloletán, z izobutyraldehydu - neopentylglykol, z cyklohexanonu Z,2,6,6-tetrametylolcyklohexanol a pod. /E. Berlou, R. H. Barth, J. E. Snowt The Pentaerythritols, Reínhold Publ. Co., New York 1958, J. F. Wallkeri Formaldehyde, Am. Chem. Soo. Monograph Series, New York 1953/· Za účelom dosiahnutia čo najvyššieho výťažku žiadaného produktu je výhodné pracovat' s prebytkom formaldehydu. Prebytok bývá 30 až 250%, vzhladom k teoretickému množstvu. Pri týohto vysokýoh molárnyoh prebytkooh formaldehydu bolo by neekonomioké nadbytočný jformaldehyd chemicky alebo tepelne odstraňovat*, a preto sa tento z reakčnýoh roztokov po neutralizáoii získává spravidla tlakovou destiláoiou /Brit. pat.The hydrogens are gradually replaced by a methyl group from formaldehyde, after complete hydrogen substitution, the reaction is terminated by reduction of the carboxyl group by a mixed Ca < 2 > pizza reaction, while formaldehyde oxidation to formic acid. In this way, pentaerythritol, 1,1-trimethylolethane, isobutyraldehyde neopentyl glycol, cyclohexanone Z, 2,6,6-tetramethylolcyclohexanol, and the like are prepared from formaldehyde and from acetaldehyde. / E. Berlou, R.H. Barth, J.E. Snowt The Pentaerythritols, Reinhold Publ. Co., New York 1958, J. F. Wallkeri Formaldehyde, Am. Chem. Soo. Monograph Series, New York 1953 / In order to maximize the yield of the desired product, it is preferred to work with excess formaldehyde. The excess is 30 to 250%, relative to the theoretical amount. With this high molar excess of formaldehyde, it would be uneconomical to remove excess iformaldehyde chemically or thermally, and therefore this neutralization reaction solution is generally obtained by pressure distillation / Brit. pat.

757 564/. Tlaková destiláoia, t.j, destiláoia nad teplotou 100 °C je nutná z ddvodov rovnováhy formaldehyd - metylénglykol - voda, v dósledku ktorej-sa do 100 °C destilát neoboháouje formaldehydem, ale vodou.757,564 /. Pressure distillation, i.e. distillation above 100 ° C, is necessary because of the formaldehyde-methylene glycol-water equilibrium, as a result of which the distillate is not enriched in formaldehyde to 100 ° C, but water.

Pri zvýšenýoh teplo táoh oyšem doohádza v kyslom prostředí, najmá pri pH menšom ako 4, k reakoii formaldehydí s alkoholmi, a v zásaditom prostředí zasa ku konverzi! formaldehydu na sirupy. Zatial’ čo potlačenie tvorby formálov z di- až polyolov odstraňuje spdsob podlá čs. AO č. 193 858, potlačenie tvorby sirupov z formaldehydu pri zvýšenýoh teplotách nad 100 °C zatial nebol popásaný. Z uvedených ddvodov sa oddelovanie formaldehydu riešilo kompromispm a to používali sa čo možno najnižšie teploty, resp. velmi krátké doby pobytu v kolóne. Uvedené opatrenia však kladů zvýšené nároky na konštrukoiu rektifikačnej kolony a nepriaznivo ovplyvňujú deliaou účinnost’ rektifikačnej kolony.When the heat of the eyes is increased, the formaldehyde reacts with alcohols in an acidic environment, in particular at a pH of less than 4, and conversely in a basic environment! of formaldehyde to syrups. While the suppression of the formation of formalities from di- to polyols removes the method according to MS. AO č. 193 858, the suppression of the formation of syrups from formaldehyde at elevated temperatures above 100 ° C has not yet been described. For the reasons given above, formaldehyde separation was solved by compromise, using temperatures as low as possible, respectively. very short residence times in the column. However, these measures place increased demands on the design of the rectification column and adversely affect the efficiency of the rectification column.

XX

205 B68205 B68

Uvedené nevýhody odetraduje použitie spdsobu podl*a tohoto vynálezu, pri ktorom ea uskutočňuje spdsob stabilizáoie formaldehydu v roztokooh pri teplotáoh nad 100 °C, najmS pri tlakovom oddestilování, alebo rektifikáoii formaldehydu z roztokov z výroby diolov až polyolov tak, že sa na roztok formaldehydu pri teplotáoh 100 až 300 °C pdsobí aspoň jednorázové kyslíkom alebo Ozónom, pričom sa tento privádza čistý alebo v zmesi s lnertným plynom alebo kvapalinou v množstve aspoň 1 dm na 1 kg formaldehydu, s výhodou vo formo vzduohu a/alebo zlúSenín, z ktorýoh sa kyslík pri zvýšenoj teplote uvolňuje.' sThese disadvantages are discouraged by the use of the process according to the invention, wherein the process is to stabilize formaldehyde in solutions at temperatures above 100 ° C, in particular by pressure distillation, or to rectify formaldehyde from diol to polyol solutions by converting the formaldehyde solution into a solution. the temperature of 100 to 300 ° C is at least disposable with oxygen or ozone, which is supplied pure or mixed with an inert gas or liquid in an amount of at least 1 dm per kg of formaldehyde, preferably in the form of air and / or oxygen-producing compounds releases at elevated temperature. with

Výhodou postupu podlá tohto vynálezu je, že přítomnost* kyslíka poSas destiláoie, rektifikáoie, připadne poSas tepelného namáhania roztoku inhibuje resp. retarduje tvorbu kondenžátov z formaldehydu· Tým v porovnaní s predohádzajúolm atavom sa mdže praoovať pri vyS8ioh teplotáoh, resp. dlhšiu dobu, So je z hladiska oddelovania formaldehydu výhodné a nakonieo znamená nižšie straty získaného formaldehydu, respektive jeho vyššie výťažky. přítomnost* kyslíka teda Jednak zabezpečí vyššie výťažky formaldehydu, jednak nakolko zabraňuje tvorbě airupov z formaldehydu, umožňuje získat* produkt o vyššloh kvalitatívnyoh ukazatelooh, resp. vo v&Sšom množstve z ddvodov zníženia strát poSas čistenie surového produktu. Přitom je postup poměrně jednoduohý, pretože nepotřebuje přídavky inýoh látok, ktoré mdžu jednak ovplyvniť vlastnosti produktu a zvyšovat* náklady na ioh zakúpenie.It is an advantage of the process according to the invention that the presence of oxygen during distillation, rectification or inhibits respectively during thermal stress of the solution. retarding the formation of condensates from formaldehyde · Thus, in comparison with the foregoing antifoams, it can be prone to high temperatures or higher temperatures. for a longer period of time, S0 is advantageous in terms of formaldehyde separation and, in turn, means lower losses of the formaldehyde obtained or higher yields thereof. the presence of * oxygen thus ensures higher yields of formaldehyde, on the one hand, because it prevents the formation of airups from formaldehyde, it makes it possible to obtain a product of higher quality indicators, respectively. in greater amounts to reduce losses during purification of the crude product. The process is relatively simple, since it does not need the addition of other substances which, on the one hand, can affect the properties of the product and increase the cost of its purchase.

Roztok formaldehydu, ktorý sa má podrobit* spraoovaniu pri zvýšenej teplote móže byť slabo kyslý až neutráiny, najlepšie s pH 4 až 7·The formaldehyde solution to be treated at elevated temperature may be weakly acidic to neutral, preferably pH 4 to 7 ·

V případe, že sa tepelné namáhanie robí v autokláve, na·zamedzenie tvorby sirupov stačí po nadávkovaní roztoku formaldehydu natlaSiť vzduoh, a to tak, aby bol jeho tlak > vyšší ako 100 kPa. Zvlášť výrazné sa tvorby sirupov připravuje za přítomnosti solí slabýoh kyselin, ako je to pri výrobo polyolov. Přitom zrajme okrem tlaku bude záležať tiež od molámeho poměru formaldehydu ku kyslíku. Pokusy sa robili v 1,5 1 autokláve z nerezu, · priSom ako násady sa používalo 200 ml roztoku formaldehydu z výroby polyolov. V tomto případe stačilo dotlačit’ autokláv na 303 kPa vzduohom a v priebehu 24 hodin pri teplote 150 °C nevznikali sirupy z formaldehydu a produkt bol vodojasný. V případe, keá sa pri uvedenej teplote praoovalo len pri atmosferiokom tlaku vzduohu na začiatku vyhrievania autoklávu v priebehu 3 hodin vznikli z formaldehydu sirupy a roztok bol tmavohnědý so sirupovitým karamelovým zápaohom.In the case where the thermal stress is carried out in an autoclave, it is sufficient to pressurize the air after the addition of the formaldehyde solution so that its pressure is> 100 kPa to prevent syrup formation. Syrup formation is particularly pronounced in the presence of weak acid salts, such as in the production of polyols. In addition, the pressure will also depend on the molar ratio of formaldehyde to oxygen. The experiments were carried out in a 1.5 L stainless steel autoclave using 200 ml formaldehyde solution from the polyol production as feeds. In this case, it was sufficient to pressurize the autoclave to 303 kPa by air and within 24 hours at 150 ° C no formaldehyde syrups were formed and the product was water-soluble. When at this temperature, only atmospheric pressure at atmospheric pressure at the start of heating the autoclave during 3 hours, syrups were formed from formaldehyde and the solution was dark brown with a syrupy caramel smell.

V případe, že sa použil čistý kyslík, stačilo na doslahnutie rovnakého efektu tlak 100 kPa. Zníženle tlaku umožnila tiež přítomnost* ozónu alebo perozldov.When pure oxygen was used, a pressure of 100 kPa was sufficient to achieve the same effect. The presence of ozone or perozdols also made the pressure lower.

V případe, že sa tepelné namáhanie roztoku formaldehydu robilo pri jeho rektifikáoii na rektifikačnej koloně, vovádzal sa do varáka vzduoh v množstve 1 l/h pri náatrOkuIn case the thermal stress of the formaldehyde solution was carried out during its rectification on the rectification column, air was introduced into the reboiler at a rate of 1 l / h at the bed.

300 ml roztoku/h pri rektifikáoii pri tlaku 500 kPa.300 ml of solution / h at rectification at 500 kPa.

Pri uvedenom spdsobe sa rektifikáoiou získalo 95 až 98 % z nastřekováného formaldehydu, pričom roztok z varáka bol Číry, vodojaený, prípadnq len slabo žltkavý.In this way, 95-98% of the injected formaldehyde was recovered by rectification, and the boiling solution was clear, watered, possibly only slightly yellowish.

Uvedený spdsob zaručuje stabilitu formaldehydu bez ohladu na použité teploty a dobu tepelného namáhania, čím sa podstatné znížia spotrebné normy*formaldehydu na tonu produk205668 tu.This method guarantees the stability of formaldehyde regardless of the temperatures and thermal stresses used, thereby substantially reducing formaldehyde consumption standards per tonne of product205668 here.

Uooi v príkladooh sa uvádza len spdsob stabilizáoie formaldehydu v roztokooh polyolov, . 4 je zřejmá, že uvedený spdsob sa bude dat’ aplikovat’ v rdznyoh roztokooh formaldehydu, ktorá sú vystavená tepelnému ňamáhanlu, pri teplotách nad 100 °C.In the example, only the method of stabilizing formaldehyde in polyol solutions is mentioned. 4, it is evident that the method will be applied in various formaldehyde solutions exposed to thermal stress at temperatures above 100 ° C.

Příklad 1 >Example 1>

Meranie tepelnej stability formaldehydu ša,robí v 1,5 1 nerezovom autokláve. Autokláv je opatřený magnetickým kotvovým mieSadlom, teplomerom, manometrem a dvorná ventilmi na vzorkovanie kvapalnej a plynnéj rázy.Measurement of the thermal stability of formaldehyde is carried out in a 1.5 L stainless steel autoclave. The autoclave is equipped with a magnetic anchor stirrer, a thermometer, a pressure gauge and court valves for sampling liquid and gaseous impacts.

Otáčky mieSadla sa regulujů stabilizátorem otáčok.The stirrer speed is controlled by a speed stabilizer.

Vyhrievanie autoklávu je oirkuláoiou silikonového oleja pomooou termostatu oez pláSt* autoklávu. 1 The heating of the autoclave is by circulating the silicone oil through a thermostat through the casing of the autoclave. 1

Reakčná zmes sa nasáva do autoklávu za studená pomooou vákua, pričom oirkuláoia silikonového oleja započala po jeho vyhriatí na žiadanú teplotu zapnutím cirkulačněj pumpy.The reaction mixture is sucked into the cold autoclave under vacuum, whereby the silicone oil is circulated after heating to the desired temperature by switching on the circulation pump.

Výsledky pokusov sú zahrnuté v tabulko 1.The results of the experiments are included in Table 1.

Ako z výsledkov zhmutýoh v tabulko 1 vidno v závislosti od reakčnej teploty vzniká z formaldehydu rdzne množstvo sirupov. Pokusy 1 až 4 eú robené áko Standardně bez prídavko v.As can be seen from the results shown in Table 1, various syrups are formed from formaldehyde depending on the reaction temperature. Experiments 1 to 4 eu made Standard without add.

t ' . . .t '. . .

Do druhej skupiny sa zoradili pokusy, kdo sa prídavkom kyslíka a to či už vo formě vzduchu, s čistým kyslíkom alebo ozónomjdosiahol vysoký irihibičný a retardačný účinok na tvorbu sirupov z formaldehydu.The second group consisted of experiments that by adding oxygen, either in the form of air, with pure oxygen or ozone, achieved a high irritating and retarding effect on the formation of syrups from formaldehyde.

Tu so zvySovaním počiatočného tlaku vzduohu od 2,7 do 300 kPa, klesá množstvo sirupov z formaldehydu, pričom za tlaku viac ako 200 kPa už ani za 7 resp. 12 hodin nevznikájú sirupy.Here, with an increase in initial air pressure of 2.7 to 300 kPa, the amount of syrups from formaldehyde decreases, with no more than 7 kPa at more than 200 kPa. No syrups are produced for 12 hours.

Rovnakého účinku sa dosiahne za přídavku kyslíka 100‘kPa resp. 75 kPa ozónu.The same effect is achieved with the addition of oxygen of 100‘kPa resp. 75 kPa of ozone.

Tabulka.1Table.1

Vplyv reakčnej teploty na ‘tvorbu sirupov z formaldehydu. Ako surovina použitý reakčný roztok z přípravy pentaerytritělu s molárnym pomerom formaldehydu - acetaldehyd 11:1 v koncentrácii 15,0 $ hmot. formaldehydu, 0,16 % hmot. sirupy, 7,65 % hmot. monopentaerytrltolu, 0,08 % dipentaerytritolu a 8,0 % hmot. mravčanu vápenatého. Násada 500 g.Influence of reaction temperature on ‘formation of syrups from formaldehyde. The reaction solution from the preparation of pentaerythritil with a molar ratio of formaldehyde - acetaldehyde of 11: 1 in a concentration of 15.0% by weight was used as the raw material. % formaldehyde, 0.16 wt. syrups, 7.65 wt. % monopentaerythritol, 0.08% dipentaerythritol and 8.0 wt. calcium formate. Handle 500 g.

205 008205 008

číslo pokusu attempt number Reakčná teplote ( °c) The reaction at (° c) Reakčná - doba (h) Reaction time (h) Pridavok druh The addition kind of Tlak pressure Tvorba kondenzát ov formaldehydu (% hmot.) Formation of formaldehyde condensates (% by weight) 1 1 100 100 6,0 6.0 0 0 0 0 0 0 2 2 120 120 6,0 6.0 0 0 0 0 5 5 3 3 140 140 3’° 3 '° 0 0 0 0 50,0 50.0 4 4 l60 l60 0,5 0.5 0 0 0 0 40,0 40.0 5 5 i4o i4o 3,0 3.0 vzduoh vzduoh 2,7 kPa 2.7 kPa 56,0 56.0 6 6 i4o i4o 3,5 3.5 vzduoh vzduoh 100 kPa 100 kPa 50,0 50.0 7 7 i4o i4o 4,0 4.0 vzduoh vzduoh 200 kPa 200 kPa 42,0 42.0 8 8 140 140 7,0 7.0 vzduoh vzduoh 300 kPa 300 kPa 0,0 0.0 9 9 140 140 12,0 12.0 vzduoh vzduoh 400 kPa 400 kPa 0,0 0.0 10 10 140 140 10,0 10.0 kyslík oxygen 100, kPa 100, kPa 0,0 0.0 11 11 i4o i4o 10,0 10.0 ozón ozone ' 75 kPa 75 kPa 0,0 0.0

Příklad 2 (Example 2 (

Rektifikáaia formaldehydu za reakčného roztoku z výrobní pentaerytritólu ea robí na 30 patrovéj rashigom plnenej koloně dlžky 5 m. a priemeru 80 mm, a náetrekom 10 l/h roztoku pri teplote 150 °C. Zatial’ čó patový produkt z kolony bol pri normálnej rektifikáoii nahnedlý, za kontinuálneho privádzania vzduohu do vařáku kolony, odťah z varáka nezhnedol, je vodojasný a nebol prírastok sirupov medzi nástrekom a odťahom produktu.The rectification of formaldehyde in the reaction solution from the manufacturing pentaerythritol e makes a length of 5 m on a 30-storey Rashig-packed column. and a diameter of 80 mm, and a spray of 10 l / h of solution at 150 ° C. While the bottom product of the column was brown in normal rectification, with continuous introduction of air into the column digester, the digestion did not turn brown, was cloudy, and there was no increment of syrups between feed and product withdrawal.

Na koloně sa rektifikuje rovnakým spósobom reakčný roztok z přípravy tetrametyloloyklohexanolu. Roztok obsahuje 3 % hmot. formaldehydu. Po rektifikáoii na koloně sa získá hlavný produkt s obsahom 10 % hmot. formaldehydu a pfitový produkt.s obsahom menej ako 0,1 % hmot. formaldehydu. Produkt za přítomnosti vzduohu je číry bez sirupov z formaldehydu. Zatial’,' čo za přítomnosti kyslíka nevznikájú sirupy z formaldehydu a produkt je vodo jasný, bez přítomnosti kyslíka, produkt-je žitý až nahnedlý a obsahuje sirupy z formaldehydu 10 až 15 % hmot. z nadávkovaného množstva formaldehydu.The reaction solution from the preparation of tetramethyloloyclohexanol is rectified on the column in the same manner. The solution contains 3 wt. formaldehyde. After rectification on the column, the main product is obtained with a content of 10% by weight. % formaldehyde and a toasted product with less than 0.1% by weight formaldehyde. The product in the presence of air is clear, free of formaldehyde syrups. While in the presence of oxygen, formaldehyde syrups are not formed and the product is water-clear, oxygen-free, the product is lived to brownish and contains 10 to 15% by weight of formaldehyde syrups. from a metered amount of formaldehyde.

Příklad 3 .Example 3.

Do železného autoklávu ea nadávkuje 250 ml 10 % formaldehydu obeahujúoeho 1 % kyseliny mravčej. Tepelným namáháním roztoku pri teplote 180 °C za 60 minút sa vytvoří 30 % kondenzátov z formaldehydu. V případe, že sa do autoklávu' na začiatku vyhrievania autoklávu privedú 300 kPa vzduohu, sirupy z formaldehydu nevznikájú.250 ml of 10% formaldehyde containing 1% formic acid are metered into an iron autoclave ea. By thermal stressing the solution at 180 ° C for 60 minutes, 30% of the formaldehyde condensates are formed. If air is introduced into the autoclave at the beginning of the heating of the autoclave, no formaldehyde syrups are formed.

Claims (1)

5 205 66 PREDMET VYNÁLEZU SpOsob stabilizácie formaldehydu v roztokoch při teplotách nad 100 °C, najma při tla kovom oddestilovaní, alebo rektifikáoii formaldehydu z roztokov z výroby diolov až poly- olov, vyznadujúoi aa tým, že aa na roztok formaldehydu pri teplotáoh 100 až 300 °C póaobí aspoň jednorázové kyallkom alebo ozónom, priáom aa tento privádza íistý alebo v zmesi» - 3 8 iiwrtaýia pXynom v množstvo aspoú 1 dm na 1 formaldehydu·OBJECT OF THE INVENTION A method of stabilizing formaldehyde in solutions at temperatures above 100 ° C, in particular by distilling off, or rectifying formaldehyde from solutions from the production of diols to polyols, and by aa to a solution of formaldehyde at a temperature of 100 to 300 ° C, at least disposable with cyan or ozone, and added to the filter or mixed in a mixture of at least 1 dm / 1 formaldehyde.
CS29879A 1979-01-15 1979-01-15 Method for stabilizing formaldehyde in solutions CS205668B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS29879A CS205668B1 (en) 1979-01-15 1979-01-15 Method for stabilizing formaldehyde in solutions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS29879A CS205668B1 (en) 1979-01-15 1979-01-15 Method for stabilizing formaldehyde in solutions

Publications (1)

Publication Number Publication Date
CS205668B1 true CS205668B1 (en) 1981-05-29

Family

ID=5334843

Family Applications (1)

Application Number Title Priority Date Filing Date
CS29879A CS205668B1 (en) 1979-01-15 1979-01-15 Method for stabilizing formaldehyde in solutions

Country Status (1)

Country Link
CS (1) CS205668B1 (en)

Similar Documents

Publication Publication Date Title
DE102010064250A1 (en) Process for the preparation of methylmercaptopropionaldehyde
JPS59139341A (en) Method for producing hydroxycarboxylic acid derivatives
DE69923825T2 (en) Process for the preparation of high purity trimethylolpropane
DE10160180A1 (en) Process for the isolation of trimethylolpropane from a reaction mixture
DE69936137T2 (en) PROCESS FOR PREPARING ACETIC ACID
CN100364960C (en) Process for separating triethanolamine from mixtures obtainable by reaction of ammonia and ethylene oxide
US6379507B1 (en) Process for producing methylal
CH188615A (en) Process for the production of isopropyl acetate.
CS205668B1 (en) Method for stabilizing formaldehyde in solutions
DE2150657A1 (en) METHOD FOR PRODUCING DIPHENOLS
US2372602A (en) Process for preparation of pentaerythritol
DE2423405A1 (en) METHOD FOR MANUFACTURING GLYCIDYL METHACRYLATE
DE1618879B1 (en) Process for the production of the purest beta-methyl mercaptopropionaldehyde
US5962702A (en) Process for production of trioxane
JPH01190645A (en) Production of aromatic hydroxide derivative by reaction of baeyer-villiger reaction
US2346425A (en) Stabilization of organic compounds
CN112225653B (en) Green synthesis method of natural benzaldehyde
US3629997A (en) Process for producing methanol-formaldehyde solution of low-water content
EP1250304A1 (en) Method for the separation of formaldehyde from a reaction mixture containing polyols by the addition of solvents before and/or during the distillation
DE889440C (en) Process for the preparation of cyanohydrins
JP2898354B2 (en) Method for continuous production of glyoxylic acid
DE906454C (en) Process for the production of chloromethyl methyl ether
DE1793227C3 (en) Process for the discontinuous production of alkali salts of nitrilotriacetic acid
US3965195A (en) Process for the production of formaldehyde
Lachman The equilibrium between benzaldehyde and benzoin