CN87108012A - 生产生铁水并获得电能的一种工艺和装置 - Google Patents

生产生铁水并获得电能的一种工艺和装置 Download PDF

Info

Publication number
CN87108012A
CN87108012A CN87108012.5A CN87108012A CN87108012A CN 87108012 A CN87108012 A CN 87108012A CN 87108012 A CN87108012 A CN 87108012A CN 87108012 A CN87108012 A CN 87108012A
Authority
CN
China
Prior art keywords
gas
coal
power generation
sent
generation assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN87108012.5A
Other languages
English (en)
Other versions
CN1010323B (zh
Inventor
鲁德威格·翁·伯格丹迪
沃纳·凯普林格
库特·斯蒂夫特
吉罗·帕普斯特
罗尔夫·霍克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Voest Alpine Industrieanlagenbau GmbH
Original Assignee
Korf Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korf Engineering GmbH filed Critical Korf Engineering GmbH
Publication of CN87108012A publication Critical patent/CN87108012A/zh
Publication of CN1010323B publication Critical patent/CN1010323B/zh
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/42Sulphur removal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/32Technologies related to metal processing using renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/958Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures with concurrent production of iron and other desired nonmetallic product, e.g. energy, fertilizer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

从块状铁矿石和固体燃料生产生铁水并获得电能。采用的方法是在直接还原区将铁矿石还原成海绵铁和在熔融气化区生产生铁水,在熔化气化区中使用载碳体并补充含氧气体。生成的还原气体供给直接还原区。反应后的还原气体作为炉顶煤气供给装配有汽轮机的发电装置。为了使发电量适应于电耗,同时以避免对生铁生产冶炼条件和后续加工的产生影响,加入熔化气区的载碳体随发电装置消耗的煤气量按下列方式变化:当消耗较多的煤气时,加入的挥发份增大而C(固定)减少,当消耗较少的煤气时则相反,同时保持生铁的产量和组成基本恒定。

Description

本发明是关于生产生铁水并获得电能的一种工艺和实现这种工艺的一种装置。这种工艺用直接还原区在超压下将铁矿石还原成海绵铁,利用熔化气化区来生产生铁水。其中在熔融气化区采用载碳体,并补充含氧气体,生成的还原气体送入直接还原区,反应后的还原气体作为炉顶煤气除供给实现此项工艺的装置外还供给至少装配有一个汽轮机的发电装置。
在已经提出的这种类型工艺中,配有一个热气体过滤器,使炉顶煤气进入发电装置之前进行除尘和脱硫。
曾经努力使发电量适应电耗随时间和季节的波动。例如,为了使炉顶煤气的产量适合低的电力需要而减少煤气的生产将会影响生铁的生产,使生铁的产量和化学组成与没有减少炉顶煤气生产时不同。可是,这种偏差在炼钢操作中是不允许的。炼钢中要力求生铁的化学组成尽可能地在很窄的范围内,并且尽可能地在单位时间里提供恒定的数量。
本发明的目的是改进上述工艺使炉顶煤气生产量随发电装置消耗的煤气量改变,而不反过来影响生产生铁的冶炼条件和后续加工。
按照本发明就可以达到这个目的。在本发明中,向熔融气化区加入的载碳体的量随发电装置消耗的煤气量而变化,方法是在煤气消耗量较高时,加入的挥发份增多而C固定减少,在煤气消耗量较低时则相反。同时要保持生铁的产量和组成基本不变。
含挥发份比例较多的载碳体产生较多且质量好的炉顶煤气。因为在熔融气化区生成更多量的还原气,且由于直接还原区的还原操作保持恒定,与采用C固定比例较高的载碳体产生较少的还原气相比,这里还原气体消耗得较少。
至于载碳体的C固定部分(也称为固定碳部分)的情况则是,坩埚焦碳的量随灰份含量而减少,焦碳是在加热载碳体以测是挥发份时生成的(参看Ullmann,Encyklopadie    cler    fechnischen    Chemie(化工百科全书)Lth    Ecl,Vol.14,P.310)。
最好有三个不同的装料源以便提供不同组成的载碳体,即一个装入含高C固定的煤,一个装入含低Cfix的煤和一个装入液态或气态烃。
将不同的煤混合和向熔化气化区加入或多或少在室温下为液态或气态的烃类来调节C(固定)和挥发份使之达到所要求的比例。此时熔融气化区灰份的碱度可以这样来调节,即通过混合带酸性灰份和带碱性灰份的煤来使助熔剂的量保持恒定。借助混合二种不同煤的方法,炉顶煤气的量在半小时这样短的时间内就会改变。如果在短时期内需要较多的炉顶煤气,则除固体载碳体外,还临时把液态或气态烃类加到熔融气化区中,同时增加使这些烃类部分燃烧所需的氧气。
按照最合适的方案,在发电装置消耗较少量煤气时,来自直接还原区的炉顶煤气被送入装有燃气轮机的第一级发电装置的烧烧室。燃气轮机排出的气体送往生产蒸汽的换热器,产生的蒸汽在至少装有一个汽轮机的第二级发电装置中喷出。当发电装置消耗较高的煤气时,只让一部分炉顶煤气进入第一级发电装置的燃烧室中,另一部分炉顶煤气送入第二级发电装置的换热器的燃烧室中,加热以生产蒸汽。
最好利用将氮气或贫氧的氮-氧混合物送入燃烧室或加到供燃气轮机用的燃烧用空气中的方法,使炉顶煤气在第一级发电装置的燃烧室中在低于1000℃的温度下燃烧。
从DE-A31    00    751,EP-AZ-0    148    973和EP-AZ-0    150    340本来就知道,对于安装在的气化装置后面的燃气/汽轮机发电装置,可以通过用贫氧空气混合物代替一部分燃烧用的空气以保持低温燃烧。但是这个过程并没有同生铁生产联系起来。
如果向直接还原区加入能和硫结合的助熔剂特别是CaCO3、MgCO3和FeCO3将是有好处的。
如果加入的是未烧过状态的助熔剂,则它们将由于,通过直接还原区流入的热还原气体而燃烧,并吸收还原气体中所含的硫。结果,它们的作用就象输送硫的工具将硫从直接还原区迁移到熔化气化区,在熔融气化区有助于生成炉渣。在炉渣中硫以沉积形式被固定。向直接还原区加入能和硫结合的助熔剂可以降低热海绵铁发生结块的倾向,因而即使在较高的温度下直接还原区仍可以操作,不受干扰。送入发电装置的炉顶煤气是少硫的。
在发电装置消耗较少量的煤气和采用高C(固定)含量的煤时,最好以底吹形式向熔化气化区吹入氮气或贫氧的氮-氧混合物。这样可以调节生铁水的化学组成使之尽可能地保持恒定。特别是能阻止能量不必要的键连,例如,通过降低熔化气化区的温度来增加硅的还原,以保持铁水中硅含量的恒定。如果热量被氮气稀释的煤气带入温度较高的熔融气化区,就会造成温度的下降。
按照本发明,实现这个工艺的设备包括:
-一个直接还原高炉,包括块状铁矿石进料、还原气体进口以及生成的还原产物和炉顶煤气的出料装置;
-一个熔融气化器,联结有输送从高炉来的还原产物的进入管道,并有含氧气体和载碳体的进料口、向高炉输送生成的还原气体的管道以及生铁和炉渣的出口。
-一个燃气轮机和汽轮机的联合发电装置,炉顶煤气送入燃气轮机的燃烧室,再将燃气轮机的废气送入汽轮机的换热器。
其特征是
-载碳体由至少二个煤储槽供给,至少有一个装有高C(固定)含量的煤,至少有另一个装有低C(固定)含量的煤。
-从高炉将炉顶煤气送到燃气轮机单元的燃烧室的管线上有一个带控制阀的旁路通向汽轮机单元的换热器的燃烧室。
向熔融气化器输送氮气或贫氧的氮-氧混合物的进料口接在靠近熔融气化区的下端是有利的。
适当地向高炉加入能和硫结合的未烧过的助熔剂。
为了在特定的短时间内使炉顶煤气量增大,将室温下为液态或气态的载碳体如烃类加入熔融气化器中是有利的。
现在通过能实现本发明的工艺的流程图来详细地解释本发明。
设计成高炉型式的直接还原设备用1表示,块状铁矿石从其顶部进料口2经流洗矿槽(未画出)加入,同时未烧过的助熔剂从加料口3加入。直接还原设备1和一个熔融气化器4连通,在4中由煤和含氧气体生成还原气体,并通过进料管5供给高炉1。在进料管5上装有一个气体洗涤和冷却装置6。
熔融气器4包括固体块状载碳体的进口管7,含氧气体进口管8,9以及室温为液体或气体的载碳体(如烃类)和烧过的助熔剂的进口10、11。在熔融气化器4中生铁水14和熔融的炉渣15聚集在熔融气化区13的下部,并通过特殊的排出口16、17分别排出。
固体块状载碳体是从至少两个料斗型式的煤储槽18、19通过进口管7进料的,料斗18装高C(固定)含量的煤,另一料斗19装低C固定含量和高挥发份的煤。
块状铁矿石在高炉1的直接还原区20中还原或海绵铁,并和在20内被烧结的助熔剂通过图中未画出的螺旋式卸料装置进入连接高炉1和熔融气化器4的管道21。在高炉1顶部装有为排放在直接还原区20中生成的炉顶煤气的出口22。
炉顶煤气在通过装在出口22后面的气体洗涤和冷却装置23后,进入压缩机24,然后压入总编号为26的燃气轮机单元的燃烧室25。燃烧用的压缩空气是经空气进口管28进入空压机27,再加进燃烧25中。
从燃气轮机30中出来的废气经过由一个换热器组成的用来产生蒸汽的废气锅炉31再排出燃气轮机来驱动发电机29。在废气锅炉31中产生的蒸汽在汽轮机32中工作后被排出,此蒸汽也可驱动发电机333。为了形成一个闭合的热力学循环过程,用过的蒸汽在串联冷凝器34中冷凝。冷凝物经泵35加入带脱气器的上水槽36中。然后上水槽36经上水泵37再加到废气锅炉31中。
根据需要的组成从空气分离装置38提取加入熔化气化器4的含氧气体,用控制阀39调节到所需的混合比。从氧气入口管40接一旁路9、并加控制阀41,然后通到熔融气化器4的焦炭层12的上面。从氮气入口管42接一旁路44,也按一控制阀43,接到燃气轮机单元26的燃烧用空气压缩机27的空气进口管28上。
在炉顶煤气压缩机24和燃气轮机单元26的燃烧室25之间有一装有控制阀45的旁路46,它将一部分炉顶煤气经废气锅炉31的燃烧室47引入汽轮机单元48。
本发明不限于此流程图举例说明的具体方案,在不同方面可以作出修改。例如,在气体冷却的地方可以改成用换热器的方法来实现冷却,产生的蒸汽为汽轮机单元48使用。
通过下面二个实例来详细说明本发明的工艺。实例1是发电装置消耗较多量煤气时的工艺,实例2是发电装置消耗较少量煤气时的工艺。
实例1
每生产1吨生铁向高炉1中装入1550Kg含Fe66.5%和3.2%碱石(酸性)的铁矿石和50Kg生石灰形式的CaO,并注入300 H2O。必需向高炉中加水,否则炉顶煤气温度太高,对后面煤气的洗涤不合适。
按每吨生铁向熔化气化器4加入1500Kg低C(固定)含量的煤。煤中C(固定)含量为50%,挥发份含量为35%,其余是灰份。此外,按每吨生铁将710m3按(标准状态计)的氧气经进口8从紧靠炉渣平面50上方的吹入装置49送入熔融气化器4中。
每吨生铁将有1100Kg海绵铁和助熔剂从高炉1经管道21送入熔化气化器4。在熔融气化区13中,由煤生成750Kg焦炭/吨生铁。生铁温度1450℃,组成如下:
表Ⅰ
C    3.78%
Si    0.60%
Mn    0.42%
P    0.060%
S    0.045%
每吨生铁从煤带入的灰份,矿碱石和加入的助熔剂生成325Kg炉渣。
在熔碱气化器4生成的还原气体在1000℃下离开,经洗涤和冷却后在850℃进入高炉1的直接还原区20。它的量是每吨生铁3445m3(按标准状态计),其化学组成如下:
表Ⅱ
CO    60.4%
CO23.0%
H231.6%
N25.0%
H2S约 1300ppm
从高炉1排出的炉顶煤气被注入的水冷却后温度为400℃,其数量为每吨生铁3270m3(按标准状态计),其化学组成如下:
表Ⅲ
CO    47.6%
CO219.2%
H227.9%
N25.3%
H2S约 80ppm
它的热值为9023KJ/m3(按标准状态计)。
实例2
按每生产1吨生铁向高炉1加入1550Kg含铁66.5%和石(酸性)3.2%的铁矿石,以及100Kg助熔剂(生石灰形式的CaO+SiO2)。每吨生铁向熔化气化器4加入1000Kg高C固定含量的煤。煤的C(固定)含量为70%,挥发份含量20%,其余是灰份。此外,每吨生铁向熔融气化器4加入660m3(按标准状态计)的氧。即在焦炭层12的下方进料口8加入510m3(按标准状态计),在焦炭层上方由进料口9加入150m3(按标准状态计)。
按每吨生铁有1150Kg海绵铁和助熔剂从高炉1经管道21排入熔融气化器4中。在熔化气化区由煤生成700Kg焦炭/吨生铁。生铁温度1450℃,并具下列化学组成:
表Ⅳ
C    3.85%
Si    0.58%
Mn    0.45%
P    0.070%
S    0.050%
从煤带入的灰份,矿碱石和加入的助熔剂生成250Kg炉渣/吨生铁。
在熔融气化器4中生成的粗煤气在1000℃排出,经洗涤和冷却在850℃进入直接还原区20。它的量为2267m3(按标准状态计)/吨生铁。其化学组成在下表中列出:
表Ⅴ
CO    70.8%
CO21.9%
H218.2%
N29.1%
H2S约 1300ppm
高炉中生成的炉顶煤气温度为360℃,其量为2092m3(按标准状态计)/吨生铁,化学组成如下:
表Ⅵ
CO    51.7%
CO227.0%
H211.5%
N29.8%
H2S约 80ppm
热值为7775KJ/m3(标准状态)。
按实例1和实例2的两种方式操作,由于是在还原条件下生成的炉顶煤气,所以实际上都不含氮的氧化物,只含少量硫,因而可以作高清 洁的燃烧气体使用。
为了减少在炉顶煤气燃烧时生成氮的氧化物,在空气分离装置38之后通过进气管44以贫氧或无氧气体去代替部分燃烧用空气。
通过向熔化气化区13加入氮(按本发明,加入氧和5至25%的氮或其他氮含量的混合物),所加入的煤的总热含量分散在较大量生成的煤气中,因此气体温度低于最高发热温度。按实例2采用高C(固定)含量的煤时,会引起不合要求的温升的热量被用氮稀释的气带到上部,因而使熔化气化区13的温度降低。这在温度对熔化气化区13的高度的图中用实线表示出来(相反地当按实例1操作时为虚线表示的温度曲线)。由于降低温度会发生不合要求的能量束缚,例如增加硅的还原。增加生铁中的硅含量可能使转炉炼钢有较高的废品率,而且会有较多的炉渣和较多的铁和热量的损失。通过加入氮,能成功地保持生铁中硅含量的恒定,况且还能稀释由直接还原区20排出的炉顶煤气和降低热值。
如实例2所指出的,为了使还原气体出口温度与实例1中通过进料口8引入氮气的情况下的出口温度相当,由下法就可做到,将熔融气化区13所需的氧气分成二股,即氧或含氧气体分别通过设计成风口的进料口8和9加入熔化气化区13。二个进料口之一(进料口8)刚好设置在炉渣槽面50之上,另一个(进料口9)设置在紧靠焦炭层的熔气化区的气相区。通过下进料口8在加入氧之外还加入氮。从下进料口8加入的氧是为了使煤气化,上进料口9加入氧是为了提高熔融气化区13上部的温度。为了使所用的煤的挥发份中的高级烃类化合物裂解就必需提高温度,但这可能会造成此工艺在工程上的困难。
由于氧在下进料口8和上进料口9之间的熔化气化区内的分布以及通过下进料口8加入的氮气量的变化,可按照要求去调节熔融气化区13中的温度分布。
在1000℃下离开熔化气化区13的还原气体用熟知的方法洗涤并冷却到还原温度。按实例1和实例2,还原气体均全部通入直接还原区20。因为在正常还原条件下生产的海绵铁金属化程度高达95%,即使在使用更多煤气的情况下也不发生海绵铁质量的变化。而从直接还原区来的炉顶煤气质量会由于还原操作消耗少而提高。
按本发明,向直接还原区20引入量大而热的气体就能使还原低品位的矿石成为可能,并放宽了对能和硫合的助熔剂的选择。除生石灰外,例如粗石灰石、粗菱苦土甚至菱的铁矿石也可采用。
送入发电装置的炉顶煤气含有很少的硫和氮的氧化物而且经过氮气稀释。采用掺氮的贫氧燃烧用空气可以在低的火焰温度下燃烧,因而可免去为了除去氮的氧化物而设置的费事的辅助测定手续。
为了迅速增加煤气量,如果除了固体载碳体外还向熔化气化区13加入液态或气态烃类,则在熔融气化区的上部要加入细粒的烧过的脱硫剂以同在这种操作方法中带入的硫结合。

Claims (10)

1、从块状铁矿石和固体燃料生产生铁水并获得电能的一种工艺,这种工艺采用超压下在直接还原区(20)将铁矿石还原成海绵铁,并在熔融气化区(13)生产生铁水(14),其中采用载碳体并向熔融气化区(13)补充含氧气体,生成的还原气体送入直接还原区(20),在该处反应后的还原气体作为炉顶煤气供给至少装有一个汽轮机的发电装置(30),其特征是加入熔化气化区(13)的载碳体随发电装置消耗煤气的量按下述方式变化:在消耗较多的煤气,加入的挥发份增多而Cfix减少,在消耗较少的煤气时则相反,同时生铁的产量和组成基本保持恒定。
2、根据权利要求1的一种工艺,其特征是由三个不同的料源(即一个高C(固定)含量的煤,一个低C(固定)含量的煤和一个液态或气态的烃类)提供组成可变的载碳体进料。
3、根据权利要求1或2的一种工艺,其特征是从直接还原区(20)出来的炉顶煤气在发电装置消耗较少的煤气时,送往装有燃气轮机单元26的第一级发电装置的燃烧室(25),燃气轮机(30)排出的气体送往生产蒸汽的换热器(31),产生的蒸汽在至少装有一个汽轮机32的第二级发电装置(32)中被利用;在发电装置消耗较多的煤气时,只有一部炉顶煤气送往第一级发电装置的燃烧室(25),另一部分炉顶煤气送入第二级发电装置的换热器(31)的燃烧室(47),加热以生产蒸汽。
4、根据权利要求3的一种工艺,其特征是通过向燃烧室(25)或送往燃气轮机(30)的燃烧用空气中加入氮气或贫氧的氮一氧混合物,使炉顶煤气在第一级发电装置的燃烧室(25)中在低于1000℃的温度下燃烧。
5、根据权利要求1至4中任何一项的一种工艺,其特征是向直接还原区(20)加入能和硫结合的助熔剂,特别是CaCO3、MgCO3和FeCO3
6、根据权利要求1至5中任何一项的一种工艺,其特征是在发电装置消耗较少的煤气和采用高C(固定)含量的煤时,在熔融气化区(13)的底部(49)吹入氮气或贫氧的氮一氧混合物。
7、实现根据权利要求3至6任何一项的工艺的装置,包括
-一个直接还原高炉(1),它装配有块状铁矿石的进料口(2),还原气体进口(5)以及在其中生成的还原产物和炉顶煤气的出口(21、22),
-一个熔融气化器(4),有一根管道(21)将还原产物从高炉(1)送入其中,还包括含氧气体和载碳体的进口(7至10),将生成的还原气体送往高炉(1)的管道(5),以及生铁和炉渣的排出口(16、17),
-一个燃气轮机和汽轮机联合发电装置,炉顶煤气送入燃气轮机单元(26)的燃烧室(25),燃气轮机的废气送往汽轮机单元(48)的换热器(31),此装置的特征是,
-载碳体的进口料(7)至少由两个煤储糟(18、19)供料,至少一个煤储糟装高C(固定)含量的煤,且至少另一个装低C(固定)含量的煤,
-从出口料口(22)把炉顶煤气引出高炉(1)并送往燃气轮机单元(26)的燃烧室(25),带控制阀(45)的旁路(46)将炉顶煤气导向汽轮机单元(48)中的换热器(31)的燃烧室(47)。
8、根据权利要求7的一种装置,其特征是将氮气或贫氧的氮一氧混合物送入熔融气化器(4)的进料口(8)紧靠熔化气区(13)的下部。
9、根据权利要求7或8的一种装置,其特征是末烧过的助熔剂经进料口(3)加入高炉(1)。
10、根据权利要求7至9中的一项或几项的一种装置,其特征是室温为液体或气体的载碳体如烃类由进料口(10)加入熔化气化器(4)。
CN87108012A 1986-11-25 1987-11-25 生产生铁水并获得电能的一种工艺和装置 Expired CN1010323B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA3145/86 1986-11-25
AT0314586A AT387038B (de) 1986-11-25 1986-11-25 Verfahren und anlage zur gewinnung von elektrischer energie neben der herstellung von fluessigem roheisen

Publications (2)

Publication Number Publication Date
CN87108012A true CN87108012A (zh) 1988-09-28
CN1010323B CN1010323B (zh) 1990-11-07

Family

ID=3546020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN87108012A Expired CN1010323B (zh) 1986-11-25 1987-11-25 生产生铁水并获得电能的一种工艺和装置

Country Status (17)

Country Link
US (1) US4861369A (zh)
EP (1) EP0269609B1 (zh)
JP (1) JP2677366B2 (zh)
KR (1) KR940004897B1 (zh)
CN (1) CN1010323B (zh)
AT (1) AT387038B (zh)
AU (1) AU603153B2 (zh)
BR (1) BR8706486A (zh)
CA (1) CA1331517C (zh)
CZ (1) CZ284106B6 (zh)
DD (1) DD273857A5 (zh)
DE (1) DE3763959D1 (zh)
IN (1) IN168198B (zh)
MX (1) MX164005B (zh)
PT (1) PT86210B (zh)
SU (1) SU1590048A3 (zh)
ZA (1) ZA878836B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415628A (zh) * 2011-03-17 2013-11-27 西门子Vai金属科技有限责任公司 用于来自生铁制造用的设备的排气的或者用于合成气的热值调节的方法
CN102203298B (zh) * 2008-10-23 2015-09-23 西门子Vai金属科技有限责任公司 用于运行熔化还原工艺的方法和装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8824216D0 (en) * 1988-10-15 1988-11-23 Boc Group Plc Air separation
AT394201B (de) * 1989-02-16 1992-02-25 Voest Alpine Ind Anlagen Verfahren zur erzeugung von brennbaren gasen in einem einschmelzvergaser
US5066326A (en) * 1989-10-04 1991-11-19 Gas Research Institute Gas-fired steelmelting process
JPH04191307A (ja) * 1990-11-26 1992-07-09 Mitsubishi Heavy Ind Ltd 溶融還元製鉄装置
GB9105109D0 (en) * 1991-03-11 1991-04-24 Boc Group Plc Air separation
GB9111157D0 (en) * 1991-05-23 1991-07-17 Boc Group Plc Fluid production method and apparatus
US5258054A (en) * 1991-11-06 1993-11-02 Ebenfelt Li W Method for continuously producing steel or semi-steel
US6197088B1 (en) 1992-10-06 2001-03-06 Bechtel Group, Inc. Producing liquid iron having a low sulfur content
US5388395A (en) * 1993-04-27 1995-02-14 Air Products And Chemicals, Inc. Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output
US5459994A (en) * 1993-05-28 1995-10-24 Praxair Technology, Inc. Gas turbine-air separation plant combination
AT405187B (de) * 1994-12-01 1999-06-25 Voest Alpine Ind Anlagen Verfahren zum herstellen von eisenschwamm sowie anlage zur durchführung des verfahrens
WO1998012358A1 (en) * 1996-09-20 1998-03-26 Bechtel Group, Inc. Producing liquid iron having a low sulfur content
US6152984A (en) * 1998-09-10 2000-11-28 Praxair Technology, Inc. Integrated direct reduction iron system
AT407993B (de) * 1999-03-03 2001-07-25 Voest Alpine Ind Anlagen Verfahren zur optimierung von auslegung und betrieb eines reduktionsverfahrens
FR2819583B1 (fr) * 2001-01-12 2003-03-07 Air Liquide Procede integre de separation d'air et de generation d'energie et installation pour la mise en oeuvre d'un tel procede
FR2819584B1 (fr) * 2001-01-12 2003-03-07 Air Liquide Procede integre de separation d'air et de generation d'energie et installation pour la mise en oeuvre d'un tel procede
JP4563242B2 (ja) * 2005-04-19 2010-10-13 三菱重工業株式会社 燃料ガスカロリ制御方法及び装置
CN100455678C (zh) * 2006-01-25 2009-01-28 中冶赛迪工程技术股份有限公司 熔融还原炉喷吹煤粉工艺
BRPI0710809A2 (pt) * 2006-04-24 2011-08-16 Tech Resources Pty Ltd processo e usina de fundição direta para produção do metal fundido proveniente de um material de alimentação metalìfero
AT504863B1 (de) * 2007-01-15 2012-07-15 Siemens Vai Metals Tech Gmbh Verfahren und anlage zur erzeugung von elektrischer energie in einem gas- und dampfturbinen (gud) - kraftwerk
DE102007024312B4 (de) * 2007-05-24 2009-04-30 Lurgi Gmbh Verfahren und Vorrichtung zum Herstellen von Reduktionsgas und/oder Brenngas für die Direktreduktion von Eisenerz
US8151740B2 (en) * 2009-06-02 2012-04-10 General Electric Company System and method for controlling the calorie content of a fuel
AT509865B1 (de) * 2010-04-26 2011-12-15 Siemens Vai Metals Tech Gmbh Verfahren zur herstellung von roheisen oder flüssigen stahlvorprodukten
EP2626124A1 (de) * 2012-02-13 2013-08-14 Siemens VAI Metals Technologies GmbH Verfahren und Vorrichtung zur Reduktion von eisenoxidhaltigen Einsatzstoffen
KR101384804B1 (ko) * 2012-04-19 2014-04-14 주식회사 포스코 제선공정의 배출가스를 이용한 용철제조장치 및 제조방법
DE102013113913A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
EP3239306A1 (de) * 2016-04-27 2017-11-01 Primetals Technologies Austria GmbH Verfahren und vorrichtung zur herstellung von flüssigem roheisen
CN115238246B (zh) * 2022-09-23 2023-02-17 国网浙江省电力有限公司宁波市北仑区供电公司 园区能源低碳量化方法、装置、计算机设备和存储介质
DE102023108158A1 (de) * 2023-03-30 2024-10-02 Thyssenkrupp Steel Europe Ag Verfahren zum Betreiben einer Direktreduktionsanlage

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888658A (en) * 1970-11-02 1975-06-10 Westinghouse Electric Corp Process for the direct reduction of iron ore to steel
JPS5120444A (ja) * 1974-08-12 1976-02-18 Fukuhara Imono Seisakusho Kk Doro
DE2843303C2 (de) * 1978-10-04 1982-12-16 Korf-Stahl Ag, 7570 Baden-Baden Verfahren und Anlage zur Erzeugung von flüssigem Roheisen und Reduktionsgas in einem Einschmelzvergaser
GB2067668A (en) * 1980-01-21 1981-07-30 Gen Electric Control of NOx emissions in a stationary gas turbine
DE3300867A1 (de) * 1983-01-13 1984-07-19 Mannesmann AG, 4000 Düsseldorf Verfahren zur erzeugung von stahl durch einschmelzen von eisenschwamm im lichtbogenofen
AT376243B (de) * 1983-01-19 1984-10-25 Voest Alpine Ag Verfahren zum schmelzen von zumindest teilweise reduziertem eisenerz
DE3319711A1 (de) * 1983-05-31 1984-12-06 Kraftwerk Union AG, 4330 Mülheim Kombinierte gasturbinen-dampfturbinen-anlage mit vorgeschalteter kohlevergasungsanlage
DD226157A3 (de) * 1983-06-01 1985-08-14 Bandstahlkombinat Matern Veb Verfahren zur erzeugung von fluessigem roheisen und reduktionsgas in einem abstichgenerator
DE3334221A1 (de) * 1983-08-25 1985-03-14 Mannesmann AG, 4000 Düsseldorf Verfahren zur erzeugung von fluessigem, kohlenstoffhaltigem eisen aus eisenschwamm
DE3408937A1 (de) * 1984-01-31 1985-08-08 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Kombinierte gas-/dampf-kraftwerkanlage
DE3428782A1 (de) * 1984-08-04 1986-02-13 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur erzeugung von eisenschwamm
AT381116B (de) * 1984-11-15 1986-08-25 Voest Alpine Ag Verfahren zur herstellung von fluessigem roheisen oder stahlvorprodukten sowie vorrichtung zur durchfuehrung des verfahrens
DE3503493A1 (de) * 1985-01-31 1986-08-14 Korf Engineering GmbH, 4000 Düsseldorf Verfahren zur herstellung von roheisen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203298B (zh) * 2008-10-23 2015-09-23 西门子Vai金属科技有限责任公司 用于运行熔化还原工艺的方法和装置
CN103415628A (zh) * 2011-03-17 2013-11-27 西门子Vai金属科技有限责任公司 用于来自生铁制造用的设备的排气的或者用于合成气的热值调节的方法
US9222042B2 (en) 2011-03-17 2015-12-29 Primetals Technologies Austria GmbH Process for regulating joule value of offgases from plants for pig iron production or of synthesis gas
CN103415628B (zh) * 2011-03-17 2016-09-14 首要金属科技奥地利有限责任公司 用于来自生铁制造用的设备的排气的或者用于合成气的热值调节的方法

Also Published As

Publication number Publication date
JP2677366B2 (ja) 1997-11-17
AU603153B2 (en) 1990-11-08
DE3763959D1 (de) 1990-08-30
PT86210A (pt) 1988-12-15
EP0269609A1 (de) 1988-06-01
IN168198B (zh) 1991-02-16
CZ850587A3 (cs) 1998-06-17
KR940004897B1 (ko) 1994-06-04
SU1590048A3 (ru) 1990-08-30
MX164005B (es) 1992-07-08
DD273857A5 (de) 1989-11-29
CZ284106B6 (cs) 1998-08-12
ZA878836B (en) 1988-05-25
CA1331517C (en) 1994-08-23
US4861369A (en) 1989-08-29
JPS63140016A (ja) 1988-06-11
BR8706486A (pt) 1988-07-12
PT86210B (pt) 1993-12-31
AU8131087A (en) 1988-05-26
KR880006365A (ko) 1988-07-22
ATA314586A (de) 1988-04-15
EP0269609B1 (de) 1990-07-25
CN1010323B (zh) 1990-11-07
AT387038B (de) 1988-11-25

Similar Documents

Publication Publication Date Title
CN87108012A (zh) 生产生铁水并获得电能的一种工艺和装置
KR100817684B1 (ko) 석탄으로부터 청정 에너지를 생산하기 위한 방법
CN102066248B (zh) 生产电石的方法及系统
CN1129662C (zh) 燃料气化系统
CN1407948A (zh) 从含碳物质生产氢气
CN86102936A (zh) 含碳的燃料,特别是煤的气化方法
CN101063053A (zh) 循环煤流化床煤气发生炉系统
CN100513310C (zh) 竖炉氧燃喷吹生产碳化钙方法及装置
AU2014280344A1 (en) Blast furnace and method for operating a blast furnace
US3998606A (en) Method and apparatus for manufacturing reducing gas
US4685964A (en) Method and apparatus for producing molten iron using coal
CN86101235A (zh) 气态烃的热转化
CN1042955C (zh) 生产海绵铁的方法及实施该方法的装置
CN1017060B (zh) 将煤和石膏转化为价值较高的产品的方法
CN1078617C (zh) 燃料气的生产方法和装置
CN1035955C (zh) 煤基造气竖炉法生产海绵铁的方法
CN103435041A (zh) 一种生物质燃料生产电石的方法及系统
CN1046962C (zh) 生产液态生铁或液态钢预产品和海绵铁的方法及其设备
CN1834210A (zh) 劣质煤全氧气化生产甲醇和二甲醚合成气的方法
CN102433162A (zh) 分级给氧气流床气化炉及其气化方法
AU613715B2 (en) Process for gasifying coal
KR101960578B1 (ko) 탄소 캐리어를 기화시키기 위한 그리고 생성된 가스를 추가 가공하기 위한 방법 및 시스템
CN111218535A (zh) 熔铁浴煤制气加热循环还原气生产直接还原铁的方法
CN85101039A (zh) 一种还原氧化物料并同时发生适于回收热能气体的方法和整套设备
KR820000851B1 (ko) 석탄개스를 이용한 철의 직접환원방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee