CN87107469A - 热敏元件及其制造方法 - Google Patents

热敏元件及其制造方法 Download PDF

Info

Publication number
CN87107469A
CN87107469A CN87107469.9A CN87107469A CN87107469A CN 87107469 A CN87107469 A CN 87107469A CN 87107469 A CN87107469 A CN 87107469A CN 87107469 A CN87107469 A CN 87107469A
Authority
CN
China
Prior art keywords
temperature
sensitive element
membrane electrode
film
precious metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN87107469.9A
Other languages
English (en)
Other versions
CN1012242B (zh
Inventor
冈正太郎
喜多纯一
九山浩树
喜利元贞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP61300259A external-priority patent/JPS63151828A/ja
Priority claimed from JP61300260A external-priority patent/JPS63151829A/ja
Priority claimed from JP61311162A external-priority patent/JPS63167228A/ja
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of CN87107469A publication Critical patent/CN87107469A/zh
Publication of CN1012242B publication Critical patent/CN1012242B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本发明涉及适用于红外线检测和温度检测的热电式红外线敏感元件等热敏元件及其制造方法,其特征是:为了提高红外线吸收效率,在由热电体等构成的热敏元件基体上的薄膜电极上,利用电解法生成一层贵重金属黑化膜。

Description

本发明涉及热敏元件,更具体地说,涉及热电式红外线敏感元件等适用于红外线检测和温度检测的热敏元件及其制造方法。
目前,利用以入射红外线热能为基础的热电效应来检测表面电荷变化的热电元件,被用作红外线敏感元件和测温敏感元件等热敏元件。该热电元件的结构是,在热电体的两个面上形成一对薄膜电极,其中的一个薄膜电极的表面被作为吸热面使用。该热电体采用Sr1-xBaxNb2O6系,Pb5Ge3O11系、TGs(三甘氨硫酸盐triglycine sulfate)系、PbTiO3系、PbTixZr1-xO3系、LiTaO3等陶瓷类热电材料和PVDF(聚偏氟乙烯Polyvinyliden fluoride)等有机物热电材料。并且,为了提高检测灵敏度,曾进行过以下试验:上述吸热面薄膜电极不采用通常的Pt和Au真空镀膜,而采用Cr和Ni-Cr真空镀膜等吸热性能好的金属膜,或者在通常的Pt和Au真空镀膜上涂敷碳胶膜,通过蒸镀形成金黑膜。(W.R.Blevin等人“黑涂层对热电检测器的影响”应用光学,第13卷,第5期,第1171~1178页(1984))。
由于Cr和Ni-Cr真空镀膜具有较强的反射性能,所以,从吸热效率来看是不理想的。存在的问题是:一方面,当在薄膜电极上蒸镀金时,吸热效率不够高,特别是长波波段(10~25um)的灵敏度较低。另一方面,在涂敷碳胶等薄膜后,膜层厚度必然增加,致使热敏元件本身的热容量增大。
另外,上述金黑真空镀膜和碳胶膜从制作技术来看,难以获得均匀的膜层,容易造成灵敏度不一致。
本发明是为了解决上述问题而提出的,准备提供一种吸热率高、红外线检测灵敏度也高的热敏元件。
本发明人发现:在上述薄膜电极上不用真空镀膜法而用电解法涂敷金黑、白金黑等所谓贵重金属黑膜,可以大大提高热敏元件的吸热效率和光的长波波段的灵敏度。
利用本发明可以提供这样一种热敏元件,即在热敏元件基体上至少形成一对薄膜电极,并且至少在一个薄膜电极的表面上利用电解法涂敷一层贵重金属黑膜。
热敏元件的基体可以采用热电体,半导体和绝缘体等。例如,在采用热电体时,可在其两个面上各设置一个薄膜电极,制成热电式热敏元件。在采用半导体时,可以同样在两个面上各设置一个薄膜电极,制成热敏电阻、测辐射热计。另外,当采用绝缘体时,在一个面上至少设置一对热电偶电极,可制成热电堆。
本发明的热敏元件,由于吸热效率高,所以灵敏度高,而且对不同波长来说,灵敏度的差别也较小。再者,由于采用电解镀膜方法,所以黑化膜的形状与薄膜电极的形状完全一致,膜层上各部位的灵敏度也比较一致,制作方法也比较简便。
以下说明用热电体作为热敏元件基体时的实施方案。虽然上述各种材料均可作为热电体,但其中较为理想的是无潮解性的LiTaO3等板料。
贵重金属黑膜是把热敏元件基体上形成的薄膜电极作为电解电极,通过电解法进行涂敷的。例如,白金黑膜可用下述方法形成:用氯铂酸等的铂酸水溶液作为电解液,把已形成薄膜电极的热电元件和配极浸入到该电解液中,加上电压,使薄膜电极为负极。另外,金黑、钯黑或铱黑薄膜同样也可以用氯金酸、氯钯酸或氯铱酸来生成。这些贵重金属含氧酸类和贵重金属氯化物的浓度通常以40~80毫克分子/升为宜。这时,即使电解液中含有电解用的各种添加剂也无影响。例如可以含有像醋酸铅这样的黑化促进剂。
薄膜电极上所加电压的大小随电极面积、电极间隔和铂酸浓度等条件而变化。通常,薄膜电极的电位以调整到-0.2~-0.8V(与Ag/AgCl比较)为宜。并且,形成的贵重金属黑膜的厚度以2~50um为宜,但最好是5~20um,该厚度通过调整电解时间很容易进行控制。
本发明人发现:把电解过程分成两个阶段,即第一阶段电解时使薄膜电极的电位保持在-0.4~-0.7V(与Ag/AgCl比较),第二阶段保持在-0.2~-0.4V,这样可以形成质量优异的贵重金属黑膜。在这种情况下,第一阶段的电解时间通常以20~60秒为宜;第二阶段的电解时间通常以30~60秒为宜。分两个阶段进行电解所形成的贵重金属黑膜,如利用扫描电子显微镜进行观察,则可以看出:表面凹凸非常微细,凸部间距约2~40um,凹部深度约3~12um,红外线(2.5~25um)的吸收效率,总体来讲为90%以上,对长波波段和短波波段的吸收效率均很高,均衡性良好,而且热容量小。其中,特别是凸部间距,从提高吸收效率考虑,宜保持在3~12um,最好是3~7um,并且应使其分布均匀。
上述贵重金属黑膜是利用电解法至少在一个薄膜电极(吸热面)上进行涂敷的。对于热电式热敏元件来说,是事先在热电体的两个面上已形成了一对薄膜电极,并在其中的一个薄膜电极上再涂敷一层黑膜。
然而,象上述热电体那样的热敏元件基体,其两个面上都形成了薄膜电极,当将其浸入电解液中,并在一个薄膜电极上施加电解电压时,在不加电压的另一个薄膜电极上也会形成贵重金属黑膜,这对热敏元件的灵敏度会有不良影响,欲涂敷的贵重金属黑膜也不能有效地形成。所以,应在不需要涂敷贵重金属黑膜的一个薄膜电极上预先涂敷一层象石蜡这样的遮盖材料加以保护,或者在涂敷贵重金属黑膜之后再制作这个不需要涂敷黑膜的薄膜电极。这种作法实际上很麻烦。现在本发明人创造了一种能够解决上述问题的新办法,即在电解过程中,对不需要电解涂敷的电极加上一个与电解电压相反的电压。这时的反电压宜设定在1.0~0.2V(与Ag/AgCl比较)。
如上所述,本发明的热敏元件在很宽的红外线波长范围内都具有很高的吸收效率,可以制成灵敏度很高的红外线检测仪。
图1是本发明的热敏元件的实施方案模型图,图2和图3分别为本发明的热敏元件的制造方法说明图。图4是按照本发明制作的热敏元件的红外线反射比曲线。图5是供比较用的现有热敏元件的红外线反射比曲线。
图中,1热敏元件,2热电体,3A,3B,白金膜,4,白金黑膜。
以下根据附图加以说明。
采用由LiTaO3构成的热电体(1.0mm×1.2mm×8um),在其一个面上通过溅射形成白金膜(薄膜电极)。该白金膜的厚度约为0.4um,面积约为1平方毫米。在该白金膜的端部连接金引线,按图2所示,浸入含有10毫克醋酸铅的57.9毫克分子/升的氯铂酸水溶液(电解液)内,构成电解系统。图中,2是热电体,3A是白金膜,6是作为配极的白金电极(10×20×1.0mm),7是电解液,8是恒压电源,5是金引线。
在此状态下用1.3V的电压进行40秒的电解,即可在Pt膜3A上形成厚度约10um的白金黑膜,接着在背面也用同样的方法形成薄膜电极。这样即可获得如图1所示的热敏元件1。图1中,3B是背面的白金黑膜,4是正面的白金黑膜。
利用由LiTaO3组成的热电体(1.0mm×1.2mm×8um),在其两个面上通过溅射形成白金膜(薄膜电极,厚度约0.4um,面积约1平方毫米)。在该白金膜的端部连接上金引线,按图3所示,将其浸入到含有10毫克醋酸铅的57.9毫克分子/升的氯铂酸水溶液(电解液)中,构成电解系统。图3中,11是电位监视器用的参考电极(Ag/AgCl电极),9是在正面白金膜3A和配极6二者之间施加电解电压时所用的电源,10是向背面白金膜3B施加与电解电压相反的电压时所用的反电压电源。
在此状态下,调整电源9和反电压电源10,使白金膜3A的电位达到-0.3V,而使白金膜3B的电位达到+0.1V,在室温下不搅拌电解液,约电解一分钟,即可制成这样一种热敏元件,即在白金膜3A上均匀地形成一层厚度约为10um的白金黑膜,而在白金膜3B上完全不生成白金黑膜。
与此相比,当利用不在白金膜3B上施加反电压的一般方法进行电解时,白金膜3B上也将形成不均匀的白金黑膜,而且白金膜3A上形成的白金黑膜,均匀性也不好。
取六氯铂酸六水合物(H2PtC12,6H2O)3克和醋酸铅约10毫克,加以混合,溶解于水中,配成100毫升的水溶液,作为电解液使用。需要涂敷白金黑膜的元件与实施方案2一样进行制作,将其中的一个侧面的薄膜电极作为工作电极,而在另一个侧面的薄膜电极表面上涂敷一层石蜡,按图2所示进行电解。
电解分两个阶段进行。首先,使工作电极的电位保持在-0.4V,在室温下进行20秒的电解。然后,再把工作电极的电位保持在-0.2V,进行40秒的电解。在工作电极上形成的白金黑膜厚度约为12~17um。
若利用扫描电子显微镜进行观察,则可以看出:该白金黑膜的凹凸面非常微细,凹部深度为3~12um;凸部间距为3~7um,整个分布均匀一致。可以断定,该凹凸部将使红外线范围内的电磁波产生乱反射,并将其吸收,形成黑体。
该白金黑膜的红外线反射比的测量结果示于图4。测量时采用FTIR(付里叶变换红外吸收光谱测量仪),以铝镜的反射光为基准,对于约60~90度方向的入射光,反射比可按下式计算:
α= (被测元件的反射光强度)/(铝镜的反射光强度)
按此计算,2.5~25um的红外线总体吸收效率为95%,对于2.5um的红外线来说,吸热效率约为99%。
按照实施方案1、2制作的白金黑膜,其吸热效率也已达到90%左右,但按照实施方案3制作时,更容易稳定地获得上述高性能白金黑膜。
图5表示用DLATGs(L-丙氨酸掺杂的三甘氨硫酸盐alanine    doped    TGs)作热电体,在其薄膜电极上形成Cr膜的市售热敏元件(无黑膜)的红外线反射比的测量结果,此测量结果是用来与本发明的热敏元件进行对比的,其吸热效率约为45%。

Claims (5)

1、一种热敏元件,在该热敏元件的基体上至少形成一对薄膜电极,并且至少在其中的一个薄膜电极表面上用电解法涂敷一层贵重金属黑膜。
2、权利要求第1项要求的热敏元件,该热敏元件基体为热电体。
3、权利要求第1项或第2项要求的热敏元件,其贵重金属黑膜为金黑、白金黑、钯黑或铱黑。
4、权利要求第1项要求的热敏元件,在该热敏元件基体上至少形成一对薄膜电极,并且至少在一个薄膜电极表面上涂敷贵重金属黑膜(凸部间距为2~40um,凹部深度为3~12um)。
5、一种热敏元件的制造方法的特征为:把热敏元件基体上已形成了一对薄膜电极的元件半成品浸入电解液中,在其中的一个薄膜电极上施加电解电压,用电解法涂敷贵重金属黑膜,在电解过程中不需要进行电解涂敷的另一个薄膜电极上施加与电解电压相反的电压。
CN87107469A 1986-12-16 1987-12-16 热敏元件及其制造方法 Expired CN1012242B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP61300259A JPS63151828A (ja) 1986-12-16 1986-12-16 熱センサ
JP300260/86 1986-12-16
JP300259/86 1986-12-16
JP61300260A JPS63151829A (ja) 1986-12-16 1986-12-16 白金黒膜の形成方法
JP61311162A JPS63167228A (ja) 1986-12-29 1986-12-29 電磁波吸収体
JP311162/86 1986-12-29

Publications (2)

Publication Number Publication Date
CN87107469A true CN87107469A (zh) 1988-07-13
CN1012242B CN1012242B (zh) 1991-03-27

Family

ID=27338373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN87107469A Expired CN1012242B (zh) 1986-12-16 1987-12-16 热敏元件及其制造方法

Country Status (5)

Country Link
US (1) US4867850A (zh)
EP (1) EP0274881B1 (zh)
KR (1) KR910001878B1 (zh)
CN (1) CN1012242B (zh)
DE (1) DE3784898T2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816754A (zh) * 2020-09-04 2020-10-23 上海翼捷工业安全设备股份有限公司 热释电灵敏元的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630058A3 (de) * 1993-05-19 1995-03-15 Siemens Ag Verfahren zur Herstellung einer Pyrodetektoranordnung durch elektronisches Ätzen eines Silizium Substrats.
US6361825B1 (en) * 1995-06-07 2002-03-26 Texas Instruments Incorporated Micro-bolometer cell structure
US5804823A (en) * 1995-10-10 1998-09-08 Raytheon Company Bismuth layered structure pyroelectric detectors
US5949071A (en) * 1997-08-14 1999-09-07 Sandia Corporation Uncooled thin film pyroelectric IR detector with aerogel thermal isolation
US7075079B2 (en) * 2001-06-27 2006-07-11 Wood Roland A Sensor for dual wavelength bands
US9170222B2 (en) 2012-05-11 2015-10-27 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Detecting thermal interface material (‘TIM’) between a heat sink and an integrated circuit
US9316603B2 (en) 2012-05-11 2016-04-19 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Detecting thermal interface material (‘TIM’) between a heat sink and an integrated circuit
DE102013218682A1 (de) * 2013-09-18 2015-03-19 Siemens Aktiengesellschaft Thermoelektrischer Sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912451A (en) * 1973-06-04 1975-10-14 Warner Lambert Co Method for removing hydrogen peroxide from soft contact lenses
US4024560A (en) * 1975-09-04 1977-05-17 Westinghouse Electric Corporation Pyroelectric-field effect electromagnetic radiation detector
DE2942242A1 (de) * 1978-10-24 1980-05-08 Plessey Handel Investment Ag Pyroelektrischer detektor
JPS5888130U (ja) * 1981-12-09 1983-06-15 株式会社堀場製作所 焦電形赤外線検出器
DE3202819C2 (de) * 1982-01-29 1984-12-20 Preh, Elektrofeinmechanische Werke Jakob Preh Nachf. Gmbh & Co, 8740 Bad Neustadt Infrarotdetektor und Verfahren zum Herstellen
DE3370251D1 (en) * 1982-03-18 1987-04-16 British Telecomm Piezoelectric and pyroelectric film
US4595832A (en) * 1984-03-30 1986-06-17 The United States Of America As Represented By The United States Department Of Energy Thermal sensor with an improved coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816754A (zh) * 2020-09-04 2020-10-23 上海翼捷工业安全设备股份有限公司 热释电灵敏元的制备方法

Also Published As

Publication number Publication date
US4867850A (en) 1989-09-19
CN1012242B (zh) 1991-03-27
EP0274881A1 (en) 1988-07-20
KR880008463A (ko) 1988-08-31
DE3784898T2 (de) 1993-06-24
EP0274881B1 (en) 1993-03-17
DE3784898D1 (de) 1993-04-22
KR910001878B1 (ko) 1991-03-28

Similar Documents

Publication Publication Date Title
Mastai et al. Pulsed sonoelectrochemical synthesis of cadmium selenide nanoparticles
CN111025812B (zh) 一种基于金属电沉积的电致变发射率器件及制备方法
Dunn et al. Photochemical growth of silver nanoparticles on c-and c+ domains on lead zirconate titanate thin films
DE69814751T2 (de) Herstellung einer dünnen Zinkoxidschicht
JP3005674B2 (ja) 可視光応答性電極
CN1155122C (zh) 制造热电偶检测器的方法
US20050206990A1 (en) Reflective light control element with diffusible reflecting surface
CN87107469A (zh) 热敏元件及其制造方法
FR2625573A1 (fr) Procede pour fabriquer un dispositif a effet d'electrochrome
Windisch Jr et al. Mott–Schottky analysis of thin ZnO films
Murali Babu et al. High performance humidity sensing properties of indium tin oxide (ITO) thin films by sol–gel spin coating method
KR20060060696A (ko) Ito박막 및 그 제조방법
Worasukhkhung et al. Hydrophilic property of TiO2 films sputtered on glass/ITO for self cleaning glass and heat mirror application
Sakai et al. Highly hydrophilic surfaces of cathodically polarized amorphous TiO2 electrodes
Gomez et al. Dye-sensitized nanocrystalline titanium-oxide-based solar cells prepared by sputtering: influence of the substrate temperature during deposition
EP1369501A2 (en) Preparation of LCPMO thin films which have reversible resistance change properties
US7432577B1 (en) Semiconductor component for the detection of radiation, electronic component for the detection of radiation, and sensor system for electromagnetic radiation
Ahila et al. Effect of anodization time on the growth of twinned pyramid crystals of bismite from polyhedral bismuth particle by facile electrolysis-based oxidation
US5462647A (en) Preparation of lead-zirconium-titanium film and powder by electrodeposition
Rieke et al. Light-assisted, aqueous redox reactions at chlorogallium phthalocyanine thin-film photoconductors: dependence of the photopotential on the formal potential of the redox couple and evidence for photoassisted hydrogen evolution
Tanaka et al. The preparation of porous TiO2 by immersing Ti in NaOH solution
KR101066016B1 (ko) 나노로드 층을 구비한 fto 투명 전도막
Chen et al. Experimental considerations
Maho et al. Comparison of indium tin oxide and indium tungsten oxide as transparent conductive substrates for WO3-based electrochromic devices
Yaacob et al. Gasochromic performance of WO3 nanorod thin films for low concentration H2 sensing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee