CN87102619A - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN87102619A
CN87102619A CN87102619.8A CN87102619A CN87102619A CN 87102619 A CN87102619 A CN 87102619A CN 87102619 A CN87102619 A CN 87102619A CN 87102619 A CN87102619 A CN 87102619A
Authority
CN
China
Prior art keywords
layer
type
concentration
impurity
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN87102619.8A
Other languages
English (en)
Other versions
CN1013910B (zh
Inventor
山岸英雄
山口美则
浅冈圭三
宏江昭彦
近藤正隆
津下和永
太和田善久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of CN87102619A publication Critical patent/CN87102619A/zh
Publication of CN1013910B publication Critical patent/CN1013910B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种具有多结的非晶形或微晶形半导体的光电器件,其中包含高浓度杂质的一或多层被插入在p型导电层和n型导电层之间。被插入的层形成一隧道结以提高光电转换率。

Description

本发明涉及非晶形硅或非晶形合金多结太阳能产生电池。
在先有技术中的多结太阳能产生电池中,其在第一层半导体材料中光所产生的载流子会与存在于第一层和第二层半导体材料间p-n结界面的电子和空穴复合,因而在各层之间产生一电流。然而,这种器件中的缺点在于,某些从第一层移来的载流子在p-n结界面未能找到电子或空穴,而是透入到第二层中。此外,在第二层中的许多载流子移过p-n结界面而进入第一层,从而导致降低器件的总效率。故需要免除在先有技术中的半导体器件所存在的上述问题。
本发明的一个目的就是要提供一种其效率较常用的同类型电池高的非晶形硅多结太阳能产生电池。
因此,本发明涉及的是一种非晶形和/或微晶形(下文称为“非晶形”)结构的半导体器件,其分层的p-i-n或n-i-p型光电元件配置有高杂质浓度层,其中的杂质浓度已经提高到足以促进在该器件的n-p或p-n结界面上的载流子的复合。
本发明的其它目的、特点和特性,该结构的有关元件的制造和运作方法和功能,以及对复合的部分和经济的制造法,等等,在参考附图,研究下列叙述和所附权项后,就可以明白过来,所有上述所提到的都构成本发明书的一部分,其中相同的编号表示各图中的相应部分。
单独的附图描述本发明的最佳实施例。
如图所示,所提供的一种非晶形半导体器件可以用作光电池。该半导体器件在说明的实施例中由下列部分构成:一对外部电极11,一层毗 邻电极10的p型层6,一层毗邻p型层6的本征型i型层7和一层毗邻该i型层7的n型层2。另一附加的n型层9配置在第二电极11的邻近,一层界面i型层8则配置在n型层9的邻近。一层p型层3配置在i型层8的邻近并与n型层2形成一p-n结界面。各层是由已知的材料,例如硅、碳化硅、氮化硅、锗硅、硅锡或它们的混合物构成的,各层的厚度约为那些在光电元件中常见的厚度。
本发明其中一个新颖和有利的特点在于,在多结光电元件的n-p或p-n结界面部分有高的杂质浓度层(4,5),如附图所示。这些层中的杂质已经提高到足以促进自由电子和靠近界面处的电子空穴复合。
n型层2和p型层3间的界面1可以是该两层的边界,如附图所示,或者是n-p或p-n结界面的p型层和n型层间新提供的层。如果该界面是一新提供的层,它最好包含N、O、Fe、Cu和Ge金属或其组合而不含p型或n型掺杂剂。
p型层3和n型层2间的n-p或p-n界面部分的最佳厚度根据这些层中的杂质和它们的浓度确定,但鉴于本薄膜形成技术,厚度最好应大于10埃。p型层或n型层的厚度最好约为70-700埃。当该p型层备有杂质浓度层时,最好使用一种如硼的p型掺杂剂,以构成厚度约在10-300埃范围内的薄层。而当n型层备有杂质浓度层时,最好使用一种如磷的n型掺杂剂,以构成厚度约在10-500埃范围内的薄层。高杂质浓度层愈厚,光吸收的损失就愈大。
另一方面,在加有附加p-n结界面层的实施例中,该界面层厚度应约为10-300埃,最好为30-150埃。
在提高的杂质浓度足以促进载流子的复合时,由投射到第一半导体层上的光所产生的电子会更有效地和p-i-n型光电元件中的p-n结界面上的第二半导体层处所产生的空穴复合。换句话说,n-p或p-n结界面上的I-V(电流-电压)曲线应做得尽可能的直。
最佳的杂质浓度视引进的杂质类型和高杂质浓度层的厚度而定,因此,其范围不能无条件地定下来。当将-p型或n型掺杂剂用作杂质时,掺杂剂的浓度应大于其在毗邻i型层7、8的p型或n型层中的浓度的二倍,最好是3-10倍。此时,该浓度应为0.01-3    atm%,最好为0.05-2atm%。
当p型和n型层间有高杂质浓度层,例如掺有Cu、Fe、O、N或Ge的层时,除p型或n型掺杂剂外的杂质浓度,对于Cu和Fe而言约为0.01至3atm%,而对于O-N和Ge而言约为1至10atm%。
n-p或p-n结界面部分上的高杂质浓度层的供应将带隙中的能级(局部能级浓度)提高超过一个数量级,因而促进载流子的复合和改进光的转换率。
现参考实例以叙述根据本发明制造得的半导体器件。
实例1
用一个具有平行板电容的耦合辉光放电仪将半导体层制进太阳电池中。该电池有一个1.0厘米2有效面积的玻璃基板/SnO2电极/p型层(厚度为150埃);一层厚度为600埃的i型层;一层厚度为300埃的n型层;一层厚度为100埃的n型高杂质浓度层;一层厚度为100埃的p型高杂质浓度层;一层厚度为150埃的p型层;一层5000埃的i型层;一层500埃的n型层和一个铝电极。一个100毫瓦/厘米2的AM-1太阳模拟装置被用来鉴定性能。所得结果是η=8.5%,Voc=1.75伏,Jsc=6.84毫安/厘米2,FF=71%。
该层具有下列条件:
p型层:SiH420sccm,B2H6(以H2稀释至1000ppm)50sccm,10毫瓦/厘米2,1.0托。
i型层:SiH430 sccm,10毫瓦/厘米2,0.5托。
n型层:SiH420 sccm,PH3(以H2稀释至1000ppm),10毫瓦/厘米2, 0.5托。
p型高杂质浓度层:SiH420 sccm,B2H6(以H2稀释至1000ppm)100sccm,10毫瓦/厘米2,1.0托。
n型高杂质浓度层:SiH420 sccm,PH3(以H2稀释至1000ppm)300sccm,10毫瓦/厘米2,0.5托。
实例2
和例1的做法一样将半导体层制进一太阳电池,该电池有一个1.0厘米2有效面积的玻璃基板/SnO2电极/p型层(厚度为150埃);一层厚度为600埃的i型层;一层厚度为300埃的n型层;一层厚度为100埃的n型高度杂质浓度层;一层厚度为100埃的p型高杂质浓度层;一层厚度为150埃的p型层;一层厚度为5000埃的i型层和一层厚度为500模并有一铝电极附于其上的n型层。一个100毫瓦/厘米2的AM-1太阳埃拟装置被用来鉴定性能。所得结果是:η=7.0%,Voc=1.59伏,Jsc=7.22毫安/厘米2,FF=61%。
高杂质浓度层是在与形成例1的p型层相同的条件下加进500sccm的N2制得的。
与例1相比
除了不提供例1中的n型和p型高杂质浓度外,按例1相同的方法将半导体层制进太阳电池,并用与例1相同的方法鉴定性能。所得结果是:η=6.2%,Voc=1.49伏,Jsc=7.17毫安/厘米2FF=58%。
从上述的例子可知,用Jsc、Voc和FF表示的太阳电池性能显然可以根据本发明在p-n或n-p结界面上的用高杂质浓度层提供一多结太阳电池的做法加以改进。
在本发明与目前被认为是最实用和最佳的实施例一起叙述的情况下,不言而喻,本发明不受限于该被公开的实施例,相反,本发明的目的是要将所附权利要求的精神和范围中所包括的各种修改和等效装置覆盖在内。

Claims (11)

1、一种实质上由非晶形和/或微晶形材料组成的半导体器件,其特征在于,它的多结结层包括一或多层掺以n型掺杂剂的n型层,一或多层掺以p型掺杂剂的p型层,以及至少一层包括一个高浓度的杂质并被插入所说p型和所说n型层间的薄层,从而促进载流子的复合。
2、根据权利要求1的半导体器件,其特征在于,所说被插入的薄层位于所说p型层之上,并且比其余p型层具有较高的杂质浓度。
3、根据权利要求2的半导体器件,其特征在于,所说被插入的薄层具有在10-300埃范围内的厚庹。
4、根据权利要求2的半导体器件,其特征在于,所说杂质主要包括p型掺杂剂。
5、根据权利要求1的半导体器件,其特征在于,所说被插入的薄层位于所说n型层之上,并且比其余n型层具有较高的杂质浓度。
6、根据权利要求5的半导体器件,其特征在于,所说杂质主要包括n型掺杂剂。
7、根据权利要求5的半导体器件,其特征在于,所说较高浓度层具有在10-700埃范围内的厚度。
8、根据权利要求1的半导体器件,其特征在于,所说被插入薄层至少包括两层较薄的层。
9、一种为具有非晶形结构类型的光电电池用的半导体器件,其特征在于,它包括:
一层n型层;
一层p型层;以及
一层在所说p型层和所说n型层间的边界层,所说边界层的杂质来自由氮、氧、铁、铜和锗组成的组合,其杂质浓度大于在所说n型和所说p型层中杂质的总浓度。
10、一种在半导体器件中的p-n或n-p结界面上促进电子-电子空穴复合的方法,其特征在于,该方法包括:
(a)形成一层具有掺进p型杂质的第一浓度的p型层,
(b)形成一层具有掺进p型杂质的第二浓度的n型层;以及
(c)在毗邻所说界面的所说p型层或n型层上形成一浓度层,如该层配置在所说p型上,其浓度大于所说第一浓度,如该层配置在所说n型层上,则其浓度大于所说第二浓度。
11、一种在半导体器件中的p-n或n-p结界上促进电子-电子空穴复合的方法,其特征在于,该方法包括:
(a)形成一层具有掺进p型杂质的第一浓度的p型层;
(b)形成一层具有掺进n型杂质的第二浓度的n型层;以及
(c)在所说界面上形成一层边界层,该边界层的杂质来自由氮、氧、铁、铜和锗组成的组合,而且其浓度大于所说n型层和p型层中杂质的总浓度。
CN87102619A 1986-04-04 1987-04-04 半导体器件及其制造方法 Expired CN1013910B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP78598/86 1986-04-04
JP61078598A JPS62234379A (ja) 1986-04-04 1986-04-04 半導体装置

Publications (2)

Publication Number Publication Date
CN87102619A true CN87102619A (zh) 1987-11-11
CN1013910B CN1013910B (zh) 1991-09-11

Family

ID=13666335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN87102619A Expired CN1013910B (zh) 1986-04-04 1987-04-04 半导体器件及其制造方法

Country Status (6)

Country Link
US (1) US4926230A (zh)
EP (1) EP0241226A3 (zh)
JP (1) JPS62234379A (zh)
CN (1) CN1013910B (zh)
AU (1) AU604234B2 (zh)
CA (1) CA1295401C (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035644C (zh) * 1993-03-15 1997-08-13 杨永清 太阳电池
CN101752445B (zh) * 2008-11-28 2013-05-29 瀚宇彩晶股份有限公司 光传感器、感光二极管、二极管层及其制造方法
CN103137778A (zh) * 2011-11-25 2013-06-05 吉富新能源科技(上海)有限公司 内部光二次散射之高效率双结薄膜太阳能电池技术
CN105359279A (zh) * 2013-06-18 2016-02-24 原子能和替代能源委员会 多结太阳能电池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246506A (en) * 1991-07-16 1993-09-21 Solarex Corporation Multijunction photovoltaic device and fabrication method
US6316715B1 (en) * 2000-03-15 2001-11-13 The Boeing Company Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material
JP4560245B2 (ja) 2001-06-29 2010-10-13 キヤノン株式会社 光起電力素子
JP4276444B2 (ja) * 2003-01-16 2009-06-10 Tdk株式会社 鉄シリサイド膜の製造方法及び装置、光電変換素子の製造方法及び装置、並びに、光電変換装置の製造方法及び装置
KR101024288B1 (ko) 2003-07-24 2011-03-29 가부시키가이샤 가네카 실리콘계 박막 태양전지
DK1650811T3 (da) * 2003-07-24 2013-07-08 Kaneka Corp Stakket fotoelektrisk converter
US20100059110A1 (en) * 2008-09-11 2010-03-11 Applied Materials, Inc. Microcrystalline silicon alloys for thin film and wafer based solar applications
US8912428B2 (en) * 2008-10-22 2014-12-16 Epir Technologies, Inc. High efficiency multijunction II-VI photovoltaic solar cells
US20110232753A1 (en) * 2010-03-23 2011-09-29 Applied Materials, Inc. Methods of forming a thin-film solar energy device
DE102015006379B4 (de) * 2015-05-18 2022-03-17 Azur Space Solar Power Gmbh Skalierbare Spannungsquelle

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171235A (en) * 1977-12-27 1979-10-16 Hughes Aircraft Company Process for fabricating heterojunction structures utilizing a double chamber vacuum deposition system
US4492810A (en) * 1978-03-08 1985-01-08 Sovonics Solar Systems Optimized doped and band gap adjusted photoresponsive amorphous alloys and devices
US4272641A (en) * 1979-04-19 1981-06-09 Rca Corporation Tandem junction amorphous silicon solar cells
US4249957A (en) * 1979-05-30 1981-02-10 Taher Daud Copper doped polycrystalline silicon solar cell
US4332974A (en) * 1979-06-28 1982-06-01 Chevron Research Company Multilayer photovoltaic cell
US4255211A (en) * 1979-12-31 1981-03-10 Chevron Research Company Multilayer photovoltaic solar cell with semiconductor layer at shorting junction interface
US4377723A (en) * 1980-05-02 1983-03-22 The University Of Delaware High efficiency thin-film multiple-gap photovoltaic device
US4460670A (en) * 1981-11-26 1984-07-17 Canon Kabushiki Kaisha Photoconductive member with α-Si and C, N or O and dopant
US4404421A (en) * 1982-02-26 1983-09-13 Chevron Research Company Ternary III-V multicolor solar cells and process of fabrication
JPS58163954A (ja) * 1982-03-25 1983-09-28 Canon Inc 電子写真用光導電部材
US4409424A (en) * 1982-06-21 1983-10-11 Genevieve Devaud Compensated amorphous silicon solar cell
US4591892A (en) * 1982-08-24 1986-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor photoelectric conversion device
EP0153043A3 (en) * 1984-02-15 1986-09-24 Energy Conversion Devices, Inc. Ohmic contact layer
US4547621A (en) * 1984-06-25 1985-10-15 Sovonics Solar Systems Stable photovoltaic devices and method of producing same
JPS61104678A (ja) * 1984-10-29 1986-05-22 Mitsubishi Electric Corp アモルフアス太陽電池
US4742012A (en) * 1984-11-27 1988-05-03 Toa Nenryo Kogyo K.K. Method of making graded junction containing amorphous semiconductor device
JPH065774B2 (ja) * 1985-08-07 1994-01-19 工業技術院長 太陽電池
US4703553A (en) * 1986-06-16 1987-11-03 Spectrolab, Inc. Drive through doping process for manufacturing low back surface recombination solar cells
US4776894A (en) * 1986-08-18 1988-10-11 Sanyo Electric Co., Ltd. Photovoltaic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035644C (zh) * 1993-03-15 1997-08-13 杨永清 太阳电池
CN101752445B (zh) * 2008-11-28 2013-05-29 瀚宇彩晶股份有限公司 光传感器、感光二极管、二极管层及其制造方法
CN103137778A (zh) * 2011-11-25 2013-06-05 吉富新能源科技(上海)有限公司 内部光二次散射之高效率双结薄膜太阳能电池技术
CN105359279A (zh) * 2013-06-18 2016-02-24 原子能和替代能源委员会 多结太阳能电池
CN105359279B (zh) * 2013-06-18 2017-05-24 原子能和替代能源委员会 多结太阳能电池

Also Published As

Publication number Publication date
EP0241226A3 (en) 1988-09-07
US4926230A (en) 1990-05-15
CN1013910B (zh) 1991-09-11
AU7102687A (en) 1987-10-08
EP0241226A2 (en) 1987-10-14
AU604234B2 (en) 1990-12-13
CA1295401C (en) 1992-02-04
JPS62234379A (ja) 1987-10-14

Similar Documents

Publication Publication Date Title
CN101165925B (zh) 具有局部化掺杂的顶盖层的太阳能电池结构
Bertness et al. 29.5%‐efficient GaInP/GaAs tandem solar cells
EP0221523B1 (en) Semiconductor device
US5125984A (en) Induced junction chalcopyrite solar cell
CN87102619A (zh) 半导体器件及其制造方法
Hezel Recent progress in MIS solar cells
CN101197399B (zh) 一种薄膜硅/晶体硅背结太阳能电池
US20080169017A1 (en) Multilayered Film-Nanowire Composite, Bifacial, and Tandem Solar Cells
Yamaguchi High-efficiency GaAs-based solar cells
EP0092925A1 (en) Solar cell incorporating a photoactive compensated intrinsic amorphous silicon layer and an insulating layer and method of fabrication thereof
EP4148813A1 (en) Silicon/perovskite laminated solar cell and preparation method therefor
CN101043058A (zh) 非晶硅-晶体硅异质结太阳电池
JP2001267598A (ja) 積層型太陽電池
Carlson Solar cells
EP0248953A1 (en) Tandem photovoltaic devices
JP2023155914A (ja) 太陽電池およびその製造方法、光起電力モジュール
JPH0122991B2 (zh)
Ebong et al. The effect of low and high temperature anneals on the hydrogen content and passivation of Si surface coated with SiO2 and SiN films
Krühler Amorphous thin-film solar cells
Green Crystalline and polycrystalline silicon tandem junction solar cells: theoretical advantages
JPS6284570A (ja) 光電池デバイス
CN221885113U (zh) 太阳能电池及光伏组件
CN115172478B (zh) 太阳能电池及光伏组件
JPS6293983A (ja) 光起電力装置
Yang et al. Three-terminal monolithic cascade GaAs/Si solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee