CN85104506A - 同时校准多种离子电极的标准溶液 - Google Patents

同时校准多种离子电极的标准溶液 Download PDF

Info

Publication number
CN85104506A
CN85104506A CN198585104506A CN85104506A CN85104506A CN 85104506 A CN85104506 A CN 85104506A CN 198585104506 A CN198585104506 A CN 198585104506A CN 85104506 A CN85104506 A CN 85104506A CN 85104506 A CN85104506 A CN 85104506A
Authority
CN
China
Prior art keywords
ion
concentration
electrode
standard solution
ionic strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN198585104506A
Other languages
English (en)
Other versions
CN85104506B (zh
Inventor
奥成博
臼井诚次
植松宏彰
河野猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP59146239A priority Critical patent/JPH0797098B2/ja
Priority to US06/737,036 priority patent/US4626512A/en
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to CN85104506A priority patent/CN85104506B/zh
Publication of CN85104506A publication Critical patent/CN85104506A/zh
Publication of CN85104506B publication Critical patent/CN85104506B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • G01N27/4165Systems checking the operation of, or calibrating, the measuring apparatus for pH meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/10Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/10Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing
    • Y10T436/108331Preservative, buffer, anticoagulant or diluent

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种同时校准供测定在血液中至少包括钾离子和钙离子的多种离子的多种离子电极的标准溶液,其改进在于钾离子电极和钙离子电极的标准溶液的浓度是根据下列关系式调整的:
对钾离子:C=C0.10ΔE/60
对钙离子:C=C0.10ΔE/30
对钾离子:A=-0.130到-0.065
对钙离子:A=-0.240到-0.172
式中ΔE:当以150mM的离子强度作为标准时的电势差;
M:离子强度;
Co:标准浓度;
C:所加试剂的浓度;以及
A:校正系数。

Description

本发明阐明一种同时校准供测定血液中多种离子(至少包括钾离子和钙离子)浓度的多种电极的标准溶液。
一般来说,血液中除了含有离子强度为135到145mM的钠离子(下文称为Na+)、3.5到5.0mM的钾离子(下文称为K+)和1.2到1.6mM的钙离子(下文称为Ca+)之外,还含有镁离子、铁离子、铜离子等,具有离子强度大约为150mM左右此外,血液的PH值为7到7.5。在用电极法测定血液中所含的上述离子的浓度时必需使用对于每种电极具有确定的已知数值的标准溶液分别对电极进行定时的校准。
测定某一血液样品时,在接近血液试样中离子的离子强度的条件下进行上述电极的校准是最为理想的。电极测定的是离子活度、离子活度是浓度和活度系数的乘积,活度系数依赖于被测离子的浓度以及血液中所含的其它离子的浓度。然而,具有相同离子强度的各种离子的活度系数彼此相等,而与血液中所含离子的其它种类无关。因此,在测定血液中所含的Na+,K+和Ca+的浓度时,最理想的是使用离子强度被控制为150mM左右的标准溶液来校准电极。
虽然用于逐个地校准供测定Na+、K+、Ca+或PH的电极的标准溶液在市场上存在,但是能够同时校准相对于上述参数的测量电极的标准溶液从来还没有出现。例如,在日本专利公开(NO.35062/1981)中,公开的标准溶液只能用于同时校准Ca2+电极和PH电
本发明的目的在于提供一种用于同时校准Na+电极、K+电极、Ca2+电极和pH电极的标准溶液。特别是,本发明的目的是提供一种同时校准供测定血液中多种离子(至少包括K+和Ca2+)的多种电极的标准溶液。根据本发明,用于同时校准多种电极的标准溶液的独特之处在于,校准钾离子电极和钙离子电极的标准溶液的浓度是根据下列关系式调整的:
△E=A ( M - 150 )
对于钾离子,C=Co·10-△E/60
对于钙离子,C=Co·10-△E/30
对于钾离子,A:-0.130到-0.065
对于钙离子,A:-0.240到-0.172
式中:
△E:当用150mM(毫摩尔/升)的离子强度作为标准时的电势差。
M:离子强度
CO:校正浓度
C:实际所加试剂的浓度
A:校正系数
根据本发明,在多种不同离子混合的情况下,由于将易受其他离子影响的K+和Ca2+的浓度调整到由于离子强度而引起的电势差改变的范围之内,所以,能够得到高度准确的用于同时供测定包括血液中K+和Ca2+的多种离子的多种电极的标准溶液。从而上述电极也能够以高度的精密性和可靠性被校准。
附图的简要说明
附图是表示电势差的变化与K+和Ca2+的离子强度之间关系的特性曲线。
以下阐述应用对应的电极的方法准确测定血液中Na+、K+、Ca+浓度和血液的pH值的标准溶液。
用于配制标准溶液的试剂包括氯化钠(下文称为NaCl)、氯化钾(下文称为KCl)、碳酸钙(下文称为CaCO3)、三羧甲基氨基甲烷(下文称为Tris其化学式为(HOCH22CNH2盐酸(下文称为HCl)和Triton x-100〔具有化学式HO(CH2CH2O)-C6H4C9H19的商品名称,即聚乙二醇的P-壬基苯基单醚〕。这些试剂最好是选用市售的特级或高级试剂。
最好是将NaCl、KCl和CaCO3加热到110℃保持六小时或者更长时间使其烘干,再在干燥器中冷却后再使用。使用HCl是采用IN的溶液的形式,该当量浓度予先测准到小数点后三位。此外,在配制标准溶液时应使用通过离子交换法得到的电导率为1×107Ω-1·Cm-1的纯水。
下表1表示两种标准溶液中上述试剂的浓度和pH值。
Figure 85104506_IMG2
一般来说,是采用两端校准方法(即一种高浓度的标准溶液和一种低浓度的标准溶液)。在下文,高浓度的标准溶液称作标准溶液H,而低浓度的标准溶液则称为标准溶液L。
上述标准溶液L(洗液)和标准溶液H中Triton    x-100的含量都是10ppm。
上述标准溶液L和标准溶液H的配制步骤将在下文中用数字值作为例子一起介绍。上述标准溶液的总体积是50升。
(Ⅰ)标准溶液L,洗液。
将1885±0.1ml 1NHCl(0.995<f<1.005)加入盛在容器里的350.640±0.005g NaCl(分子量58.44),14.912±0.001g KCl(分子量74.567)和6.005±0.001g CaCO3(分子量100.09)的混合物中,使完成下列化学方程式所表示的反应:
然后,将纯水或蒸馏水加入上述容器的混合物中,使生成共计30升液体混合物。为了溶解上述试剂,所得的液体混合物应充分搅拌,以便得到一个浓度均匀的液体混合物。
其次,将302.85±0.005g    Tris(分子量121.14)容于大约2升纯水中,制得Tris的水溶液,然后将得到的Tris水溶液伴随着搅拌加入上述容器的液体混合物中。Tris事先用纯水稀释的原因是,Tris是碱性的,并且如果把高浓度的Tris加入,会与上述容器中的液体混合物反应而生成沉淀。
最后,加入5.0ml    10%    Triton    X-100水溶液,并进一步加纯水,使液体混合物的体积总共达到50升。这个时候,液体混合物很容易因Triton    x-100而起泡沫,因此,需要控制搅拌。
(Ⅱ)标准溶液H
除了上述试剂是按下列用量使用之外,标准溶液H能够用与上述(Ⅰ)中所说的配制标准溶液L的相同方法来配制:
NaCl(分子量58.44)-584.400±0.005g
KCl(分子量74.56)-26.469±0.005g
CaCO3(分子量100.09)-12.762±0.001g
1NHCl(0.995<f<1.005)-2325±0.1ml
Tris(分子量121.14)-302.85±0.005g
Triton    x-100(10%溶液)-5.0ml
虽然血液的离子强度如上述为150mM,但是我们已经知道无论离子强度是大于150mM还是小于150mM,都会出现电势差。附图是表示当用150mM的离子强度作为标准时,K+和Ca2+的离子强度与电势差的变化之间关系的特性曲线。在图中,A、A′分别是K+的上限曲线和下限曲线,而B、B′分别是Ca2+的上限曲线和下限曲线。
本发明发现,当几种离子混合在一起时,需要校正不同于标准离子强度的K+和Ca2+的浓度,这样才能够借助于根据下列关系式(1)到(5)产生,适用于K+电极和Ca2+电极的标准溶液以进行高精度的校准。
△E=A
Figure 85104506_IMG3
……(1)
对于K+:C=C0·10-△E/60……(2)
对于Ca2+:C=C0·10-△E/30……(3)
对于K+:CA=-0.130到-0.065……(4)
对于Ca2+:A=-0.240到-0.172……(5)
△E为当以150mM的离子强度作为标准时的电势差,M是离子强度,C0是校正浓度,C是所加试剂的浓度,A是校正系数。
上述(Ⅰ)中所配制的标准溶液L如下表2所示,而上述(Ⅱ)中所配制的标准溶液H如下表3所示:
表2
校正浓度    所用试剂    试剂的浓度
Figure 85104506_IMG4
表3
校正浓度    所加试剂    试剂的浓度
Figure 85104506_IMG5
在根据上述关系式(1)到(5)配制标准溶液时,首先从校正浓度计算出离子强度M,再将M代入关系式(1)确定△E,将△E的数值分别代入关系式(2)、(3)分别确定K+和Ca2+的浓度C。
例如,当Na+、K+、Ca2+、Tris和HCl(pH=7.10)的校正浓度分别为200mM、7mM、2.4mM、50mM和46.6mM时,离子强度M为258.4mM。如果将这个M的数值代入关系式(1),则△E=A×( 258.4 - 150 )成立。
这里,分别对K+规定A为-0.130到-0.065,对Ca+规定A为-0.240到-0.172,将上述数值代入关系式(2)和(3),对K+得到△E的数值代入关系式(2)和(3)中,对钾离子得到,
△E=-0.5~-0.25,C=7.067~7.135;对钙离子得到
△E=-0.92~-0.66,C=2.525~2.576;。
虽然上述计算方法求得的钾离子和钙离子的C值理应介于附图中所示的上述上限曲线和下限曲线之间,但是,校正计算,包括从得到的C值计算离子强度M,再将M的值代入关系式(1)求得△E,以及将△E的值代入关系式(2)和(3)以求得C的运算,还是应当进行一次或者多次。
例如,在前面的例子中,得到下列结果:
校正前    校正后
Na+:200mM Na+:200mM
K+:7mM K+:7.06到7.14mM
Ca2+:2.4mM Ca2:2.52到2.58mM
pH:7.10(Tris:50mM)    pH:710(Tris:50mM
HCl:46.6mM    HCl:46.6mM)
μ=256.4    μ:258.7到258.9
从上述可以看到离子强度稍有改变。另外pH值也有所改变,所以,为了修正这个变化,根据具体情况稍微调整HCl的量是必要的。因此,校准可以根据校正后的离子强度再次进行。然而,实际上这样的变化是在正常允许的范围之内,所以它不会成为实施中的问题,也不会成为主要问题。

Claims (1)

1、在配制一种同时校准供测定多种离子(在血液中至少包括钾离子和钙离子)的多种离子电极的标准溶液的方法中,其特征在于钾离子电极和钙离子电极的标准溶液的浓度是根据下列关系式调整的:
Figure 85104506_IMG1
钾离子:C=C0·10-ΔE/60
钙离子:C=C0·10-ΔE/30
钾离子:A=-0.130到-0.065
钙离子:A=-0.240到-0.172
式中:ΔE:当以150mM的离子强度作为标准时的电势差:
M:离子强度;
Co:校准浓度;
C:所加试剂的浓度;以及
A:校正系数。
CN85104506A 1984-07-14 1985-06-12 同时校准多种离子电极的标准溶液 Expired CN85104506B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59146239A JPH0797098B2 (ja) 1984-07-14 1984-07-14 複数のイオン電極の同時校正用標準液
US06/737,036 US4626512A (en) 1984-07-14 1985-05-22 Standard solution for simultaneously calibrating a plurality of ion electrodes
CN85104506A CN85104506B (zh) 1984-07-14 1985-06-12 同时校准多种离子电极的标准溶液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59146239A JPH0797098B2 (ja) 1984-07-14 1984-07-14 複数のイオン電極の同時校正用標準液
CN85104506A CN85104506B (zh) 1984-07-14 1985-06-12 同时校准多种离子电极的标准溶液

Publications (2)

Publication Number Publication Date
CN85104506A true CN85104506A (zh) 1987-02-18
CN85104506B CN85104506B (zh) 1988-06-15

Family

ID=25741761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN85104506A Expired CN85104506B (zh) 1984-07-14 1985-06-12 同时校准多种离子电极的标准溶液

Country Status (3)

Country Link
US (1) US4626512A (zh)
JP (1) JPH0797098B2 (zh)
CN (1) CN85104506B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412541C (zh) * 2002-04-03 2008-08-20 吉恩·查雷特 用于电镀液伏安分析的参考电极校准方法
CN110261442A (zh) * 2019-07-24 2019-09-20 武汉轻工大学 一种快速同步检测食品中氯化钠和氯化钾的方法
CN113466296A (zh) * 2021-06-28 2021-10-01 中国农业大学 基于离子活度的电导率传感器多点标定方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK159837C (da) * 1986-12-03 1991-04-29 Radiometer As Fremgangsmaade og apparat til afsloering af en proteinforurening paa en ph elektrode
JPH0287055A (ja) * 1988-09-24 1990-03-27 Terumo Corp センサの較正液及び較正法
EP1083824B1 (de) 1998-06-04 2009-03-18 SPHERE Medical Limited Kalibrierungsfluid für einen sensor zur messung eines blutwertes, sowie herstellung des kalibrierungsfluids
EP1659397B1 (de) * 2004-11-18 2007-10-03 Hamilton Bonaduz AG Kalibrationslösung für die Konduktometrie
JP5809968B2 (ja) * 2011-12-28 2015-11-11 株式会社堀場製作所 校正液

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK151919C (da) * 1979-06-28 1988-08-15 Radiometer As Fremgangsmaade, referencevaeske og referencevaeskesystem til samtidig kalibrering og/eller kvalitetskontrol af calciumfoelsomme elektroder og ph-elektroder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412541C (zh) * 2002-04-03 2008-08-20 吉恩·查雷特 用于电镀液伏安分析的参考电极校准方法
CN110261442A (zh) * 2019-07-24 2019-09-20 武汉轻工大学 一种快速同步检测食品中氯化钠和氯化钾的方法
CN113466296A (zh) * 2021-06-28 2021-10-01 中国农业大学 基于离子活度的电导率传感器多点标定方法

Also Published As

Publication number Publication date
JPH0797098B2 (ja) 1995-10-18
JPS6125049A (ja) 1986-02-03
US4626512A (en) 1986-12-02
CN85104506B (zh) 1988-06-15

Similar Documents

Publication Publication Date Title
CN85104506A (zh) 同时校准多种离子电极的标准溶液
Ellerbe et al. Determination of serum uric acid by isotope dilution mass spectrometry as a new candidate definitive method
Diehl et al. Studies on fluorescein—II: The solubility and acid dissociation constants of fluorescein in water solution
Carson et al. Coulometric Determination of Acid
Schwarz et al. Hydrogen yields in the radiolysis of aqueous solutions1
Sandifer Theory of interfacial potential differences: effects of adsorption onto hydrated (gel) and nonhydrated surfaces
EP1188052B1 (en) Karl fischer reagent
Adeloju et al. Cathodic stripping potentiometric determination of selenium in biological and environmental materials on a combined electrode with a rotating sample platform
Cetnarska et al. Electrode processes of the Eu (III)/Eu (II) system in water+ hexamethylphosphortriamide mixtures
Broda et al. The free energy of transfer of Pb (II) ion and electrode kinetics of the Pb (II)/Pb (Hg) system in dimethyl sulfoxide (DMSO) and DMSO-water mixtures
Kalinowski Ion-pair effects in electrochemistry of aromatic compounds. The influence of supporting electrolyte cations on the ρπ constant of Hammett's equation
Gramlich et al. Thermal-ionization isotope-dilution mass spectrometry as a definitive method for determination of potassium in serum.
US4778570A (en) Process for determining the organic halogen content of organic samples
Mareček et al. Charge transfer across a polymer gel/liquid interface: determination of ionophores
US5453377A (en) Methods for making iodine-free Karl Fischer reagents
CN1027925C (zh) 配制同时较准多种电极的标准溶液的方法
Rizk et al. New Ampicillin Selective Plastic Membrane and Coated Metal Electrodes Based on Ampicillinium Phosphotungstate Ion pair.
JP2557323B2 (ja) 生コンクリ−トの塩素イオン濃度測定方法
Ekmekçi et al. Selenite-selective membrane electrodes based on ion exchangers and application to anodic slime
Mitchell et al. Mitochondrial-catalyzed ATP hydrolysis in highly enriched [18O] H2O.: Frequency distributions of 18O-labelled Pi species
Shimolin et al. Purity determination of potassium iodate by high-precision coulometric titration: New measurement procedure implementation
Lindberg et al. Automatic coulometric titration with photometric end-point detection: Part II. Coulometric Determination of Nanomole Amounts of Carbon Dioxide by non-aqueous titration
Buděšínský et al. The preparation and properties of the acetate complex of trivalent cobalt
Stepak Comparison of the potentiometric determination of copper with the CCS and SC methods
Pérez-Olmos et al. Construction and evaluation of ion-selective electrodes for potassium and calcium with a summing operational amplifier. Application to wine analysis

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee