一种松散状生物质材料成型模具
所属领域
本实用新型涉及一种呈松散状态的生物质材料的成型模具,具体地讲是一种松散状生物质材料成型模具及成型机。
背景技术
生物质材料,是以木本、草本、灌木等植物的固体废弃物为原料,将这些原料处理成松散状态,并经过成型加工后可成为可利用型材的材料。这种生物质燃烧材料的原料是由生长期较短的天然植物所产生的废弃物构成,具有成本低、资源丰富的特点。但是,由于未成型的松散状生物质材料,运输及储存体积过大,其利用成本过高,必须将其松散状的生质物进行必要的成型加工,极大可能地降低其体积,才能具有可利用的价值。
目前上述松散状生物质材料的成型一般以螺杆进行输送和压缩,连续挤出物料。传统挤出理论认为,在挤出过程中,物料在挤出腔中被压缩的程度越大,成型出的成品越致密,表面越光滑。受该传统挤出理论的影响,现有挤出模具的成型模腔大都为收缩状,其出口口径小于入口口径,以在成型时对物料进行压缩,提高其致密性。但在实际使用过程中,由于散状生物质材料的力传导距离较小,只有3-5mm,挤压过程中正压力不能传导到成型腔中,因此,该收缩状的成型腔实际上并不能像理论中那样对物料进行压缩,从而对成形后的制品的致密性影响不大。而这种收缩状的成型模腔由于物料的出口口径小于入口口径,需要较大的挤压力才能将物料挤压出去,因此,极大增加了挤出过程中能量的消耗,提高了生物质材料制品的加工成本。
基于上述情况,有人提出采用柱状的模腔来代替上述传统的收缩状成型模腔,由于其出口端与入口端的口径相等,对物料没有径向的阻力,因此,减小了物料成型挤出的能耗。但由于受模具强度的限制,模具必须具有一定的厚度,以保证其不易变形或断裂,因此,使成型模腔长度较长,从而使物料通过成型腔时在成型腔内挤压摩擦的时间较长,挤出阻力也相应较大;并且如上所述,由于散状生物质材料的力传导距离较小,只有3-5mm,挤压过程中正压力不能传导到成型腔中,过长的成型段既不会提高物料的成型质量,又使挤出阻力较大,挤出成型的能耗也相应较大。因此,这种柱状的模强也同样存在增加不必要的能耗的缺陷。
另外,目前,大部分生物质材料的成型加工是利用螺旋挤出机或液压挤出机,采用螺旋挤压或者液压的方法实现的。这种成型机的特点是针对物料施加以正压力,将松散状的物料不断地进行压缩而使其成型。国内的一些学者对这个压缩成型时粒子的变形及结合形式进行了研究,给出了生物质材料压缩成型过程中粒子的微观结合模型。他们认为,这种材料在压缩成型的过程中,开始压力较小时,一部分粒子不断地进入粒子间的空隙内,粒子间的相互位置不断地更新。当粒子间所有的大的空隙被能进入的粒子占据后,再增加压力,只有靠粒子本身的变形去填充其周围的空隙。这时,粒子在垂直于最大主应力的平面内被延展。当粒子被延展到相邻的两个粒子相互接触时,再增加压力,粒子就会相互结合。
在大量的生产实践中证明,这种压缩成型后的产品,其连接强度较低。本发明人对这种材料的力传导特性进行大量的研究发现,这种松散状的生物质材料的力传导性较差。所以当粒子间所有的大的空隙被能进入的粒子占据后,即使再增加压力,粒子本身的变形量较小,很难达到使其充分延展的目的,使得成型后的产品,在粒子相互间很难实现理想的嵌合状态。而这个问题是现有的成型方法被忽视的重要的核心技术问题。
并且,上述的生物质材料的成型设备的结构复杂,而且生产效率低。特别是在物料的含水率小于10%时,螺旋杆在高温、干摩擦的状态下,磨损相当严重,平均寿命为60至80小时。
因此,有必要提供一种新型的松散状生物质材料成型模腔及成型设备,来克服上述现有成型模腔及成型设备的缺陷。
发明内容
本实用新型的目的在于,提供一种松散状生物质材料成型模腔,可极大减小物料通过成型模腔的能耗,降低加工成本。
本实用新型的目的还在于,提供一种松散状生物质材料成型机,在不使用任何化学粘合剂的情况下,该成型机成型后的产品具有一定的连接强度和耐潮湿性,并且,可极大减小物料通过成型模腔的能耗,降低加工成本。
本实用新型的目的可采用如下技术方案来实现,一种松散状生物质材料成型模腔,其主要特点在于,所述的模腔至少由沿入口端到出口端的成型段和扩大段构成,至少该扩大段的出口端口径大于成型段口径。
作为本实用新型的成型模腔的一种应用方式,本实用新型还提供了一种松散状生物质材料成型机,其至少包括一个由动力驱动的挤压头和一个成型模具,并至少在挤压头与成型模具的挤压面之间形成有一个楔状的挤压腔,该楔状挤压腔的大端形成有进料口,所述成型模具的成型模腔至少由沿入口端到出口端的成型段和扩大段构成,至少该扩大段的出口端口径大于成型段口径。
本实用新型的效果在于,由于本实用新型的成型模腔由成型段和扩大段构成,在不减小成形模具厚度和强度的情况下,减小了成型段的长度,使其与松散状生物质材料力传导距离较小的特点相适应,在保证成形质量的前提下,减小了物料在成型腔内的挤压摩擦长度和时间,因此,极大的降低了物料的挤出阻力,只需要较小的正压力即可将物料压出成型,从而极大减小物料通过成型模腔的能耗,降低生物质材料制品的加工成本。实验证明,利用本实用新型的成型模腔成型制品的能耗比采用传统收缩状成型模腔的能耗减小30%。
进一步,本实用新型的模腔的入口端还可设有导向收缩段,该导向收缩段的入口面积大于成型段的入口面积,物料在成型时,首先进入导向收缩段被压缩后通过成型段成型,由于物料在成型段之前已经首先被压缩,因此成型段的长度可更短一些,仅用于定型物料即可,这样不但可提高成型制品的质量,并且由于扩大段的存在,同样也降低了挤出能耗。
本实用新型的成型机由于采用本实用新型的渐扩状成型模腔,因此,也同样具有成型能耗小,成形成本低的效果。另外,由于本实用新型的成型机至少在挤压头与成型模具的挤压面之间形成有一个楔状的挤压腔,该楔状挤压腔的大端形成有进料口,在挤压成型时,物料在进入成型模具之前,在挤压腔内先被施加一剪切力,在该剪切力作用下,挤压腔内的粒状物料首先被碾搓、拉伸而成片状。随着挤压腔体积的不断缩小,呈片状物料的层叠状进入成型模具内,通过进一步挤压,不仅使每层间的密度不断增大,同时,呈片状的粒子在该正挤压力的作用下,一部粒子变形后进入片状粒子间的间隙中,而形成上下啮合的状态,从而构成本发明的成型后产品的特定的结构模型,以及优于利用现有成型的产品的力学特性。利用本实用新型的成型机挤压成型后的产品,同时具有径向和轴向的拉伸强度较大的力学特性,从而使得成型后有产品具有较佳的连接强度。对此,国内的一些学者对其作出的解释是,这种力学特性的的来源于其径向和轴向粒子间结合形式不同。以半径方向,粒子以相互啮合方式结合,要打破这种结合,一部分可能从粒子间的结合部分离,有一部分可能使粒子本身被破坏,这就需要较大的作用力。而在轴向方向,粒子的结合不仅仅是以贴合的方式结合,而且同样具有上下啮合的结合方式。实验证明,利用本实用新型的成型机成形出的生物质材料制品,即使是放入水中浸泡40多个小时仍保持其成型时的形状,干燥后仍不会失去原来使用功能;而采用现有成型机成型后的产品,浸入水中10多分钟就粉碎了。
附图说明
图1本实用新型实施例1的成型模腔结构示意图;
图2本实用新型实施例2的成型模腔结构示意图;
图3本实用新型实施例2的成型模腔另一种结构示意图;
图4本实用新型实施例3的成型模腔结构示意图;
图5本实用新型实施例1的成型模腔另一种结构示意图;
图6本实用新型实施例2的成型模腔再一种结构示意图;
图7本实用新型实施例2的成型模腔再一种结构示意图;
图8本实用新型实施例3的成型模腔再一种结构示意图;
图9本实用新型的成型模腔的横截面结构示意图;
图10本实用新型的成型模腔的另一种横截面结构示意图;
图11本实用新型成型模腔的再一种横截面结构示意图;
图12本实用新型的成型机结构示意图;
图13本实用新型成型机的工作原理及结构原理示意图。
具体实施方式
如图1-11所示,本实用新型提供松散状生物质材料成型模腔1的主要特点在于,该模腔1至少由沿入口端11到出口端12的成型段13和扩大段构成14,至少该扩大段14的出口口径大于成型段13口径。这样物料在通过成型模腔1成型时,首先通过成型段13成型后,通过扩大段14被挤出,由于该扩大段14的出口端口径大于成型段13的口径,因此,物料在扩大段14摩擦很小或者没有摩擦。这样,在不减小成形模具厚度和强度的情况下,减小了成型段13的长度,使其与松散状生物质材料力传导距离较小的特点相适应,在保证成形质量的前提下,减小了物料在成型模腔1内的挤压摩擦长度和时间,因此,极大的降低了物料的挤出阻力,只需要较小的正压力即可将物料压出成型,从而极大减小物料通过成型模腔的能耗,降低生物质材料制品的加工成本。
在本实用新型中,由于增加了扩大段14,成型模腔的成型段13的长度不受成形模具的厚度的影响,可根据不同的物料不同的力传导距离来设定成型段13的长度,使其与物料的受力特性相应,以提高挤出效率,降低能耗。
作为本实用新型的成型模腔1的一种应用方式,如图12-13所示,本实用新型还提供了一种松散状生物质材料成型机2,其至少包括一个由动力驱动的挤压头21和一个成型模具22,并至少在挤压头21与成型模具22的挤压面之间形成有一个楔状的挤压腔23,该楔状挤压腔23的大端形成有进料口,所述成型模具22的成型模腔1至少由沿入口端11到出口端12的成型段13和扩大段构成14,至少该扩大段14的出口口径大于成型段13口径。物料在楔状挤压腔23中被挤压后,进入成型模具22的成型模腔1内,由于该成型模腔1设有出口端口径大于成型段13口径的扩大段14,因此,只需要较小的正压力即可将物料挤压出成型模腔1成型,从而极大减小物料通过成型模腔1的能耗,降低了生物质材料制品的加工成本。
另外,由于本实用新型的成型机2至少在挤压头21与成型模具22的挤压面之间形成有一个楔状的挤压腔23,该楔状挤压腔23的大端形成有进料口,在挤压成型时,物料在进入成型模具22之前,在挤压腔23内先被施加一剪切力,在该剪切力作用下,挤压腔23内的粒状物料首先被碾搓、拉伸而成片状。随着挤压腔23体积的不断缩小,呈片状物料的层叠状进入成型模具1内,通过进一步挤压,不仅使每层间的密度不断增大,同时,呈片状的粒子在该正挤压力的作用下,一部粒子变形后进入片状粒子间的间隙中,而形成上下啮合的状态,从而构成本发明的成型后产品的特定的结构模型,以及优于利用现有成型的产品的力学特性。利用本实用新型的成型机挤压成型后的产品,同时具有径向和轴向的拉伸强度较大的力学特性,从而使得成型后有产品具有较佳的连接强度。
本实用新型的成型机可成型出生物质燃烧材料,也可成型生物质材料的型材或其他制品。并且,基于相同的成型原理,本实用新型还可用于对散装饲料的成型中。
如图13所示,本实用新型的成型机2的挤压头21可由滚动体构成,所述楔状挤压腔23在挤压头21的滚动表面与成型模22的挤压面之间形成。在本实施例中,由滚动体构成的挤压头21可为圆柱体或圆锥体。
如图13所示,在本实施例中,所述的成型模具22可为圆筒状,所述的成型模腔1设于该圆筒状模具22的侧壁上。该成型模腔1可设有多个,分别分布于该圆筒状成型模具22的轴向和周向侧壁上。
在本实用新型中,成型机在成型时,挤压头21和成型模具22应有相对运动,以使物料进入挤压腔23内对物料进行碾搓、拉伸成片状,并进一步使片状物料进入成型模腔1中成型。该挤压头21与成型模具22的相对运动可如图13所示,由成型模具22和挤压头21沿各自的轴线同向转动构成。也可由成型模具22和挤压头21沿各自的轴线反向转动构成(图中未示出)。也可以是成型模具22静止,挤压头21沿自身轴线自转动,并同时在圆筒状成型模具22内侧面绕成型模具22的轴线公转。(图中未示出)
如图5-8所示,本实用新型的成型模腔1的入口端11可进一步设有导向收缩段15,该导向收缩段15的入口面积大于成型段13的入口面积。这样物料在楔状挤压腔中被碾搓,挤压后,由于该导向收缩段15具有较大的入口面积,因此很容易进入该导向压缩段15内,并在导向收缩段15被压缩挤压后通过成型段13成型,进一步提高物料的挤出效率,提高挤出制品的成形质量。
下面通过几个实施例来说明本实用新型的成型模腔的具体结构。
实施例1
如图1所示,具体到本实施例中,成型模腔1可由成型段13和柱状扩大段14构成,形成从入口端到出口端成型段13口径小于扩大段14的口径的阶梯状模腔1。这样物料在通过成型模腔1成型时,首先通过成型段13成型后,通过扩大段14被挤出,由于增加了出口口径大于成型段13口径的扩大段14,在不减小成形模具厚度和强度的情况下,减小了成型段13的长度,使其与松散状生物质材料力传导距离较小的特点相适应,在保证成型质量的前提下,减小了物料在成型模腔1内的挤压摩擦长度和时间,因此,极大的降低了物料的挤出阻力,只需要较小的正压力即可将物料压出成型,从而极大减小物料通过成型模腔的能耗,降低生物质材料制品的加工成本。
如图5所示,在本实施例中,所述的成型段13前,成型模腔1的入口端可设有导向压缩段15,该导向压缩段15可具有较大的入口面积,该入口面积大于成型段的入口面积,以便物料在挤压腔3中被碾搓、挤压后,能有较多的物料很容易地进入成型模腔1中被挤出成型,提高挤出效率。并且由于该导向压缩段15的入口面积大于成型段13的入口面积,物料在该导向压缩段15中压缩后进入成型段13中成型,这样更为短的成型段13即可达到成型的要求,更进一步缩短物料在整个成型模腔1的停留时间,提高挤出效率。
如图9-11所示,在本实用新型中,该成型模腔1的截面形状,可根据实际所需成型的制品为各种形状。如图5所示,为最普通的圆形截面,可成型出圆形棒材。如图6所示,其横截面为菱形,成型出菱柱状制品。如图7所示,其横截面为六边形,可成型出六棱柱状制品。该截面还可为工字型材形、矩形或其他不规则形状等,在此不再一一列举。
实施例2
本实施例的基本结构可与实施例1相同,其区别在于,如图2、图3、所示,具体到本实施例中,成型模腔1可由成型段13和渐扩状扩大段14构成,该渐扩状扩大段14可由锥形扩大段构成,该扩大段14出口端的口径大于成型段13的口径。
如图2所示,该锥形扩大段14可只有一段,也可如图3所示,设有一个以上的锥形扩大段,该一个以上的锥形扩大段的渐扩角沿入口端到出口端方向依次加大。为描述方便以图3中所示的两端锥形扩大段141、142为例,该锥形扩大段141渐扩角为a1,锥形扩大段142的渐扩角为a2,a1<a2,以保证整个成型模腔1处于渐扩状。物料在成型段13中被挤压后首先进入锥形扩大段141,然后进入锥形扩大段142逐步被挤出,由于成型模腔1具有渐扩状扩大段14,挤出时的挤出阻力较小,因此只需要较小的正压力即可将物料挤出成型,极大降低了成型时的能耗,降低了成本。
如图6、图7所示,在本实施例中,所述的成型段13前,成型模腔1的入口端同样可设有导向压缩段15,该导向压缩段15可具有较大的入口面积,该入口面积大于成型段13的入口面积,以便物料在挤压腔3中被碾搓、挤压后,能有较多的物料很容易地进入成型模腔1中被挤出成型,提高挤出效率。
本实施例的效果与实施例1相同,在此不再赘述。
实施例3
如图4所示,本实施例的基本结构与实施例2相同,其区别在于,在本实施例中,所述的渐扩状扩大段14可为弧形扩大段,其出口端口径大于成型段13的口径。
如图8所示,在本实施例中,所述的成型段13前,成型模腔1的入口端同样可设有导向压缩段15,该导向压缩段15可具有较大的入口面积,该入口面积大于成型段的入口面积,以便物料在挤压腔3中被碾搓、挤压后,能有较多的物料很容易地进入成型模腔1中被挤出成型,提高挤出效率。
由于本实施例的基本结构与实施例2相同,因此本实施例也同样具有实施例2所述的有益效果。
本实用新型的上述具体实施方式仅用于说明本实用新型,而非用于限制本实用新型。