CN219476695U - A double-sided gallium arsenide solar cell - Google Patents

A double-sided gallium arsenide solar cell Download PDF

Info

Publication number
CN219476695U
CN219476695U CN202320148469.4U CN202320148469U CN219476695U CN 219476695 U CN219476695 U CN 219476695U CN 202320148469 U CN202320148469 U CN 202320148469U CN 219476695 U CN219476695 U CN 219476695U
Authority
CN
China
Prior art keywords
silicon carbide
contact layer
solar cell
gallium arsenide
arsenide solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202320148469.4U
Other languages
Chinese (zh)
Inventor
陈弘
李云
张宇超
杜春花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze River Delta Physics Research Center Co ltd
Institute of Physics of CAS
Original Assignee
Yangtze River Delta Physics Research Center Co ltd
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze River Delta Physics Research Center Co ltd, Institute of Physics of CAS filed Critical Yangtze River Delta Physics Research Center Co ltd
Priority to CN202320148469.4U priority Critical patent/CN219476695U/en
Application granted granted Critical
Publication of CN219476695U publication Critical patent/CN219476695U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本实用新型实施例涉及一种双面砷化镓太阳能电池,其结构从下到上依次为背面金属电极、第一碳化硅接触层、砷化镓太阳能电池本体、第二碳化硅接触层和正面金属电极,使用高掺多晶或微晶碳化硅作为电池接触层,利用其宽带隙、高电导、高折射率的性能作为两侧透明导电电极,从而实现两侧均透光,增大了表面透光面积,提高光电转换效率,同时减少了电极金属使用量,降低成本。

The embodiment of the utility model relates to a double-sided gallium arsenide solar cell, whose structure from bottom to top is a back metal electrode, a first silicon carbide contact layer, a gallium arsenide solar cell body, a second silicon carbide contact layer and a front surface Metal electrodes, using highly doped polycrystalline or microcrystalline silicon carbide as the battery contact layer, using its properties of wide band gap, high conductivity, and high refractive index as transparent conductive electrodes on both sides, so as to achieve light transmission on both sides and increase the surface area. The light-transmitting area improves the photoelectric conversion efficiency, and at the same time reduces the amount of electrode metal used and reduces costs.

Description

一种双面砷化镓太阳能电池A double-sided gallium arsenide solar cell

技术领域technical field

本实用新型涉及光伏发电领域,尤其涉及一种双面砷化镓太阳能电池。The utility model relates to the field of photovoltaic power generation, in particular to a double-sided gallium arsenide solar cell.

背景技术Background technique

砷化镓太阳能电池是以砷化镓(GaAs)为基体材料的太阳能电池,其发展已有40余年的历史。GaAs材料的Eg=1.43eV,理论上估算,GaAs单结太阳能电池的效率可达27%,从上世纪80年代后,GaAs太阳能电池技术经历了从LPE到MOCVD,从同质外延到异质外延,从单结到多结叠层结构的几个发展阶段,其发展速度日益加快,效率也不断提高。Gallium arsenide solar cell is a solar cell based on gallium arsenide (GaAs), and its development has a history of more than 40 years. The Eg of GaAs material is 1.43eV. It is theoretically estimated that the efficiency of GaAs single-junction solar cells can reach 27%. Since the 1980s, GaAs solar cell technology has experienced from LPE to MOCVD, from homoepitaxial to heteroepitaxial , from single junction to several stages of development of multi-junction laminated structure, its development speed is increasing day by day, and its efficiency is also continuously improving.

与硅基太阳能电池相比,砷化镓太阳能电池具有更高的光电转换效率、更强的抗辐照能力和更好的耐高温性能。但由于其成本高,在民用领域难以推广,所以设计新材料、新结构对于低成本且保证光电转化效率的砷化镓太阳能电池至关重要。Compared with silicon-based solar cells, GaAs solar cells have higher photoelectric conversion efficiency, stronger radiation resistance and better high temperature resistance. However, due to its high cost, it is difficult to promote in the civilian field, so the design of new materials and new structures is very important for gallium arsenide solar cells with low cost and guaranteed photoelectric conversion efficiency.

实用新型内容Utility model content

本实用新型的目的是针对现有技术的缺陷,提供一种双面砷化镓太阳能电池,使用高掺多晶或微晶碳化硅作为电池接触层,利用其宽带隙、高电导、高折射率的性能作为两侧透明导电电极,从而实现两侧均透光,增大了表面透光面积,提高光电转换效率,同时减少了电极金属使用量,降低成本。The purpose of this utility model is to aim at the defects of the prior art, to provide a double-sided gallium arsenide solar cell, using highly doped polycrystalline or microcrystalline silicon carbide as the cell contact layer, utilizing its wide band gap, high conductance, high refractive index Excellent performance as transparent conductive electrodes on both sides, so as to achieve light transmission on both sides, increase the surface light transmission area, improve photoelectric conversion efficiency, reduce the amount of electrode metal used, and reduce costs.

有鉴于此,所述双面砷化镓太阳能电池结构从下到上依次为背面金属电极、第一碳化硅接触层、砷化镓太阳能电池本体、第二碳化硅接触层和正面金属电极,其中,所述第一碳化硅接触层和第二碳化硅接触层均为掺杂的多晶或微晶碳化硅。In view of this, the structure of the double-sided gallium arsenide solar cell consists of the back metal electrode, the first silicon carbide contact layer, the gallium arsenide solar cell body, the second silicon carbide contact layer and the front metal electrode from bottom to top, wherein , both the first silicon carbide contact layer and the second silicon carbide contact layer are doped polycrystalline or microcrystalline silicon carbide.

优选的,所述正面金属电极为Ti/Al、Ti、Al、Ag、Cu中的一种或多种,所述背面金属电极为Ni/Cr、Ni、Ti、Al、Ag、Cu中的一种或多种。Preferably, the front metal electrode is one or more of Ti/Al, Ti, Al, Ag, Cu, and the back metal electrode is one of Ni/Cr, Ni, Ti, Al, Ag, Cu one or more species.

优选的,所述第一碳化硅接触层和第二碳化硅接触层的厚度均为1微米~30微米,掺杂浓度范围为5×1018~1×1020cm-3Preferably, both the first silicon carbide contact layer and the second silicon carbide contact layer have a thickness of 1 micrometer to 30 micrometers, and a doping concentration range of 5×10 18 to 1×10 20 cm −3 .

优选的,所述砷化镓太阳能电池本体为单结、双结、三结或者多结,所述砷化镓太阳能电池本体结构从下至上包括衬底层、缓冲层、电池层、窗口层和高掺接触层。Preferably, the gallium arsenide solar cell body is single-junction, double-junction, triple-junction or multi-junction, and the structure of the gallium arsenide solar cell body includes a substrate layer, a buffer layer, a battery layer, a window layer and a high doped contact layer.

优选的,第一碳化硅接触层为P型碳化硅膜层,第二碳化硅接触层为N型碳化硅膜层,或者,第一碳化硅接触层为N型碳化硅膜层,第二碳化硅接触层为P型碳化硅膜层。Preferably, the first silicon carbide contact layer is a P-type silicon carbide film layer, the second silicon carbide contact layer is an N-type silicon carbide film layer, or the first silicon carbide contact layer is an N-type silicon carbide film layer, and the second silicon carbide contact layer is an N-type silicon carbide film layer. The silicon contact layer is a P-type silicon carbide film layer.

进一步优选的,所述P型碳化硅膜层的掺杂元素为铝或硼,N型碳化硅膜层的掺杂元素为氮。Further preferably, the doping element of the P-type silicon carbide film layer is aluminum or boron, and the doping element of the N-type silicon carbide film layer is nitrogen.

本实用新型实施例提供的一种双面砷化镓太阳能电池,在双面砷化镓太阳能电池的结构中使用多晶或微晶碳化硅材料,从材料性能的角度,碳化硅具备高电导、宽带隙且掺杂浓度易调控等优点,重掺杂的多晶碳化硅可以在宽带隙的条件下实现良好的载流子横向输运,从而作为电池的透明导电电极层实现电流的有效收集,减少表面金属栅线的使用,为砷化镓太阳能电池提供一种低成本高效率的结构,在生产制造的角度,多晶或微晶碳化硅利用磁控溅射法可以安全、大面积、低成本生产,与太阳能电池的生产制造工艺兼容。A double-sided gallium arsenide solar cell provided by the embodiment of the utility model uses polycrystalline or microcrystalline silicon carbide material in the structure of the double-sided gallium arsenide solar cell. From the perspective of material performance, silicon carbide has high conductivity, With the advantages of wide band gap and easy control of doping concentration, heavily doped polycrystalline silicon carbide can achieve good lateral transport of carriers under the condition of wide band gap, so that it can be used as the transparent conductive electrode layer of the battery to realize the effective collection of current. Reduce the use of surface metal grid lines and provide a low-cost and high-efficiency structure for gallium arsenide solar cells. From the perspective of manufacturing, polycrystalline or microcrystalline silicon carbide can be safely, large-area, and low-cost by magnetron sputtering. Low-cost production, compatible with the production and manufacturing process of solar cells.

附图说明Description of drawings

图1为本实用新型实施例提供的一种双面砷化镓太阳能电池的结构示意图;Fig. 1 is a schematic structural diagram of a double-sided gallium arsenide solar cell provided by an embodiment of the present invention;

图2为本实用新型实施例提供的一种双面砷化镓太阳能电池制备方法流程图。Fig. 2 is a flow chart of a method for preparing a double-sided gallium arsenide solar cell provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面通过附图和实施例,对本实用新型的技术方案做进一步的详细描述。The technical solutions of the present utility model will be further described in detail through the drawings and embodiments below.

图1为本实用新型实施例提供的一种双面砷化镓太阳能电池的结构示意图,如图1所示,所述双面砷化镓太阳能电池结构从下到上依次为背面金属电极1、第一碳化硅接触层2、砷化镓太阳能电池本体3、第二碳化硅接触层4和正面金属电极5,其中,上述第一碳化硅接触层2和第二碳化硅接触层4均掺杂的多晶或微晶碳化硅。Fig. 1 is a schematic structural diagram of a double-sided gallium arsenide solar cell provided by the embodiment of the present invention. The first silicon carbide contact layer 2, the gallium arsenide solar cell body 3, the second silicon carbide contact layer 4 and the front metal electrode 5, wherein the first silicon carbide contact layer 2 and the second silicon carbide contact layer 4 are all doped polycrystalline or microcrystalline silicon carbide.

其中,正面金属电极5可以为Ti/Al、Ti、Al、Ag、Cu中的一种或多种,背面金属电极1可以为Ni/Cr、Ni、Ti、Al、Ag、Cu中的一种或多种。Wherein, the front metal electrode 5 can be one or more of Ti/Al, Ti, Al, Ag, Cu, and the back metal electrode 1 can be one of Ni/Cr, Ni, Ti, Al, Ag, Cu. or more.

上述第一碳化硅接触层2和第二碳化硅接触层4的厚度均优选为1微米~30微米,掺杂浓度范围优选为5×1018~1×1020cm-3The thicknesses of the first silicon carbide contact layer 2 and the second silicon carbide contact layer 4 are preferably 1 micron to 30 microns, and the doping concentration range is preferably 5×10 18 to 1×10 20 cm −3 .

需要说明的是,这里第一碳化硅接触层可以是P型或N型微晶或多晶碳化硅膜层,第二碳化硅接触层可以是N型或P型微晶或多晶碳化硅膜层,具体而言,当第一碳化硅接触层为P型微晶或多晶碳化硅膜层时,第二碳化硅接触层为N型微晶或多晶碳化硅膜层时,当第一碳化硅接触层为N型微晶或多晶碳化硅膜层时,第二碳化硅接触层为P型微晶或多晶碳化硅膜层时,其中,P型碳化硅膜层的掺杂元素包括但不限于铝或硼,N型碳化硅膜层的掺杂元素包括但不限于氮。It should be noted that the first silicon carbide contact layer can be a P-type or N-type microcrystalline or polycrystalline silicon carbide film layer, and the second silicon carbide contact layer can be an N-type or P-type microcrystalline or polycrystalline silicon carbide film layer, specifically, when the first silicon carbide contact layer is a P-type microcrystalline or polycrystalline silicon carbide film layer, and when the second silicon carbide contact layer is an N-type microcrystalline or polycrystalline silicon carbide film layer, when the first When the silicon carbide contact layer is an N-type microcrystalline or polycrystalline silicon carbide film layer, when the second silicon carbide contact layer is a P-type microcrystalline or polycrystalline silicon carbide film layer, wherein the doping element of the P-type silicon carbide film layer Including but not limited to aluminum or boron, the doping elements of the N-type silicon carbide film layer include but not limited to nitrogen.

应当理解的是,碳化硅具有宽带隙、高电导、制备工艺简单安全等优点,在性能与生产工艺上,替代表面栅线电极。It should be understood that silicon carbide has the advantages of wide band gap, high electrical conductivity, simple and safe preparation process, etc., and can replace surface grid wire electrodes in terms of performance and production process.

进一步的,砷化镓太阳能电池本体3可为单结、双结、三结或者多结砷化镓太阳能电池,主要结构从下至上包括从下至上包括衬底层、缓冲层、电池层、窗口层和高掺接触层。Further, the gallium arsenide solar cell body 3 can be a single-junction, double-junction, triple-junction or multi-junction gallium arsenide solar cell, and the main structure includes a substrate layer, a buffer layer, a battery layer, and a window layer from bottom to top. and highly doped contact layers.

本实施例的双面砷化镓太阳能电池工作过程是太阳光照射在电池表面,正面透过第二碳化硅接触层4照在砷化镓太阳能电池本体3产生电流,背面一些漫反射的太阳光透过第一碳化硅接触层2照在砷化镓太阳能电池本体3产生电流。通过两面的碳化硅接触层2、4将电流收集起来,再经过背面金属电极1和正面金属电极5将电流导出。与现有的电池相比,省去表面金属栅线的使用,大大降低电池生产成本,同时使用碳化硅接触层,双面透光,增大了表面透光面积,提高光电转换效率。The working process of the double-sided gallium arsenide solar cell in this embodiment is that sunlight shines on the surface of the cell, and the front side passes through the second silicon carbide contact layer 4 and shines on the gallium arsenide solar cell body 3 to generate current, and some diffusely reflected sunlight on the back side The GaAs solar cell body 3 is irradiated through the first silicon carbide contact layer 2 to generate current. The current is collected through the silicon carbide contact layers 2 and 4 on both sides, and then the current is exported through the back metal electrode 1 and the front metal electrode 5 . Compared with the existing battery, the use of surface metal grid lines is omitted, which greatly reduces the production cost of the battery. At the same time, the silicon carbide contact layer is used to transmit light on both sides, which increases the surface light transmission area and improves the photoelectric conversion efficiency.

本实用新型在双面砷化镓太阳能电池的结构中使用多晶或微晶碳化硅材料,从材料性能的角度,碳化硅具备高电导、宽带隙且掺杂浓度易调控等优点,重掺杂多晶碳化硅可以在宽带隙的条件下实现良好的载流子横向输运,从而作为电池的透明导电电极层实现电流的有效收集,减少表面金属栅线的使用,为砷化镓太阳能电池提供一种低成本高效率的结构。The utility model uses polycrystalline or microcrystalline silicon carbide materials in the structure of double-sided gallium arsenide solar cells. From the perspective of material performance, silicon carbide has the advantages of high conductivity, wide band gap, and easy control of doping concentration. Polycrystalline silicon carbide can achieve good carrier lateral transport under the condition of wide band gap, so as to realize the effective collection of current as the transparent conductive electrode layer of the battery, reduce the use of surface metal grid lines, and provide gallium arsenide solar cells with A low-cost and high-efficiency structure.

本实用新型实施例还提供了一种上述双面砷化镓太阳能电池的制备方法,如图2所示,制备方法包括如下步骤:The embodiment of the utility model also provides a method for preparing the above-mentioned double-sided gallium arsenide solar cell, as shown in Figure 2, the preparation method includes the following steps:

步骤101,将砷化镓太阳能电池外延片放入研磨机中减薄衬底至100微米~150微米厚度,用化学溶液或化学机械抛光方式的方式抛光减薄后的衬底。Step 101 , put the GaAs solar cell epitaxial wafer into a grinder to thin the substrate to a thickness of 100 microns to 150 microns, and polish the thinned substrate by means of chemical solution or chemical mechanical polishing.

可以理解的是,砷化镓太阳能电池外延片可以是单结、双结、三结、多结均可,这里的用化学溶液可以是NH4OH/H2O2溶液,NH4OH/H2O2溶液体积配比优选为NH4OH:H2O2=1:8,根据其腐蚀速率控制衬底厚度至100微米左右。It can be understood that the gallium arsenide solar cell epitaxial wafer can be single-junction, double-junction, triple-junction, or multi-junction. The chemical solution used here can be NH 4 OH/H 2 O 2 solution, NH 4 OH/H The volume ratio of the 2 O 2 solution is preferably NH 4 OH:H 2 O 2 =1:8, and the thickness of the substrate is controlled to about 100 microns according to its corrosion rate.

步骤102,对抛光后的砷化镓太阳能电池外延片进行清洗。Step 102, cleaning the polished gallium arsenide solar cell epitaxial wafer.

具体的,依次用丙酮、异丙醇、去离子水冲清洗,去除表面颗粒、有机污染物、表面金属离子等,然后放入HCl/H2O溶液中清洗,再用去离子水冲洗,去除表面的污渍,这里的HCl/H2O溶液体积配比优选为1:1。Specifically, wash with acetone, isopropanol, and deionized water in sequence to remove surface particles, organic pollutants, and surface metal ions, etc., then put them in HCl/H 2 O solution for cleaning, and then rinse with deionized water to remove For surface stains, the volume ratio of the HCl/H 2 O solution here is preferably 1:1.

步骤103,在清洗后的砷化镓太阳能电池外延片的背面沉积微晶或多晶碳化硅膜层,得到第一碳化硅接触层。Step 103 , depositing a microcrystalline or polycrystalline silicon carbide film layer on the back of the cleaned gallium arsenide solar cell epitaxial wafer to obtain a first silicon carbide contact layer.

具体的,使用微晶或多晶碳化硅靶材利用磁控溅射技术在清洗后的砷化镓太阳能电池外延片的背面沉积微晶或多晶碳化硅膜层,得到第一碳化硅接触层,这里的第一碳化硅接触层厚度优选为1微米~30微米,掺杂浓度范围优选为5×1018~1×1020cm-3Specifically, using a microcrystalline or polycrystalline silicon carbide target material, a microcrystalline or polycrystalline silicon carbide film layer is deposited on the back of the cleaned gallium arsenide solar cell epitaxial wafer by magnetron sputtering technology to obtain the first silicon carbide contact layer Here, the thickness of the first silicon carbide contact layer is preferably 1 micron to 30 microns, and the doping concentration range is preferably 5×10 18 to 1×10 20 cm −3 .

步骤104,在正面沉积微晶或多晶碳化硅膜层,得到第二碳化硅接触层。Step 104, depositing a microcrystalline or polycrystalline silicon carbide film layer on the front surface to obtain a second silicon carbide contact layer.

具体的,使用微晶或多晶碳化硅靶材利用磁控溅射技术在上述步骤103沉积第一碳化硅接触层的外延片的正面沉积微晶或多晶碳化硅膜层,得到第二碳化硅接触层,这里的第二碳化硅接触层厚度优选为1微米~10微米,掺杂浓度范围优选为5×1018~1×1020cm-3Specifically, use a microcrystalline or polycrystalline silicon carbide target material to deposit a microcrystalline or polycrystalline silicon carbide film layer on the front of the epitaxial wafer on which the first silicon carbide contact layer is deposited in step 103 above using magnetron sputtering technology to obtain a second carbonization The thickness of the silicon contact layer, the second silicon carbide contact layer here is preferably 1 micron to 10 microns, and the doping concentration range is preferably 5×10 18 to 1×10 20 cm −3 .

需要说明的是,这里的步骤103和步骤104可以交换顺序,第一碳化硅接触层可以是P型或N型微晶或多晶碳化硅膜层,第二碳化硅接触层可以是N型或P型微晶或多晶碳化硅膜层,具体而言,当第一碳化硅接触层为P型微晶或多晶碳化硅膜层时,第二碳化硅接触层为N型微晶或多晶碳化硅膜层时,当第一碳化硅接触层为N型微晶或多晶碳化硅膜层时,第二碳化硅接触层为P型微晶或多晶碳化硅膜层时,其中,P型碳化硅膜层的掺杂元素包括但不限于铝或硼,N型碳化硅膜层的掺杂元素包括但不限于氮。It should be noted that the order of step 103 and step 104 can be exchanged here, the first silicon carbide contact layer can be a P-type or N-type microcrystalline or polycrystalline silicon carbide film layer, and the second silicon carbide contact layer can be an N-type or P-type microcrystalline or polycrystalline silicon carbide film layer, specifically, when the first silicon carbide contact layer is a P-type microcrystalline or polycrystalline silicon carbide film layer, the second silicon carbide contact layer is an N-type microcrystalline or polycrystalline silicon carbide film layer. Crystalline silicon carbide film layer, when the first silicon carbide contact layer is an N-type microcrystalline or polycrystalline silicon carbide film layer, and when the second silicon carbide contact layer is a P-type microcrystalline or polycrystalline silicon carbide film layer, wherein, The doping elements of the P-type silicon carbide film layer include but not limited to aluminum or boron, and the doping elements of the N-type silicon carbide film layer include but not limited to nitrogen.

步骤105,利用硬掩膜在第一碳化硅接触层沉积背面金属电极,在第二碳化硅接触层沉积正面金属电极。Step 105 , using a hard mask to deposit a back metal electrode on the first silicon carbide contact layer, and deposit a front metal electrode on the second silicon carbide contact layer.

具体的,利用硬掩膜在第一碳化硅接触层和第二碳化硅接触层上采用电子束蒸发或磁控溅射沉积背面金属电极和正面金属电极,优选的,正面金属电极和背面金属电极为点状金属。Specifically, the back metal electrode and the front metal electrode are deposited by electron beam evaporation or magnetron sputtering on the first silicon carbide contact layer and the second silicon carbide contact layer using a hard mask, preferably, the front metal electrode and the back metal electrode For point metal.

进一步的,正面金属电极可以为Ti/Al、Ti、Al、Ag、Cu中的一种或多种,所述背面金属电可以为Ni/Cr、Ni、Ti、Al、Ag、Cu中的一种或多种。Further, the front metal electrode can be one or more of Ti/Al, Ti, Al, Ag, Cu, and the back metal electrode can be one of Ni/Cr, Ni, Ti, Al, Ag, Cu. one or more species.

本实用新型实施例提供的一种双面砷化镓太阳能电池制备方法,采用多晶或微晶碳化硅利用磁控溅射法可以安全、大面积、低成本生产,与太阳能电池的生产制造工艺兼容。A method for preparing double-sided gallium arsenide solar cells provided by the embodiment of the present invention can be produced in a safe, large-area, and low-cost manner by using polycrystalline or microcrystalline silicon carbide by magnetron sputtering, and is compatible with the manufacturing process of solar cells. compatible.

为更好的理解本实用新型提供的技术方案,下述以多个具体实例分别说明应用本实用新型上述实施例提供的双面砷化镓太阳能电池的制备方法的具体过程,以及其制备的电池特性,并以对比例进行比较说明。In order to better understand the technical solution provided by the utility model, the specific process of the preparation method of the double-sided gallium arsenide solar cell provided by the above-mentioned embodiment of the utility model and the battery prepared by it are respectively described below with a number of specific examples. characteristics, and a comparison with a comparative example.

实施例1Example 1

本实施例提供了一种选用单结砷化镓太阳能电池外延片制备双面砷化镓太阳能电池的方法,具体结构如下表1所示:This embodiment provides a method for preparing a double-sided GaAs solar cell by selecting a single-junction GaAs solar cell epitaxial wafer, and the specific structure is shown in Table 1 below:

表1Table 1

本实施例的双面砷化镓太阳能电池制备方法包括如下步骤:The method for preparing a double-sided gallium arsenide solar cell in this embodiment includes the following steps:

1、将单结砷化镓太阳能电池外延片放入研磨机中减薄衬底至一定厚度,约150微米。然后用化学机械抛光方式CMP抛光衬底,控制衬底厚度至100微米左右。1. Put the single-junction gallium arsenide solar cell epitaxial wafer into a grinding machine to thin the substrate to a certain thickness, about 150 microns. Then, the substrate is polished by chemical mechanical polishing (CMP), and the thickness of the substrate is controlled to about 100 microns.

2、对抛光后的单结砷化镓太阳能电池外延片进行清洗:在丙酮中清洗3分钟、放入异丙醇中清洗3分钟,用去离子水冲洗3分钟,然后放入HCl:H2O=1:1(体积比)的溶液中清洗1分钟,再用去离子水冲洗3分钟,去除表面的污渍。2. Clean the polished single-junction gallium arsenide solar cell epitaxial wafer: wash in acetone for 3 minutes, wash in isopropanol for 3 minutes, rinse with deionized water for 3 minutes, and then put in HCl: H 2 Wash in a solution of O=1:1 (volume ratio) for 1 minute, then rinse with deionized water for 3 minutes to remove surface stains.

3、使用掺铝的P型微晶碳化硅靶材利用磁控溅射技术在外延片正面沉积P型微晶碳化硅膜层,得到第二碳化硅接触层,厚度为5微米,掺杂浓度范围为5×1018cm-33. Use the P-type microcrystalline silicon carbide target material doped with aluminum to deposit the P-type microcrystalline silicon carbide film layer on the front of the epitaxial wafer by magnetron sputtering technology to obtain the second silicon carbide contact layer with a thickness of 5 microns and a doping concentration of The range is 5×10 18 cm -3 ;

4、使用掺氮的N型微晶碳化硅靶材利用磁控溅射技术在外延片背面沉积N型微晶碳化硅膜层,得到第一碳化硅接触层,厚度5微米,掺杂浓度范围为1×1019cm-34. Use nitrogen-doped N-type microcrystalline silicon carbide target material to deposit N-type microcrystalline silicon carbide film layer on the back of the epitaxial wafer by magnetron sputtering technology to obtain the first silicon carbide contact layer with a thickness of 5 microns and a doping concentration range is 1×10 19 cm -3 .

5、利用硬掩膜在第二碳化硅接触层和第一碳化硅接触层上采用电子束蒸发或磁控溅射沉积正面金属电极和背面金属电极,金属电极为点状金属,至此具有碳化硅膜层的双面单结砷化镓太阳能电池制备完成。5. Use a hard mask to deposit the front metal electrode and the back metal electrode on the second silicon carbide contact layer and the first silicon carbide contact layer by electron beam evaporation or magnetron sputtering. The double-sided single-junction gallium arsenide solar cell of the film layer is prepared.

实施例2Example 2

本实施例提供了一种选用两结砷化镓太阳能电池外延片制备双面砷化镓太阳能电池的方法,具体结构如下表2所示:This embodiment provides a method for preparing double-sided GaAs solar cells by selecting epitaxial wafers of two-junction GaAs solar cells. The specific structure is shown in Table 2 below:

表2Table 2

本实施例的双面砷化镓太阳能电池制备方法包括如下步骤:The method for preparing a double-sided gallium arsenide solar cell in this embodiment includes the following steps:

1、将两结砷化镓太阳能电池外延片放入研磨机中减薄衬底至一定厚度,约150微米。然后用NH4OH:H2O2=1:8(体积比)的溶液抛光衬底,根据其腐蚀速率控制衬底厚度至100微米左右。1. Put the two-junction gallium arsenide solar cell epitaxial wafer into a grinding machine to thin the substrate to a certain thickness, about 150 microns. Then polish the substrate with a solution of NH 4 OH:H 2 O 2 =1:8 (volume ratio), and control the thickness of the substrate to about 100 microns according to its corrosion rate.

2、对抛光后的两结砷化镓太阳能电池外延片进行清洗:在丙酮中清洗3分钟、放入异丙醇中清洗3分钟,用去离子水冲洗3分钟,然后放入HCl:H2O=1:1(体积比)的溶液中清洗1分钟,再用去离子水冲洗3分钟,去除表面的污渍。2. Clean the polished two-junction gallium arsenide solar cell epitaxial wafer: wash in acetone for 3 minutes, wash in isopropanol for 3 minutes, rinse with deionized water for 3 minutes, and then put in HCl: H 2 Wash in a solution of O=1:1 (volume ratio) for 1 minute, then rinse with deionized water for 3 minutes to remove surface stains.

3、使用掺铝的P型微晶碳化硅靶材利用磁控溅射技术在外延片正面沉积P型微晶碳化硅膜层,得到第二碳化硅接触层,厚度为5微米,掺杂浓度范围为5×1018cm-33. Use the P-type microcrystalline silicon carbide target material doped with aluminum to deposit the P-type microcrystalline silicon carbide film layer on the front of the epitaxial wafer by magnetron sputtering technology to obtain the second silicon carbide contact layer with a thickness of 5 microns and a doping concentration of The range is 5×10 18 cm -3 ;

4、使用掺氮的N型微晶碳化硅靶材利用磁控溅射技术在外延片背面沉积N型微晶碳化硅膜层,得到第一碳化硅接触层,厚度5微米,掺杂浓度范围为1×1019cm-34. Use nitrogen-doped N-type microcrystalline silicon carbide target material to deposit N-type microcrystalline silicon carbide film layer on the back of the epitaxial wafer by magnetron sputtering technology to obtain the first silicon carbide contact layer with a thickness of 5 microns and a doping concentration range is 1×10 19 cm -3 .

5、利用硬掩膜在第二碳化硅接触层和第一碳化硅接触层上采用电子束蒸发或磁控溅射沉积正面金属电极和背面金属电极,金属电极为点状金属,至此具有碳化硅膜层的双面两结砷化镓太阳能电池制备完成。5. Use a hard mask to deposit the front metal electrode and the back metal electrode on the second silicon carbide contact layer and the first silicon carbide contact layer by electron beam evaporation or magnetron sputtering. The double-sided two-junction gallium arsenide solar cell of the film layer is prepared.

实施例3Example 3

本实施例提供了一种选用三结砷化镓太阳能电池外延片制备双面砷化镓太阳能电池的方法,具体结构如下表3所示:This embodiment provides a method for preparing a double-sided GaAs solar cell by selecting a triple-junction GaAs solar cell epitaxial wafer, and the specific structure is shown in Table 3 below:

表3table 3

本实施例的双面砷化镓太阳能电池制备方法包括如下步骤:The method for preparing a double-sided gallium arsenide solar cell in this embodiment includes the following steps:

1、将三结砷化镓太阳能电池外延片放入研磨机中减薄Ge衬底至一定厚度,约150微米。然后用NH4OH:H2O2=1:8(体积比)的溶液抛光衬底,根据其腐蚀速率控制衬底厚度至100微米左右。1. Put the triple-junction gallium arsenide solar cell epitaxial wafer into a grinding machine to thin the Ge substrate to a certain thickness, about 150 microns. Then polish the substrate with a solution of NH 4 OH:H 2 O 2 =1:8 (volume ratio), and control the thickness of the substrate to about 100 microns according to its corrosion rate.

2、对抛光后的三结砷化镓太阳能电池外延片进行清洗:在丙酮中清洗3分钟、放入异丙醇中清洗3分钟,用去离子水冲洗3分钟,然后放入HCl:H2O=1:1(体积比)的溶液中清洗1分钟,再用去离子水冲洗3分钟,去除表面的污渍。2. Clean the polished triple-junction gallium arsenide solar cell epitaxial wafer: wash in acetone for 3 minutes, wash in isopropanol for 3 minutes, rinse with deionized water for 3 minutes, and then put in HCl: H 2 Wash in a solution of O=1:1 (volume ratio) for 1 minute, then rinse with deionized water for 3 minutes to remove surface stains.

3、使用掺氮的N型微晶碳化硅靶材利用磁控溅射技术在外延片正面沉积N型微晶碳化硅膜层,得到第二碳化硅接触层,厚度为5微米,掺杂浓度范围为1×1019cm-33. Use nitrogen-doped N-type microcrystalline silicon carbide target material to deposit N-type microcrystalline silicon carbide film layer on the front of the epitaxial wafer by magnetron sputtering technology to obtain the second silicon carbide contact layer with a thickness of 5 microns and a doping concentration of The range is 1×10 19 cm -3 ;

4、使用掺铝的P型微晶碳化硅靶材利用磁控溅射技术在外延片背面沉积P型微晶碳化硅膜层,得到第一碳化硅接触层,厚度5微米,掺杂浓度范围为5×1018cm-34. Use aluminum-doped P-type microcrystalline silicon carbide target material to deposit P-type microcrystalline silicon carbide film layer on the back of the epitaxial wafer by magnetron sputtering technology to obtain the first silicon carbide contact layer with a thickness of 5 microns and a doping concentration range is 5×10 18 cm -3 .

5、利用硬掩膜在第二碳化硅接触层和第一碳化硅接触层上采用电子束蒸发或磁控溅射沉积正面金属电极和背面金属电极,金属电极为点状金属,至此具有碳化硅膜层的双面三结砷化镓太阳能电池制备完成。5. Use a hard mask to deposit the front metal electrode and the back metal electrode on the second silicon carbide contact layer and the first silicon carbide contact layer by electron beam evaporation or magnetron sputtering. The double-sided triple-junction gallium arsenide solar cell of the film layer is prepared.

对比例1Comparative example 1

对比例1中砷化镓太阳能电池为单面电池,做法是先在表1所示的电池外延片正面做一层SiO2/TiO2的减反膜,然后在其上蒸发金属正面栅线电极,最后在背面整面蒸发金属电极,从而得到单面单结砷化镓太阳能电池。The gallium arsenide solar cell in Comparative Example 1 is a single-sided cell. The method is to first form a layer of SiO 2 /TiO 2 anti-reflection film on the front of the cell epitaxial wafer shown in Table 1, and then evaporate the metal front grid electrode on it. , and finally evaporate the metal electrode on the entire back surface to obtain a single-sided single-junction gallium arsenide solar cell.

对比例2Comparative example 2

对比例2中砷化镓太阳能电池为单面电池,做法是先在表2所示的电池外延片正面做一层SiO2/TiO2的减反膜,然后在其上蒸发金属正面栅线电极,最后在背面整面蒸发金属电极,从而得到单面双结砷化镓太阳能电池。The gallium arsenide solar cell in Comparative Example 2 is a single-sided cell. The method is to first make a layer of SiO 2 /TiO 2 anti-reflection film on the front of the cell epitaxial wafer shown in Table 2, and then evaporate the metal front grid electrode on it. , and finally vaporize the metal electrode on the back surface to obtain a single-sided double-junction gallium arsenide solar cell.

对比例3Comparative example 3

对比例3中砷化镓太阳能电池为单面电池,做法是先在表3所示的电池外延片正面做一层SiO2/TiO2的减反膜,然后在其上蒸发金属正面栅线电极,最后在背面整面蒸发金属电极,从而得到单面三结砷化镓太阳能电池。The gallium arsenide solar cell in Comparative Example 3 is a single-sided cell. The method is to first make a layer of SiO 2 /TiO 2 anti-reflection film on the front of the cell epitaxial wafer shown in Table 3, and then evaporate the metal front grid electrode on it. , and finally evaporate the metal electrodes on the entire back surface to obtain a single-sided triple-junction gallium arsenide solar cell.

选取上述实施例1、2、3和对比例1、2、3得到的太阳能电池中1平方厘米的电池片在一倍太阳光模拟器下进行多次测试,测试结果如下:Select the cells of 1 square centimeter in the solar cells obtained in the above-mentioned embodiments 1, 2, 3 and comparative examples 1, 2, 3 to carry out multiple tests under a double solar simulator, and the test results are as follows:

从测试结果可以看出每个实施例的双面砷化镓太阳能电池在Voc和FF指标上与其相对应对比例相当,在Isc,Pm和Eff指标上均高于对比例中的电池。It can be seen from the test results that the Voc and FF indicators of the double-sided GaAs solar cells of each embodiment are comparable to their corresponding counterparts, and the Isc, Pm and Eff indicators are higher than those of the cells in the comparative example.

本实用新型实施例提供的一种双面砷化镓太阳能电池,使用高掺多晶或微晶碳化硅作为电池接触层,利用其宽带隙、高电导、高折射率的性能作为两侧透明导电电极,从而实现两侧均透光,增大了表面透光面积,提高光电转换效率,同时减少了电极金属使用量,降低成本。A double-sided gallium arsenide solar cell provided by the embodiment of the utility model uses highly doped polycrystalline or microcrystalline silicon carbide as the battery contact layer, and utilizes its wide bandgap, high conductance, and high refractive index performance as the transparent conductive layer on both sides. Electrodes, so as to achieve light transmission on both sides, increase the surface light transmission area, improve photoelectric conversion efficiency, reduce the amount of electrode metal used, and reduce costs.

本实用新型的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本实用新型的限制。In the description of the present utility model, it should be understood that the orientations or positional relationships indicated by the terms "up", "down", "left", "right", "front", "rear" etc. are based on those shown in the accompanying drawings. Orientation or positional relationship is only for the convenience of describing the utility model and simplifying the description, and does not indicate or imply that the referred device or unit must have a specific orientation, be constructed and operated in a specific orientation, therefore, it cannot be understood as a limits.

在本说明书中的描述中,术语“一个具体的实施例”、“一些实施例”、“一个实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表达不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description in this specification, descriptions of the terms "a specific embodiment", "some embodiments", "one embodiment" and the like mean that specific features, structures, materials or characteristics described in connection with the embodiment or example include In at least one embodiment or example of the present invention. In this specification, the schematic expressions of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

以上所述的具体实施方式,对本实用新型的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本实用新型的具体实施方式而已,并不用于限定本实用新型的保护范围,凡在本实用新型的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present utility model in detail. Within the protection scope of the utility model, any modification, equivalent replacement, improvement, etc. made within the spirit and principles of the utility model shall be included in the protection scope of the utility model.

Claims (5)

1. The double-sided gallium arsenide solar cell is characterized in that the double-sided gallium arsenide solar cell structure sequentially comprises a back metal electrode, a first silicon carbide contact layer, a gallium arsenide solar cell body, a second silicon carbide contact layer and a front metal electrode from bottom to top, wherein the first silicon carbide contact layer and the second silicon carbide contact layer are doped polycrystalline or microcrystalline silicon carbide.
2. The dual sided gallium arsenide solar cell of claim 1, wherein the first silicon carbide contact layer and the second silicon carbide contact layer each have a thickness of 1 micron to 30 microns.
3. The double sided gallium arsenide solar cell of claim 1, wherein the gallium arsenide solar cell body is single junction, double junction, triple junction or multi junction, and the gallium arsenide solar cell body structure comprises a substrate layer, a buffer layer, a cell layer, a window layer and a highly doped contact layer from bottom to top.
4. The dual sided gallium arsenide solar cell of claim 1, wherein the first silicon carbide contact layer is a P-type silicon carbide film, the second silicon carbide contact layer is an N-type silicon carbide film, or wherein the first silicon carbide contact layer is an N-type silicon carbide film, and the second silicon carbide contact layer is a P-type silicon carbide film.
5. The dual sided gallium arsenide solar cell of claim 4, wherein the doping element of the P-type silicon carbide film is aluminum or boron and the doping element of the N-type silicon carbide film is nitrogen.
CN202320148469.4U 2023-01-31 2023-01-31 A double-sided gallium arsenide solar cell Active CN219476695U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202320148469.4U CN219476695U (en) 2023-01-31 2023-01-31 A double-sided gallium arsenide solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202320148469.4U CN219476695U (en) 2023-01-31 2023-01-31 A double-sided gallium arsenide solar cell

Publications (1)

Publication Number Publication Date
CN219476695U true CN219476695U (en) 2023-08-04

Family

ID=87437088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202320148469.4U Active CN219476695U (en) 2023-01-31 2023-01-31 A double-sided gallium arsenide solar cell

Country Status (1)

Country Link
CN (1) CN219476695U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117276360A (en) * 2023-11-22 2023-12-22 长三角物理研究中心有限公司 A new type of crystalline silicon heterojunction solar cell structure, preparation method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117276360A (en) * 2023-11-22 2023-12-22 长三角物理研究中心有限公司 A new type of crystalline silicon heterojunction solar cell structure, preparation method and application
CN117276360B (en) * 2023-11-22 2024-02-09 长三角物理研究中心有限公司 A new type of crystalline silicon heterojunction solar cell structure, preparation method and application

Similar Documents

Publication Publication Date Title
CN102623517B (en) Back contact type crystalline silicon solar cell and production method thereof
CN113206123A (en) Perovskite/crystalline silicon laminated cell and preparation method thereof
JP2017535975A (en) High efficiency N-type double-sided solar cell
CN207282509U (en) The crystalline silicon of double-side photic/film silicon heterojunction solar battery
CN103560155A (en) Compound semiconductor heterojunction solar cell based on crystalline silicon materials
CN107946393A (en) CdTe thin film solar cell based on SnTe as back electrode cushion and preparation method thereof
CN117594685A (en) A new type of crystalline silicon heterojunction tandem solar cell structure, preparation method and application
CN110634968A (en) Single crystal silicon heterojunction solar cells based on grid-free and doped-free contacts
CN112103392A (en) Composite hole transport layer and perovskite solar cell comprising same
CN211350668U (en) Single-crystalline silicon heterojunction solar cells based on grid-free, undoped contacts
CN102214719A (en) Back contact heterojunction solar battery based on N-type silicon slice
CN219476695U (en) A double-sided gallium arsenide solar cell
CN106252430B (en) A kind of crystal silicon heterojunction solar battery
CN106449845B (en) One kind is based on Si/TiOxThe two-sided crystal-silicon solar cell of hetero-junctions
CN202210522U (en) Back contact heterojunction solar cell structure based on P-type silicon wafer
CN216213500U (en) Novel heterogeneous crystalline silicon cell
CN206271724U (en) A double-sided crystalline silicon solar cell based on Si/TiOx heterojunction
CN202013888U (en) Transparent conductive anti-reflection thin film for solar cells
CN219476692U (en) A gallium arsenide solar cell with a silicon carbide contact layer
CN103594535A (en) Silicon nano wire quantum well solar cell and preparation method thereof
CN118472083A (en) A double-sided gallium arsenide solar cell and its preparation method
CN219457629U (en) Flexible gallium arsenide solar cell without grid line
CN219476693U (en) A gallium arsenide solar cell with same-side electrodes without grid lines
CN106298983A (en) A crystalline silicon solar cell based on Si/NiOx heterojunction
KR20090110048A (en) Transparent conductive film, solar cell using same and manufacturing method thereof

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant