CN217542339U - Period measurement device of transmission type grating - Google Patents
Period measurement device of transmission type grating Download PDFInfo
- Publication number
- CN217542339U CN217542339U CN202220912003.2U CN202220912003U CN217542339U CN 217542339 U CN217542339 U CN 217542339U CN 202220912003 U CN202220912003 U CN 202220912003U CN 217542339 U CN217542339 U CN 217542339U
- Authority
- CN
- China
- Prior art keywords
- grating
- base
- guide rail
- arc
- shaped guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 31
- 238000005259 measurement Methods 0.000 title description 23
- 238000013461 design Methods 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000012795 verification Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 206010034960 Photophobia Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
技术领域technical field
本申请涉及光栅周期测量技术领域,具体而言,涉及一种透射型光栅的周期测量装置。The present application relates to the technical field of grating period measurement, and in particular, to a transmission-type grating period measurement device.
背景技术Background technique
增强现实(Augmented Reality,AR)眼镜的衍射光波导常采用光栅实现光的耦入与耦出,光栅周期作为光栅的一个重要结构参数,对光栅的衍射特性(如衍射级次的方向及其衍射效率)有重要影响,从而影响波导整体耦入-耦出效率。在优化波导性能时,一般设定波导耦入或耦出区域光栅的光栅周期使波导显示性能最佳。但实际光栅加工过程中存在误差,导致耦入或耦出区的光栅可能有些缺陷,即实际光栅周期数值不一定与理论值相符,从而导致耦出光效率降低、均匀性较差等问题,因而需要测量验证。The diffractive optical waveguides of Augmented Reality (AR) glasses often use gratings to realize the coupling in and out of light. The grating period is an important structural parameter of the grating. efficiency) has an important impact, thereby affecting the overall coupling-in-coupling efficiency of the waveguide. When optimizing the performance of the waveguide, the grating period of the waveguide coupled into or out of the area grating is generally set to make the waveguide display the best performance. However, there are errors in the actual grating processing process, resulting in some defects in the coupled-in or out-coupling area of the grating, that is, the actual grating period value may not be consistent with the theoretical value, resulting in problems such as reduced coupling-out efficiency and poor uniformity. Therefore, it is necessary to Measurement Verification.
目前测量待测光栅的光栅周期可通过扫描电镜直接观察其光栅结构,量出其光栅周期数值,但扫描电镜价格昂贵,增加了光栅的生产成本。At present, to measure the grating period of the grating to be measured, the grating structure can be directly observed through a scanning electron microscope, and the value of the grating period can be measured, but the scanning electron microscope is expensive, which increases the production cost of the grating.
实用新型内容Utility model content
本申请实施方式提出了一种透射型光栅的周期测量装置,以至少解决上述技术问题之一。The embodiments of the present application propose a period measurement device for a transmission type grating, so as to solve at least one of the above technical problems.
本申请实施方式通过以下技术方案来实现上述目的。The embodiments of the present application achieve the above objects through the following technical solutions.
一种透射型光栅的周期测量装置,包括:底座,包括承载面,待测光栅设置在所述底座上;光源,设置在所述底座上,所述光源的出光方向平行于所述底座的承载面;圆弧形导轨,设置在所述底座上;以及光电探测器,设置在所述圆弧形导轨上,与所述圆弧形导轨活动连接。A transmission-type grating period measurement device, comprising: a base, including a bearing surface, on which the grating to be measured is arranged; a light source, arranged on the base, and the light emitting direction of the light source is parallel to the bearing of the base an arc-shaped guide rail, arranged on the base; and a photodetector, arranged on the arc-shaped guide rail and movably connected with the arc-shaped guide rail.
在一种实施方式中,还包括:旋转台,设置在所述底座上,与所述底座旋转连接,所述待测光栅设置在所述旋转台上。In one embodiment, it further includes: a rotating table, which is arranged on the base and is rotatably connected with the base, and the grating to be measured is arranged on the rotating table.
在一种实施方式中,还包括:夹具,所述夹具设置在所述旋转台上,并与所述旋转台固定连接,所述夹具用于固定所述待测光栅。In an embodiment, it further includes: a fixture, the fixture is arranged on the rotating table and is fixedly connected with the rotating table, and the fixture is used for fixing the grating to be measured.
在一种实施方式中,所述圆弧形导轨包括:滑槽,所述滑槽的延伸方向与所述圆弧形导轨的延伸方向一致,所述光电探测器包括:滑块,所述滑块位于所述光电探测器的底部,所述滑块与所述滑槽滑动连接。In one embodiment, the arc-shaped guide rail includes: a chute, the extension direction of the chute is consistent with the extension direction of the arc-shaped guide rail, and the photodetector includes: a slider, the slider The block is located at the bottom of the photodetector, and the slider is slidably connected with the chute.
在一种实施方式中,所述透射型光栅的周期测量装置还包括:升降杆,所述升降杆设置在所述底座上,所述光源设置在所述升降杆上。In an embodiment, the device for measuring the period of the transmission grating further comprises: a lifting rod, the lifting rod is arranged on the base, and the light source is arranged on the lifting rod.
在一种实施方式中,所述圆弧形导轨上设有第一刻度,所述第一刻度沿所述圆弧形导轨圆周的延伸方向排布。In one embodiment, the arc-shaped guide rail is provided with a first scale, and the first scale is arranged along the extending direction of the circumference of the arc-shaped guide rail.
在一种实施方式中,所述圆弧形导轨与所述底座可拆卸连接;所述圆弧形导轨的底端设置有外螺纹,所述底座的承载面开设有螺纹孔,所述圆弧形导轨的外螺纹与所述底座的螺纹孔相互螺纹配合。In an embodiment, the arc-shaped guide rail is detachably connected to the base; the bottom end of the arc-shaped guide rail is provided with an external thread, the bearing surface of the base is provided with a threaded hole, and the arc-shaped guide rail is provided with an external thread. The external thread of the shaped guide rail and the threaded hole of the base are threadedly matched with each other.
在一种实施方式中,所述旋转台的圆周上设有第二刻度,所述第二刻度沿所述旋转台圆周的延伸方向排布。In one embodiment, a second scale is provided on the circumference of the rotary table, and the second scale is arranged along the extension direction of the circumference of the rotary table.
在一种实施方式中,所述光源为激光器。In one embodiment, the light source is a laser.
在一种实施方式中,所述光电探测器为CCD传感器或者CMOS传感器。In one embodiment, the photodetector is a CCD sensor or a CMOS sensor.
本申请实施例提供的方案通过光电探测器探测光栅特定衍射级次的衍射光,记录其衍射角度,基于光栅衍射方程快速测量出透射光栅的光栅周期,从而为波导设计光栅的光栅周期测量验证提供了简便有效的工具。本装置操作简单,测量光栅周期快速简便,且装置参数可以根据实际情况进行调整,光栅周期测量范围较广泛。The solution provided by the embodiments of the present application detects the diffracted light of a specific diffraction order of the grating by means of a photodetector, records the diffraction angle, and quickly measures the grating period of the transmission grating based on the grating diffraction equation, thereby providing a method for measuring and verifying the grating period of the waveguide designed grating. A simple and effective tool. The device is simple to operate, fast and easy to measure the grating period, and the parameters of the device can be adjusted according to the actual situation, and the grating period measurement range is wide.
附图说明Description of drawings
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the drawings that are used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application. For those skilled in the art, other drawings can also be obtained from these drawings without creative effort.
图1为本申请实施方式提供的透射型光栅的周期测量装置的结构示意图。FIG. 1 is a schematic structural diagram of a period measuring device for a transmission type grating according to an embodiment of the present application.
图2为透射衍射光栅的光栅周期的测量装置示意图。FIG. 2 is a schematic diagram of a measuring device for the grating period of the transmission diffraction grating.
图3为透射-1级光的衍射角度校正示意图。FIG. 3 is a schematic diagram of diffraction angle correction of transmitted -1st order light.
附图说明:透射型光栅的周期测量装置10、底座100、承载面110、旋转台200、待测光栅300、光源400、圆弧形导轨500、滑槽530、光电探测器600、滑块610、夹具700、升降杆800。Description of the drawings:
具体实施方式Detailed ways
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。Embodiments of the present application are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present application, and should not be construed as a limitation on the present application.
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make those skilled in the art better understand the solutions of the present application, the following will clearly and completely describe the technical solutions in the embodiments of the present application with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by those skilled in the art without creative efforts shall fall within the protection scope of this application.
AR眼镜的衍射光波导常采用光栅实现光的耦入与耦出,光栅周期作为光栅的一个重要结构参数,对光栅的衍射特性(如衍射级次的方向及其衍射效率)有重要影响,从而影响波导整体耦入-耦出效率。在优化波导性能时,一般设定波导耦入或耦出区域光栅的光栅周期使波导显示性能最佳。但实际光栅加工过程中存在误差,导致耦入或耦出区的光栅可能有些缺陷,即实际光栅周期数值不一定与理论值相符,从而导致耦出光效率降低、均匀性较差等问题,因而需要测量验证。The diffractive optical waveguides of AR glasses often use gratings to couple in and out light. As an important structural parameter of the grating, the grating period has an important impact on the diffraction characteristics of the grating (such as the direction of the diffraction order and its diffraction efficiency), so It affects the overall coupling-in-coupling efficiency of the waveguide. When optimizing the performance of the waveguide, the grating period of the waveguide coupled into or out of the area grating is generally set to make the waveguide display the best performance. However, there are errors in the actual grating processing process, resulting in some defects in the coupled-in or out-coupling area of the grating, that is, the actual grating period value may not be consistent with the theoretical value, resulting in problems such as reduced coupling-out efficiency and poor uniformity. Therefore, it is necessary to Measurement Verification.
AR眼镜的衍射光波导常采用光栅实现光的耦入与耦出,光栅周期d作为光栅的一个重要结构参数,对光栅的衍射特性(如衍射级次的方向及其衍射效率)有重要影响,从而影响波导整体耦入-耦出效率。在设计波导光栅参数时,一般设计耦入或耦出区域光栅的光栅周期使波导显示性能最佳,但在衍射光栅的实际制造过程中,由于各种因素的影响,光栅的刻槽存在各种形式的误差,如光栅刻槽的不平行、光栅刻槽的间距误差以及刻槽形状的不一致等,这些造成实际光栅周期数值与理论设计值存在偏差,导致光栅的光谱质量受到影响,如存在杂散光、反射-1级次衍射效率降低等,这些会对波导的显示性能造成不利影响。目前测量这种由于光栅刻槽误差造成的光栅周期偏差可通过扫描电镜直接观察其光栅结构,量出其光栅周期数值,但扫描电镜价格昂贵,且对样品会造成破坏。The diffractive optical waveguides of AR glasses often use gratings to couple in and out light. As an important structural parameter of the grating, the grating period d has an important influence on the diffraction characteristics of the grating (such as the direction of the diffraction order and its diffraction efficiency). Thus, the overall coupling-in-coupling-out efficiency of the waveguide is affected. When designing the parameters of the waveguide grating, the grating period of the area grating coupled in or out is generally designed to make the waveguide display performance the best. However, in the actual manufacturing process of the diffraction grating, due to various factors, the grooves of the grating have various Formal errors, such as the non-parallel grating grooves, the spacing error of the grating grooves, and the inconsistency of the groove shapes, etc., cause the actual value of the grating period to deviate from the theoretical design value, resulting in the impact of the spectral quality of the grating. Astigmatism, reduction in reflection-1st order diffraction efficiency, etc., will adversely affect the display performance of the waveguide. At present, to measure the grating period deviation caused by the grating groove error, the grating structure can be directly observed by scanning electron microscope, and the value of the grating period can be measured, but the scanning electron microscope is expensive and will cause damage to the sample.
本申请提出了一种透射型光栅的周期测量装置,旨在为波导设计光栅的光栅周期测量验证提供一种简便快速的测量工具,有助于波导整体性能优化,从而提升AR眼镜的显示性能。The present application proposes a period measurement device for a transmission grating, which aims to provide a simple and fast measurement tool for the measurement and verification of the grating period of a waveguide designed grating, which helps to optimize the overall performance of the waveguide, thereby improving the display performance of AR glasses.
请参阅图1,本申请提供一种透射型光栅的周期测量装置10,该装置可以包括:底座100、旋转台200、光源400、圆弧形导轨500以及光电探测器600。Referring to FIG. 1 , the present application provides a transmission grating
底座100可以为方形底座100也可为圆形底座100,底座100的厚度可以小于底座100的长、宽或直径,以确保底座100的稳定性。底座100包括承载面110,承载面110为光滑平整的一个平面,底座100用于承载其他如旋转台200、光源400、圆弧形导轨500以及光电探测器600等的元件。可以理解的是,图1所示底座100仅作为示意,本申请不以底座100的具体形状为限。The
旋转台200设置在所述底座100的承载面110上,且旋转台200所述底座100旋转连接,所述旋转台200用于承载待测光栅300;旋转台200可以是圆柱体的结构,以便于使用者对其进行旋转操作。旋转台200的底部可以设置旋转槽,底座100的承载面110上可以设置转杆,旋转台200可以通过旋转槽与承载面110上的转杆转动连接,以实现旋转台200与底座100的旋转连接,旋转台200可以用于调整入射光线的入射角度。可以理解的是,图1所示旋转台200仅作为示意,本申请不以旋转台200的具体形状为限。The rotary table 200 is disposed on the
光源400设置在所述底座100上,且光源400位于所述旋转台200的一侧,所述光源400的出光方向指向所述旋转台200,以确保光源400的出射光线能够穿过位于旋转台200上的待测光栅300上。此外,所述光源400的出光方向平行于所述底座100的承载面110。光源400用于发射光束,一般采用单波长的激光器或LED光源400。可以理解的是,图1所示光源400仅作为示意,本申请不以光源400的具体形式为限。The
圆弧形导轨500设置在所述底座100上,且圆弧形导轨500位于所述旋转台200远离所述光源400的一侧;圆弧形导轨500用于能够使得设置在圆弧形导轨500上的物件实现沿圆弧形导轨500平面上的位置变化。同时,在本方案中,旋转台200设置在圆弧形导轨500的圆心处,使得无论光电探测器600在圆弧形导轨500上的哪个位置都与旋转台200的距离保持不变。上述圆弧形导轨500的设置起到控制变量的作用。The arc-shaped
光电探测器600设置在所述圆弧形导轨500上,与所述圆弧形导轨500活动连接;即光电探测器600能够在圆弧形导轨500上实现沿圆弧形导轨500路径上的位置变化。光电探测器600用于实时采集光信号图像,并进行数据处理。The
其中,所述圆弧形导轨500的圆心位于所述待测光栅300的测量点与所述光源400的连线上,所述圆弧形导轨500可以沿所述连线轴对称。上述圆弧形导轨500的位置设置能够使得光电探测器600能够探测的区域更加对称,有助于提高光电探测器600的探测精度。Wherein, the center of the arc-shaped
本申请实施例的工作原理为:开启光源400,使得光源400的入射光穿过设置在旋转台200上的待测光栅300,调节光电探测器600在圆弧形导轨500上的位置,光电探测器600收集并记录光信号图像。The working principle of the embodiment of the present application is as follows: turn on the
如图2所示,光源400发出一路波长为λ入射到旋转一定角度i的待测光栅300的表面上,通过测量待测光栅300的透射级次衍射方向,这里取透射-1(T-1)级角度α(α为透射光线相对入射光的角度,图中O点为圆弧形导轨500上的刻度中的0°位置),根据衍射光栅方程可以推导得到待测光栅300的光栅周期d与角度α的对应关系,这里规定T-1级光线在入射光右侧取+,左侧取-。这样根据d与角度α的对应关系可以在不同α处算出对应光栅周期d数值,从而实现快速测量光栅周期的目的。As shown in FIG. 2 , the
综上,本申请实施例中的装置通过光电探测器探测光栅特定衍射级次的衍射光,记录其衍射角度,基于光栅衍射方程快速测量出透射光栅的光栅周期,从而为波导设计光栅的光栅周期测量验证提供了简便有效的工具。本装置操作简单,测量光栅周期快速简便。同时本装置参数可以根据实际情况进行调整,光栅周期测量范围较广泛。To sum up, the device in the embodiment of the present application detects the diffracted light of a specific diffraction order of the grating through the photodetector, records the diffraction angle, and quickly measures the grating period of the transmission grating based on the grating diffraction equation, so as to design the grating period of the grating for the waveguide. Measurement verification provides a simple and effective tool. The device is easy to operate, and the grating period is measured quickly and easily. At the same time, the parameters of the device can be adjusted according to the actual situation, and the measurement range of the grating period is wide.
在一种实施方式中,请再次参见图1,透射型光栅的周期测量装置10还可以包括夹具700,所述夹具700设置在所述旋转台200上,并与所述旋转台200固定连接,例如焊接、螺纹连接等,保障夹具700夹持待测光栅300后不会松动即可。所述夹具700用于固定所述待测光栅300。在本实施例中,夹具700可以为弹簧夹。需要说明的是,在本实施方式中,夹具700虽然用于夹持待测光栅300,固定时应能夹紧待测光栅300,但不至于损伤待测光栅300,在夹具700的夹持面上设置如橡胶、树脂等的柔性垫层。同时夹具700自身固定在旋转台200上,能随旋转台200自由转动。例如夹具700可以通过在夹具700的底面设置转轴孔,将转轴孔连接于设置在旋转台200上的转轴上以实现夹具700与旋转台200之间的转动连接。夹具700固定好待测光栅300时,需保证待测光栅300测量位置在旋转台200的旋转轴上,保证测量位置不因旋转台200的旋转而发生变化。夹具700的设置能够确保待测光栅300位置的准确性,进而提高测试的精度。In an embodiment, please refer to FIG. 1 again, the
在一种实施方式中,所述圆弧形导轨500可以包括:滑槽530,所述滑槽530的延伸方向与所述圆弧形导轨500的延伸方向一致,所述光电探测器600包括:滑块610,所述滑块610位于所述光电探测器600的底部,所述滑块610与所述滑槽530滑动连接。上述光电探测器600以及圆弧形导轨500的设置有助于提高装置使用时的容错率。In one embodiment, the arc-shaped
在一种实施方式中,所述透射型光栅的周期测量装置10还包括:升降杆800,所述升降杆800设置在所述底座100上,所述光源400设置在所述升降杆800上。可以理解的是,该升降杆800不仅可以起到升降功能,以改变光源400的高度,还能相对于底座100旋转,以改变光源400的出光方向。In an embodiment, the transmission-type grating
在一种实施方式中,圆弧形导轨500上设有第一刻度,所述第一刻度沿所述圆弧形导轨500圆周的延伸方向排布,待测光栅300的测量点与所述光源400的连线与圆弧形导轨500的交点为0°,所述交点的一侧角度取+,另一侧取-。上述刻度的设置能够便于使用者记录角度的变化,同时以连线与圆弧形导轨500的交点为0°,使得交点两边的刻度对称分布,能够更加便捷的计算交点两侧的数值。In one embodiment, the arc-shaped
在一种实施方式中,所述圆弧形导轨500与所述底座100可拆卸连接。例如卡接或榫接等,可拆卸连接的设置能够便于透射型光栅的周期测量装置10的拆卸与安装,在本实施方式中,所述圆弧形导轨500的底端设置有外螺纹,所述底座100的承载面开设有螺纹孔,所述圆弧形导轨500的外螺纹与所述底座100的螺纹孔相互螺纹配合。In one embodiment, the arc-shaped
在一种实施方式中,所述旋转台200的圆周上设有第二刻度,第二刻度沿所述旋转台200圆周的延伸方向排布,所述第二刻度与所述光电探测器600相对,第二刻度的设置能够便于获取旋转台200的旋转量,进而便于对待测光栅300的光栅周期的测量。In an embodiment, a second scale is provided on the circumference of the rotating table 200 , the second scale is arranged along the extending direction of the circumference of the rotating table 200 , and the second scale is opposite to the
在一种实施方式中,所述夹具700为柔性材料制成,例如橡胶、树脂等。使用柔性材料制作夹具700能够减少夹具700损坏待测光栅300的概率,进而提高检测的精度与效率。In one embodiment, the
在一种实施方式中,所述光电探测器600为CCD传感器或者CMOS传感器。探测入射光透过待测光栅300除衍射0级外较强的衍射级次光信号,一般探测信号较强的衍射1级,同时能将探测的光信号转换为电信号,对波长为λ的衍射光具有较好的光灵敏度。一般采用CCD或CMOS图像传感器,这里采用CCD相机,可与计算机主机连接,实时采集光信号图像,用于数据处理。In one embodiment, the
请结合图1和图3,本装置的工作流程为:Please combine Figure 1 and Figure 3, the workflow of this device is:
1.在旋转台200上安装好待测光栅300,打开光源400,保证光源400出射光垂直入射到光栅上;1. Install the grating 300 to be measured on the rotary table 200, turn on the
2.将旋转台200旋转一定角度i(不旋转则i=0°),以保证光透过光栅时能产生除衍射0级的其他衍射级次,如透射1级、透射-1级;2. Rotate the rotary table 200 by a certain angle i (i=0° if not rotated) to ensure that when the light passes through the grating, other diffraction orders other than the 0th order of diffraction can be generated, such as transmission 1st order, transmission -1st order;
3.CCD相机在圆弧形导轨500从-90°角开始扫描至90°角(或从90°角开始扫描至-90°角),当除透射0级的其他衍射级次光正入射到光电探测器600(此处使用的光电探测器600为CCD相机)的接收口时,相机采集软件会显示一个光斑,这里采集其透射-1级光信号,此时相机的中心位于透射光线沿透射-1(T-1)级角度α指向圆弧形导轨500上的刻度位置α1(图中未示出);3. The CCD camera scans from an angle of -90° to an angle of 90° (or from an angle of 90° to an angle of -90°) on the
4.同时软件对CCD采集图像分析,假设计算图像光斑中心偏离相机中心像素的水平距离L,则实际衍射光的衍射角度α=α1±arctan L/R,这里正负号的选择需根据光斑中心偏离相机中心像素是左偏移,还是右偏移,如图3所示,图像光斑中心向右偏离相机中心像素,此时透射-1级光的衍射角度应校正为α=α1-arctan L/R;4. At the same time, the software analyzes the image collected by the CCD. Assuming that the horizontal distance L from the center of the image spot to the center pixel of the camera is calculated, the diffraction angle of the actual diffracted light is α=α 1 ±arctan L/R. The selection of the sign here depends on the spot The center deviation of the camera center pixel is a left deviation or a right deviation. As shown in Figure 3, the image spot center deviates from the camera center pixel to the right. At this time, the diffraction angle of the transmitted -1st order light should be corrected as α=α 1 -arctan L/R;
5.最后将光源400的波长λ,入射角度i,衍射角度α代入公式:5. Finally, substitute the wavelength λ of the
计算,即可得到待测光栅300的光栅周期d的数值。By calculation, the value of the grating period d of the grating 300 to be measured can be obtained.
式中:where:
d为待测光栅的光栅周期;d is the grating period of the grating to be measured;
i为入射角度;i is the incident angle;
α为衍射角度;α is the diffraction angle;
λ为光源出射光波长。λ is the wavelength of the light emitted by the light source.
本申请提出一种透射型光栅的周期测量装置。该装置通过光电探测器探测光栅特定衍射级次的衍射光,记录其衍射角度,基于光栅衍射方程快速测量出透射光栅的光栅周期,从而为波导设计光栅的光栅周期测量验证提供了简便有效的工具。本装置操作简单,测量光栅周期快速简便。同时本装置参数可以根据实际情况进行调整,光栅周期测量范围较广泛。The present application proposes a period measurement device for a transmission type grating. The device detects the diffracted light of a specific diffraction order of the grating through a photodetector, records its diffraction angle, and quickly measures the grating period of the transmission grating based on the grating diffraction equation, thereby providing a simple and effective tool for the measurement and verification of the grating period of the waveguide design grating . The device is easy to operate, and the grating period is measured quickly and easily. At the same time, the parameters of the device can be adjusted according to the actual situation, and the measurement range of the grating period is wide.
术语“一些实施方式”、“其他实施方式”等的描述意指结合该实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本申请中,对上述术语的示意性表述不必须针对的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本申请中描述的不同实施方式或示例以及不同实施方式或示例的特征进行结合和组合。The description of the terms "some embodiments," "other embodiments," etc. means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of this application. In this application, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different implementations or examples described in this application, as well as the features of the different implementations or examples, without conflicting each other.
以上实施方式仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施方式对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施方式技术方案的精神和范围,均应包含在本申请的保护范围之内。The above embodiments are only used to illustrate the technical solutions of the present application, but not to limit them; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The recorded technical solutions are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the application, and should be included in this application. within the scope of protection.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220912003.2U CN217542339U (en) | 2022-04-19 | 2022-04-19 | Period measurement device of transmission type grating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220912003.2U CN217542339U (en) | 2022-04-19 | 2022-04-19 | Period measurement device of transmission type grating |
Publications (1)
Publication Number | Publication Date |
---|---|
CN217542339U true CN217542339U (en) | 2022-10-04 |
Family
ID=83432368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202220912003.2U Active CN217542339U (en) | 2022-04-19 | 2022-04-19 | Period measurement device of transmission type grating |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN217542339U (en) |
-
2022
- 2022-04-19 CN CN202220912003.2U patent/CN217542339U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8635783B2 (en) | Surface measurement instrument and method | |
US10145785B2 (en) | Optical element rotation type Mueller-matrix ellipsometer and method for measuring Mueller-matrix of sample using the same | |
CN102798357B (en) | Method for double-barrelled angle measurement | |
CN108458673A (en) | A kind of shaft assignment adjustment measuring device | |
CN103063412B (en) | System and method for optical gauge sample stage calibration | |
CN104535500B (en) | The systematic parameter calibration steps of imaging ellipsometer | |
CN113175884B (en) | Calibration device and calibration method of spectrum confocal measurement system | |
CN109655015B (en) | A non-contact method for measuring the inclination angle and the slight variation of the thickness of the processed surface of the sample | |
CN217542339U (en) | Period measurement device of transmission type grating | |
TWI472712B (en) | Vertical and parallelism detection system and its detection method | |
CN110530614B (en) | Optical detection mechanism and detection method for center deviation of cylindrical mirror | |
US20170003114A1 (en) | Laser Scanning Micrometer Device | |
US9097513B2 (en) | Optical laser scanning micrometer | |
CN109579744A (en) | Trailing type three-dimensional photoelectric auto-collimation method and apparatus based on grating | |
CN217542340U (en) | Period measuring device of two-dimensional grating | |
CN217588294U (en) | A comprehensive experimental device for grating diffraction and double prism interference | |
CN212658212U (en) | A Measuring System for Axial Deformation of Tunnel | |
CN113933024B (en) | Method for measuring absolute polarization azimuth angle of analyzer in optical remote sensor | |
CN217332162U (en) | A Device for Measuring Liquid Refractive Index Using Linear CCD | |
CN213544383U (en) | Refractive index measuring device | |
CN108303130B (en) | Grating moire signal subdivision error calibration method based on laser interference principle | |
CN110082076B (en) | Device for detecting off-axis angle of light beam emitted by optical fiber lens and detection method thereof | |
CN215374439U (en) | A refractive index measuring device | |
CN106403824A (en) | Grating interferometer based precision altimeter | |
CN103424241B (en) | Concave grating diffraction characteristic pick-up unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |