CN215327466U - 自调质预处理电化学氧化系统 - Google Patents
自调质预处理电化学氧化系统 Download PDFInfo
- Publication number
- CN215327466U CN215327466U CN202121918290.XU CN202121918290U CN215327466U CN 215327466 U CN215327466 U CN 215327466U CN 202121918290 U CN202121918290 U CN 202121918290U CN 215327466 U CN215327466 U CN 215327466U
- Authority
- CN
- China
- Prior art keywords
- electrochemical oxidation
- self
- wastewater
- conditioning
- meter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
本实用新型涉及一种自调质预处理电化学氧化系统,包括:过流式电化学氧化系统,过流式电化学氧化系统由过滤器和电化学氧化反应器组成;还增设自调质预处理系统,用于自动调控来水水质,使之适应后续电化学氧化反应器的连续处理;自调质预处理系统包括:废水调质池、盐水箱、稀释水箱、储酸罐、调质控制器和配套的管道阀门。本实用新型的有益效果是:本实用新型在过流式电化学氧化系统的基础上增设自调质预处理系统,用于自动调控来水水质,使之适应后续电化学氧化反应器的连续处理;废水调质池的容积可根据场地实际情况设置;调质控制器作为电化学氧化控制系统的一部分,设置了连锁保护。
Description
技术领域
本实用新型属于环保水处理技术领域,具体涉及一种自调质预处理的电化学氧化系统。
背景技术
电化学氧化技术是一种环境友好的污染物降解技术,能够完全矿化生物反应不能降解的有机物和氧化含氮化合物,目前已成为被工业化应用最广泛的高级氧化技术。电化学氧化技术具有二次污染小、反应条件温和、易操作等优点,被成功应用于皮革废水、生活污水、电厂废水和垃圾渗滤液等重度污染废水的处理。在电化学氧化处理过程中,来水水质对污染物去除效果、电极寿命、结垢速率、副反应发生等都有显著影响,对来水进行有针对性的调质预处理成为了电化学氧化工业应用上亟需解决的难题之一。
来水水质对电化学氧化废水处理的影响较为复杂,在过流式电化学氧化废水处理工艺中最值得关注的三个因素分别为污染物总量控制、污染物去除速率控制、结垢速率控制。当电化学氧化反应器规模固定时,单位时间内能够去除的污染物总量有上限,当来水中污染物总量超过额定最大处理量时将发生不完全反应,部分污染物无法被有效降解,因此需要通过调质预处理控制来水中的污染物总量。电化学氧化反应分为直接电化学氧化和间接电化学氧化,大部分污染物通过间接电化学氧化反应去除,其反应速率与来水中氯离子浓度直接相关。与此同时,增大来水中的电解质也有利于提高极板电流密度,从而提高反应器对污染物的去除速率。电化学氧化反应过程中,阴极极板表面将生成大量OH-形成局部高pH溶液,来水中的钙离子镁离子等二价离子浓度将在阴极极板表面结垢,引起反应器堵塞、电极腐蚀、电极电阻增大、电极表面涂层破坏、电化学氧化效率下降、额外能耗增加等问题。因此,控制来水中钙镁离子浓度,能够有效降低极板酸洗频率,使电化学氧化反应高效持续进行。以上三点原因,都要求对来水进行调质预处理,确保来水中污染物浓度、pH、氯离子浓度、电导率保持在合理范围内。
针对电化学氧化系统来水调质预处理的需求,目前在工业应用中都采用经验法调质。设置一个调质水池,待处理的废水进入水池后通过稀释、加药、搅拌等方式使水质达标,再进入电化学氧化反应器处理。该方法在来水水质波动较小时有一定的可行性,但当来水水质恶劣程度增大时则存在污染物不能完全去除和快速结垢的风险,当来水水质比设计值更优时则存在加药浪费的情况。不仅如此,来水调质预处理自动化程度不高,造成调质盲目性高、准确性差、人力成本浪费,不适用于现代化的工业水处理系统。因此有必要开发一种新型自调质预处理电化学氧化系统及处理工艺。
实用新型内容
本实用新型的目的是克服现有技术中的不足,提供一种自调质预处理电化学氧化系统。
这种自调质预处理电化学氧化系统,包括过流式电化学氧化系统,过流式电化学氧化系统由过滤器和电化学氧化反应器组成;还增设自调质预处理系统,用于自动调控来水水质,使之适应后续电化学氧化反应器的连续处理;自调质预处理系统包括:废水调质池、盐水箱、稀释水箱、储酸罐、调质控制器和配套的管道阀门;自调质预处理系统通过进水泵(泵2)连接过流式电化学氧化系统;自调质预处理系统内,废水进水管连接废水提升泵(泵1)一端,废水提升泵另一端接入废水调质池;盐水箱通过盐水泵(泵3)接入废水调质池;稀释水箱通过稀释水泵(泵4)接入废水调质池;储酸罐通过加酸泵(泵5)接入废水调质池;自调质预处理系统内还设有混匀装置;废水调质池内设有电导率仪、氨氮浓度计、液位计、污染物表计、氯离子浓度表计、总硬度表计和pH计;电导率仪、氨氮浓度计、液位计、污染物表计、氯离子浓度表计、总硬度表计、pH计、废水提升泵(泵1)、盐水泵(泵3)、稀释水泵(泵4)和加酸泵(泵5)均电连接调质控制器;所有的表计均为实时在线表计,可在就地或远端读取,能够准确反应废水调质池内的水质情况,所有的泵均可在就地或远端启停;污染物表计能够实时反馈水中的COD、氨氮或其他类型污染物浓度。
作为优选,混匀装置为搅拌装置或曝气装置;废水调质池的容积可根据场地实际情况设置(例如800立方米)。
作为优选,将盐水箱、稀释水箱替换为盐水池、稀释水池。
作为优选,盐水箱内储存固定质量分数的氯化钠溶液或已知氯离子浓度的海水,例如氯化钠质量分数10%;稀释水箱内储存自来水或低污染物浓度、低硬度的工业废水;储酸罐内储存浓盐酸。
本实用新型的有益效果是:本实用新型在过流式电化学氧化系统的基础上增设自调质预处理系统,用于自动调控来水水质,使之适应后续电化学氧化反应器的连续处理;废水调质池的容积可根据场地实际情况设置;调质控制器作为电化学氧化控制系统的一部分,设置了连锁保护。
附图说明
图1为自调质预处理电化学氧化系统处理工艺流程图。
附图标记说明:自调质预处理系统1、废水调质池2、盐水箱3、盐水泵4、稀释水箱5、稀释水泵6、储酸罐7、加酸泵8、液位计9、污染物表计10、氯离子浓度表计11、总硬度表计12、pH计13、废水提升泵14、调质控制器15、进水泵16、过滤器17、电化学氧化反应器18。
具体实施方式
下面结合实施例对本实用新型做进一步描述。下述实施例的说明只是用于帮助理解本实用新型。应当指出,对于本技术领域的普通人员来说,在不脱离本实用新型原理的前提下,还可以对本实用新型进行若干修饰,这些改进和修饰也落入本实用新型权利要求的保护范围内。
实施例一
本申请实施例一提供了一种如图1所示自调质预处理电化学氧化系统,包括过流式电化学氧化系统,过流式电化学氧化系统由过滤器17和电化学氧化反应器18组成;还增设自调质预处理系统1,用于自动调控来水水质,使之适应后续电化学氧化反应器的连续处理;自调质预处理系统1包括:废水调质池2、盐水箱3、稀释水箱5、储酸罐7、调质控制器15和配套的管道阀门;自调质预处理系统1通过进水泵16(泵2)连接过流式电化学氧化系统;
自调质预处理系统1内,废水进水管连接废水提升泵14(泵1)一端,废水提升泵14另一端接入废水调质池2;盐水箱3通过盐水泵4(泵3)接入废水调质池2;稀释水箱5通过稀释水泵6(泵4)接入废水调质池2;储酸罐7通过加酸泵8(泵5)接入废水调质池2;自调质预处理系统1内还设有混匀装置(搅拌装置或曝气装置);
废水调质池2内设有电导率仪、氨氮浓度计、液位计9、污染物表计10、氯离子浓度表计11、总硬度表计12和pH计13;电导率仪、氨氮浓度计、液位计9、污染物表计10、氯离子浓度表计11、总硬度表计12、pH计13、废水提升泵14(泵1)、盐水泵4(泵3)、稀释水泵6(泵4)和加酸泵8(泵5)均电连接调质控制器15;所有的表计均为实时在线表计,可在就地或远端读取,能够准确反应废水调质池内的水质情况,所有的泵均可在就地或远端启停;污染物表计能够实时反馈水中的COD、氨氮或其他类型污染物浓度。
实施例二
在实施例一的基础上,本申请实施例二提供了实施例一中自调质预处理电化学氧化系统在某燃煤电厂内的处理工艺:
某燃煤电厂采用过流式电化学氧化系统降解废水中的氨氮污染物。其调质预处理过程为将高浓度氨氮废水、低浓度工业废水与附近海域的海水按照一定比例均匀混合,再进入电化学氧化系统集中处理。该燃煤电厂的混合废水水质与水量见下表1:
表1混合废水水质与水量表
电化学氧化系统连续运行期间,废水调质预处理均按照经验法固定比例混合,存在以下问题:(1)受水质波动影响,混合废水氨氮浓度有时超过120mg/L,最高达到200mg/L,超过了电化学氧化反应器的额定处理能力,导致系统产水氨氮浓度超标。(2)受水质波动影响,混合废水氯离子浓度有时低于5000mg/L,最低仅为3700mg/L,严重影响了电化学反应器的氨氮氧化效率,导致系统产水氨氮浓度超标。(3)混合废水总硬度不受监测,且溶液pH没有调节手段,导致反应器电极极板频繁结垢,酸洗周期约30天。需要一种新型废水调质预处理系统,能够保证进水水质达到与反应器设计匹配的理想指标。
之后该燃煤电厂在原有电化学氧化系统基础上进行了改造,增设了一套自调质预处理系统。新系统投运后,能够通过废水调质池内的pH计、电导率仪、氨氮浓度计、总硬度计和氯离子浓度计在线监测和自动调控池内水质。采用海水调整进水的氯离子浓度,采用低盐工业废水作为稀释用水,采用30%浓盐酸调控进水pH。设置最高氨氮浓度120mg/L、最低氯离子浓度5000mg/L、最高总硬度100mmol/L,最高pH为8.0。连续运行以来,自调质预处理系统运行正常,电化学氧化系统产水氨氮浓度始终保持在5.0mg/L以下,平均酸洗周期大幅延长至180天。高浓氨氮废水处理平均速率由之前的1.8t/h增大至2.3t/h,提高了系统的运行效率,减少了系统的运行时长,大幅降低了系统运行成本。
该电厂自调质预处理系统正常投运12个月以来,电化学氧化处理系统能够高效、安全、稳定地处理氨氮废水,氧化去除氨氮污染物。进水调质实现了自动化和合理化,提高了氨氮废水的处理效率,降低了污染物处理成本。以上结果表明,这种自调质预处理电化学氧化系统具有很好的适用性。
Claims (4)
1.一种自调质预处理电化学氧化系统,包括过流式电化学氧化系统,过流式电化学氧化系统由过滤器(17)和电化学氧化反应器(18)组成;其特征在于,还增设自调质预处理系统(1),自调质预处理系统(1)包括:废水调质池(2)、盐水箱(3)、稀释水箱(5)、储酸罐(7)、调质控制器(15)和配套的管道阀门;自调质预处理系统(1)通过进水泵(16)连接过流式电化学氧化系统;
自调质预处理系统(1)内,废水进水管连接废水提升泵(14)一端,废水提升泵(14)另一端接入废水调质池(2);盐水箱(3)通过盐水泵(4)接入废水调质池(2);稀释水箱(5)通过稀释水泵(6)接入废水调质池(2);储酸罐(7)通过加酸泵(8)接入废水调质池(2);自调质预处理系统(1)内还设有混匀装置;
废水调质池(2)内设有电导率仪、氨氮浓度计、液位计(9)、污染物表计(10)、氯离子浓度表计(11)、总硬度表计(12)和pH计(13);电导率仪、氨氮浓度计、液位计(9)、污染物表计(10)、氯离子浓度表计(11)、总硬度表计(12)、pH计(13)、废水提升泵(14)、盐水泵(4)、稀释水泵(6)和加酸泵(8)均电连接调质控制器(15)。
2.根据权利要求1所述自调质预处理电化学氧化系统,其特征在于:混匀装置为搅拌装置或曝气装置。
3.根据权利要求1所述自调质预处理电化学氧化系统,其特征在于:将盐水箱(3)、稀释水箱(5)替换为盐水池、稀释水池。
4.根据权利要求1所述自调质预处理电化学氧化系统,其特征在于:盐水箱(3)内储存固定质量分数的氯化钠溶液或已知氯离子浓度的海水;稀释水箱(5)内储存自来水或工业废水;储酸罐(7)内储存浓盐酸。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202121918290.XU CN215327466U (zh) | 2021-08-16 | 2021-08-16 | 自调质预处理电化学氧化系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202121918290.XU CN215327466U (zh) | 2021-08-16 | 2021-08-16 | 自调质预处理电化学氧化系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN215327466U true CN215327466U (zh) | 2021-12-28 |
Family
ID=79577509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202121918290.XU Active CN215327466U (zh) | 2021-08-16 | 2021-08-16 | 自调质预处理电化学氧化系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN215327466U (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113480059A (zh) * | 2021-08-16 | 2021-10-08 | 浙江浙能技术研究院有限公司 | 一种自调质预处理电化学氧化系统及处理工艺 |
CN114409146A (zh) * | 2022-01-18 | 2022-04-29 | 中石化节能技术服务有限公司 | 一种电化学催化降解高盐废水中总氮的装置及方法 |
-
2021
- 2021-08-16 CN CN202121918290.XU patent/CN215327466U/zh active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113480059A (zh) * | 2021-08-16 | 2021-10-08 | 浙江浙能技术研究院有限公司 | 一种自调质预处理电化学氧化系统及处理工艺 |
CN114409146A (zh) * | 2022-01-18 | 2022-04-29 | 中石化节能技术服务有限公司 | 一种电化学催化降解高盐废水中总氮的装置及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN215327466U (zh) | 自调质预处理电化学氧化系统 | |
CN205347056U (zh) | 一种含氯废水的预处理装置 | |
CN111470679A (zh) | 一种废乳化液的预处理方法 | |
CN110563221A (zh) | 一种高盐碱渣废水的处理系统及方法 | |
CN104529017A (zh) | 一种电镀混合水的处理方法和装置 | |
CN109368746A (zh) | 一种高cod、难生化废水的预处理装置的预处理系统及方法 | |
CN201729694U (zh) | 处理印染废水的自动控制电解系统 | |
CN111892233A (zh) | 废乳化液的处理方法 | |
CN204138472U (zh) | 用于循环冷却水自动处理和排污水回用的集成设备 | |
CN110683617A (zh) | 基于差别化控制的废水成对电解处理的方法 | |
Yao et al. | Variation of current density with time as a novel method for efficient electrochemical treatment of real dyeing wastewater with energy savings | |
CN108383297A (zh) | 一种电化学处理高浓度废切削液工艺 | |
CN109437453B (zh) | 一种化学钝化含油污水的处理方法和装置 | |
CN205419871U (zh) | 一种预处理草甘膦高浓度污染废水的电絮凝反应设备 | |
CN113480059A (zh) | 一种自调质预处理电化学氧化系统及处理工艺 | |
CN207227240U (zh) | 一种电絮凝法处理高浓度有机废水装置 | |
CN104150687B (zh) | 一种减少n2o产生的污水处理自动控制装置及其操作方法 | |
US11999642B2 (en) | Method for removing calcium ions from high concentration organic wastewater | |
CN111115919B (zh) | 一种制药废水的预处理方法 | |
CN114906905B (zh) | 一种基于酸碱自调控的电芬顿-絮凝工艺集成反应装置 | |
CN107892411B (zh) | 一种废液电絮凝除硬装置及方法 | |
CN106277487A (zh) | 一种电化学氧化处理脱硫废水装置 | |
CN214218277U (zh) | 用于燃气-蒸汽联合循环机组循环冷却水的电化学处理系统 | |
CN215403261U (zh) | 自动抑垢除垢电化学氧化系统 | |
CN203173927U (zh) | 电化学与微电解联合预处理垃圾渗滤液的装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |