CN212435577U - 具有故障电流关断能力的电力变换器装置 - Google Patents

具有故障电流关断能力的电力变换器装置 Download PDF

Info

Publication number
CN212435577U
CN212435577U CN201790001771.XU CN201790001771U CN212435577U CN 212435577 U CN212435577 U CN 212435577U CN 201790001771 U CN201790001771 U CN 201790001771U CN 212435577 U CN212435577 U CN 212435577U
Authority
CN
China
Prior art keywords
power converter
sub
tmmc
modules
vdc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201790001771.XU
Other languages
English (en)
Inventor
A.舍恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of CN212435577U publication Critical patent/CN212435577U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本实用新型涉及一种电力变换器装置(GMMC),所述电力变换器连接到并联连接的变压器(T1,T2)。电力变换器装置(GMMC)具有串联连接的子电力变换器(TMMC‑H,TMMC‑F),子电力变换器分别具有三个并联连接的双极的相模块(PM‑H,PM‑F),相模块由串联连接的两个电力变换器模块(UM‑H,UM‑F)构成。电力变换器模块(UM‑H,UM‑F)的连接点(VP1)形成变压器(T1,T2)的相连接端(PA1,PA2,PA3)。第一子电力变换器(TMMC‑H)的相模块(PM‑H,PM‑F)仅由单极子模块(SM‑H)构成,而第二子电力变换器(TMMC‑F)的相模块仅由双极子模块(SM‑F)构成。当直流电流(IDC‑G)超过额定值(SW‑H,SW‑F)时,调节器相应地至少减小第二子电力变换器(TMMC‑F)的部分直流电压(VDC‑F),能够将第二子电力变换器的部分直流电压(VDC‑F)反转,至少直到补偿了第一子电力变换器(TMMC‑H)的部分直流电压(VDC‑H)为止。

Description

具有故障电流关断能力的电力变换器装置
技术领域
本实用新型涉及一种根据本实用新型的具有故障电流关断能力的电力变换器装置。
背景技术
从高压直流传输中已知模块化的多级电力变换器(MMC)。模块化的多级电力变换器在输入侧由交流电网供电,并且在输出侧提供直流电压,用于在高压范围内供应电能。连接通过变压器来进行,变压器在次级侧连接到并联连接的双极的相模块。并联连接的相模块分别由两个电力变换器模块构成,并通过连接点相互连接。每个连接点构成变压器的次级侧的相中的一个的连接端。两个电力变换器模块本身又由串联连接的子模块构成,这些子模块具有实施为全桥电路或半桥电路的半导体开关。在这种情况下,也称为全桥和半桥模块(全桥和半桥子模块)。
具有半桥模块的电力变换器的特征在于高灵活性和高效率。当在直流电压侧发生短路时,由于子模块的整流作用,这些电力变换器不能建立相应的反向电压,并且必须将其与交流电网分离,以关断直流短路。
具有全桥模块的电力变换器由于其双极特性,还可以提供比交流线电压小的直流电压,因此通过产生相应的反向电压,以有源的方式关断直流电压侧的短路。在进行关断之后,这些电力变换器继续为交流电网提供服务,例如提供无功功率(无功电流支持)。然而,由于电流路径中的半导体开关数量更大,所以产生明显更大的电气损耗。
实用新型内容
本实用新型要解决的技术问题是,实现一种电力变换器装置,所述电力变换器装置在短时间内以有源的方式关断直流侧的故障电流、特别是短路电流,并且具有相对小的电气损耗。
上述技术问题在电力变换器方面通过根据本实用新型的特征来解决;本实用新型还给出了有利的设计方案。
解决方案涉及一种多相多级电力变换器的电力变换器装置,多级电力变换器通过在初级侧并联连接的变压器连接到交流电网,并且(在两个直流电压输出连接端处)提供总直流电压,用于在高压范围内进行电能供应,
-其中,电力变换器装置具有串联连接的子电力变换器,子电力变换器的部分直流电压形成(总电力变换器的)总直流电压,并且子电力变换器分别具有三个并联连接(彼此连接)的双极的相模块,
-其中,每个相模块由串联连接的两个电力变换器模块构成,电力变换器模块分别通过第一连接点彼此连接,第一连接点形成相连接端中的一个,
-其中,变压器分别连接到子电力变换器的相连接端,
-其中,第一子电力变换器的相模块的两个电力变换器模块由串联连接的单极子模块构成,而第二子电力变换器的相模块的两个电力变换器模块由串联连接的双极子模块构成,并且第一和第二子电力变换器通过第二连接点彼此连接,
-其中,设置有用于将(流过子电力变换器的)直流电流调节到预设的额定值的调节器,当直流电流超过额定值时,调节器相应地至少减小第二子电力变换器的部分直流电压,并且
-其中,调节器可以将第二子电力变换器的部分直流电压反转,至少直到对第一子电力变换器的部分直流电压进行了补偿为止。
在技术上相对简单的是,单极子模块具有连接为半桥(HB)的半导体开关。
在技术上相对简单的是,双极子模块具有连接为全桥(VB)的半导体开关。
各个子电力变换器的半导体开关的半导体有利地属于不同的电压等级,以使子电力变换器的载流能力彼此匹配。
有利的是,子电力变换器的半导体开关以并联电路的形式实施,以使两个子电力变换器的载流能力彼此匹配。
也就是说,解决方案由相应的直接串联连接并且共同作用的两个子电力变换器的串联电路构成,其中,两个子电力变换器中的一个仅由双极子模块形成,而另一个子电力变换器仅由单极子模块形成。电力变换器装置的直流电压由两个子电力变换器的直流电压之和构成。在此,具有双极子模块的子电力变换器的尺寸被确定为,使得其直流电压大于(但是至少等于)具有单极子模块的子电力变换器的直流电压。在直流电压侧出现故障电流、特别是短路的情况下,电力变换器调节器在最短的时间内,将具有双极子模块的子电力变换器的直流电压反转,使得总体上产生与故障直流电流(短路电流) 相反地定向的直流电压,该直流电压通过进行电压补偿,以有源的方式关断故障直流电流(短路电流)。在此,两个子电力变换器都可以保持活动,并且继续向交流电网提供例如无功功率等,即保留其余功能。
此外,与仅具有双极子模块的电力变换器装置相比,对于完全的直流电压来说,阻断电压几乎减半,这特别是对于电缆应用(XLPE,有限的极性反转强度)是有利的。附加地,所提出的电力变换器装置提高了可用性,因为例如在子电力变换器发生故障的情况下,电力变换器装置可以以减小的直流电压继续运行。
附图说明
下面借助实施例更详细地描述本实用新型。附图中:
图1示出了被设计为多相多级电力变换器的总电力变换器,该总电力变换器具有两个子电力变换器,
图2示出了子电力变换器的相模块,所述相模块具有半桥电路形式的子模块,
图3示出了另外的子电力变换器的相模块,所述相模块具有全桥电路形式的子模块,
图4示出了半桥电路形式的子模块,
图5示出了全桥电路形式的子模块,
图6示出了对根据图1的总电力变换器的控制,
图7示出了输出侧短路之后的直流电压和直流电流随时间的变化过程,
图8示出了连接为不对称的对称的单极子的两个子电力变换器,
图9示出了连接为对称的单极子的三个子电力变换器,
图10示出了连接为对称的双极子的三个子电力变换器。
具体实施方式
图1示出了电力变换器装置GMMC,其被设计为多相多级总电力变换器。三相交流电网N经由两个变压器T1、T2连接到电力变换器装置GMMC。两个变压器T1、T2的初级绕组并联连接,并且变压器T1、T2的次级绕组分别连接到子电力变换器TMMC-H、TMMC-F的相连接端PA1、PA2、PA3,这两个子电力变换器串联连接,并且经由(第一)连接点VP1彼此连接(由此在一定程度上形成总电力变换器)。两个子电力变换器TMMC-H、TMMC-F 在其输出端分别提供部分直流电压VDC-H、VDC-F。在总直流电流IDC-G 流过两个子电力变换器TMMC-H、TMMC-F的情况下,两个部分直流电压 VDC-H、VDC-F基于串联电路而形成总直流电压VDC-G。
两个子电力变换器TMMC-H、TMMC-F分别由并联连接的三个相模块 PM-H、PM-F构成。双极的相模块PM-H、PM-F的两个极以并联电路彼此连接。每个相模块PM-H、PM-F又由串联连接的两个电力变换器模块UM-H、 UM-F构成,电力变换器模块UM-H、UM-F分别通过第二连接点VP2相互连接。每个连接点VP2构成相连接端PA1、PA2、PA3中的一个。
图2示意性地示出了子电力变换器TMMC-H的相模块PM-H,相模块 PM-H由串联连接的单极子模块SM-H和电感L构成。在此,子电力变换器 TMMC-H的单极子模块SM-H尤其是由连接为半桥HB(参见图4)的半导体开关构成。
图3示出了子电力变换器TMMC-F的相模块PM-F,相模块PM-F由串联连接的双极子模块SM-H和电感L构成。在此,双极子模块SM-F尤其是利用全桥电路FB(参见图5)形式的半导体开关来实施。
图4和图5示出了具有半桥电路形式的半导体开关的单极子模块SM-H 和具有全桥电路形式的半导体开关的双极子模块SM-F。
图6示出了对根据图1的电力变换器装置GMMC的控制。两个控制单元AE-H、AE-F用于对两个子电力变换器TMMC-H、TMMC-F进行调节(自动控制),对控制单元AE-H、AE-F预设了相应的额定值SW-H、SW-F。
在变压器T1、T2之前,即在初级侧,分别进行电流测量MI-H、MI-F 和电压测量MU-H、MU-F,电流测量和电压测量的值被馈送给相应的控制单元AE-H、AE-F。控制单元AE-H、AE-F根据这些值来确定用于子电力变换器TMMC-H、TMMC-F的子模块SM-H、SM-F的相应的控制信号S-H和 S-F。附加地,将流过子电力变换器TMMC-H、TMMC-F的直流电流IDC-G 和输出直流电压VDC-G馈送给控制单元AE-H、AE-F。为了进行相应的调节,两个控制单元AE-H、AE-F交换所需的数据D1、D2。
对总电力变换器GMMC的调节通过两个控制单元AE-H、AE-F进行,使得当直流电流IDC-G超过预设的额定值SW-H、SW-F时,每个控制单元 AE-H、AE-F分别减小相关的部分直流电压VDC-H或VDC-F。
图7以示意图示出了在发生短路tSC之后直流电压和直流电流IDC-G 关于时间t的变化过程。在时间点tSC作为直流电压侧的特殊故障电流(直流故障电流)发生短路的情况下,尽管子电力变换器TMMC-H、TMMC-F 的部分直流电压VDC-H、VDC-F减小,但是首先导致直流电流IDC-G的进一步超出。图7示意性地示出了在发生短路tSC之后直流电流IDC-G的进一步的超出。
可以看到,子电力变换器TMMC-F在最短的时间t内将其输出电压 VDC-F减小到了0,之后将其反转,然后在数值上再次增大,即产生具有反向符号的增大的电压VDC-F。具有反向符号的电压VDC-F在数值上一直增加,直到至少补偿了子电力变换器TMMC-H的直流电压VDC-H为止。子电力变换器TMMC-F在此被设计为,对部分直流电压VDC-H进行过度补偿,即进行小的过度补偿。在发生短路tSC之后,电流IDC-G稍微增大,直到出现直流电压VDC-F的相应的减小为止。在发生短路的情况下,预设的直流电流IDC-G稍微增加,然后由于对直流电压VDC-H进行的补偿,首先显著地“过度减小”,然后被关断。
图8示出了具有两个子电力变换器TMMC-H、TMMC-F的电力变换器装置GMMC,其被实施为具有对称的接地端E的对称的单极子。
图9示出了具有三个子电力变换器TMMC-H、TMMC-F的电力变换器装置GMMC,其被设计为具有对称的接地端E的对称的单极子。在此,在产生故障电流(短路)的情况下,子电力变换器TMMC-F对两个子电力变换器TMMC-H的部分直流电压VDC-H进行补偿。
图10示出了具有四个子电力变换器TMMC-H、TMMC-F的电力变换器装置GMMC,其被设计为具有接地端E的双极子。在此,在产生故障电流 (短路)的情况下,子电力变换器TMMC-F对相关的子电力变换器TMMC-H 的部分直流电压VDC-H进行补偿,即参照图10从上往下数:第二子电力变换器TMMC-F对第一子电力变换器TMMC-H的部分直流电压VDC-H进行补偿,并且第四子电力变换器TMMC-F对第三子电力变换器TMMC-H的部分直流电压VDC-H进行补偿。

Claims (5)

1.一种电力变换器装置(GMMC),其用于通过在初级侧并联连接的变压器(T1,T2)连接到交流电网(N),其中,所述电力变换器装置(GMMC)提供总直流电压(VDC-G),用于在高压范围内供应电能,
所述电力变换器装置具有串联连接的子电力变换器(TMMC-H,TMMC-F),所述子电力变换器的部分直流电压(VDC-H,VDC-F)形成所述总直流电压(VDC-G),并且所述子电力变换器分别具有并联连接的三个双极的相模块(PM-H,PM-F),其中,每个相模块(PM-H,PM-F)由串联连接的两个电力变换器模块(UM-H,UM-F)构成,所述电力变换器模块分别通过第二连接点(VP2)彼此连接,所述第二连接点形成相连接端(PA1,PA2,PA3)中的一个,其中,一个变压器(T1,T2)相应地连接到一个子电力变换器(TMMC-H,TMMC-F)的相连接端(PA1,PA2,PA3),
其中,第一子电力变换器(TMMC-H)的相模块(PM-H,PM-F)的两个电力变换器模块(UM-H,UM-F)由串联连接的单极子模块(SM-H)构成,而第二子电力变换器(TMMC-F)的相模块的两个电力变换器模块由串联连接的双极子模块(SM-F)构成,并且第一和第二子电力变换器(TMMC-H,TMMC-F)通过第一连接点(VP1)彼此连接,并且
所述电力变换器装置具有调节器,所述调节器用于将直流电流(IDC-G)调节到预设的额定值(SW-H,SW-F),当直流电流(IDC-G)超过所述额定值(SW-H,SW-F)时,所述调节器相应地至少减小第二子电力变换器(TMMC-F)的部分直流电压(VDC-F),其中,所述调节器能够将第二子电力变换器(TMMC-F)的部分直流电压(VDC-F)反转,至少直到补偿了第一子电力变换器(TMMC-H)的部分直流电压(VDC-H)为止。
2.根据权利要求1所述的电力变换器装置(GMMC),其特征在于,所述单极子模块(SM-H)具有连接为半桥(HB)的半导体开关。
3.根据权利要求1所述的电力变换器装置(GMMC),其特征在于,所述双极子模块(SM-F)具有连接为全桥(FB)的半导体开关。
4.根据权利要求2或3所述的电力变换器装置(GMMC),其特征在于,所述单极子模块(SM-H)和所述双极子模块(SM-F)的半导体开关的半导体属于不同的电压等级,以使子电力变换器(TMMC-H,TMMC-F)的载流能力彼此匹配。
5.根据权利要求4所述的电力变换器装置(GMMC),其特征在于,所述单极子模块(SM-H)的半导体开关以并联电路的形式实施,以使两个子变换器的载流能力彼此匹配。
CN201790001771.XU 2017-07-31 2017-07-31 具有故障电流关断能力的电力变换器装置 Active CN212435577U (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/069268 WO2019024972A1 (de) 2017-07-31 2017-07-31 Stromrichteranordnung mit einer abschaltungsfähigkeit eines fehlerstroms und ein verfahren zur abschaltung eines fehlerstroms bei einer solchen stromrichteranordnung

Publications (1)

Publication Number Publication Date
CN212435577U true CN212435577U (zh) 2021-01-29

Family

ID=59501442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201790001771.XU Active CN212435577U (zh) 2017-07-31 2017-07-31 具有故障电流关断能力的电力变换器装置

Country Status (4)

Country Link
US (1) US11289996B2 (zh)
EP (1) EP3639352B1 (zh)
CN (1) CN212435577U (zh)
WO (1) WO2019024972A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3729583B1 (en) * 2017-12-21 2022-06-01 Hitachi Energy Switzerland AG Communicationless control of a converter station

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0721437B8 (pt) * 2007-03-13 2023-04-25 Siemens Ag Dispositivo para converter uma corrente elétrica e método para limitar dano a conversor tendo semicondutores de potência
JP5176006B2 (ja) 2009-10-06 2013-04-03 エー ビー ビー リサーチ リミテッド 電圧形コンバータ
EP2671297B1 (de) 2011-02-01 2018-05-02 Siemens Aktiengesellschaft Verfahren zum beseitigen eines fehlers an einer hochspannungs-gleichstromleitung, anlage zum übertragen eines elektrischen stromes über eine hochspannungs-gleichstromleitung und umrichter
JP5894777B2 (ja) * 2011-12-07 2016-03-30 株式会社日立製作所 電力変換装置
GB201209110D0 (en) 2012-05-24 2012-07-04 Alstom Technology Ltd Method of fault clearance
EP2946464B1 (en) 2013-01-21 2019-12-18 ABB Schweiz AG A multilevel converter with hybrid full-bridge cells
BR112015019684A2 (pt) 2013-02-22 2017-07-18 Siemens Ag aparelho para troca de potência elétrica e método para pré-carregamento de um aparelho para troca de potência elétrica
ES2792107T3 (es) * 2013-07-15 2020-11-10 Siemens Ag Convertidor CC/CC modular multinivel para aplicaciones de corriente continua de alta tensión
US20150102671A1 (en) * 2013-10-15 2015-04-16 General Electric Company Direct current power transmission system
WO2015110185A1 (en) 2014-01-21 2015-07-30 Abb Technology Ltd A multilevel converter with reduced ac fault handling rating
KR101622461B1 (ko) * 2014-05-13 2016-05-18 엘에스산전 주식회사 계기용 변압기의 편차 보상 방법
KR101666712B1 (ko) * 2014-05-13 2016-10-14 엘에스산전 주식회사 모듈형 멀티레벨 컨버터
WO2016046047A1 (en) * 2014-09-22 2016-03-31 Alstom Technology Ltd Synthetic test circuit
US9515574B2 (en) * 2014-11-17 2016-12-06 General Electric Company Modular embedded multi-level converter with midpoint balancing
KR102121932B1 (ko) * 2014-11-26 2020-06-11 엘에스일렉트릭(주) 고전압 직류 송전 시스템의 절연 설계 장치
CN106329899B (zh) * 2015-07-01 2018-10-16 南京南瑞继保电气有限公司 故障电流抑制阻尼器拓扑电路及其控制方法及换流器
CN105162155B (zh) * 2015-08-26 2017-10-27 浙江大学 一种具有直流故障穿越能力的串联混合型双极直流输电系统
EP3353881B1 (en) 2015-09-21 2019-11-27 ABB Schweiz AG A multilevel converter with a chopper circuit
CN105680409B (zh) * 2016-04-19 2018-03-30 南京南瑞继保电气有限公司 一种桥式电路、直流电流分断装置及其控制方法

Also Published As

Publication number Publication date
EP3639352A1 (de) 2020-04-22
US20210126555A1 (en) 2021-04-29
US11289996B2 (en) 2022-03-29
WO2019024972A1 (de) 2019-02-07
EP3639352B1 (de) 2023-10-04

Similar Documents

Publication Publication Date Title
US9748848B2 (en) Modular multilevel DC/DC converter for HVDC applications
US10637371B2 (en) Interface arrangement between an alternating current power system and a direct current power system with control of converter valve for fault protection
US11108338B2 (en) Dual submodule for a modular multilevel converter and modular multilevel converter including the same
Friedrich Modern HVDC PLUS application of VSC in modular multilevel converter topology
CN105191108B (zh) 变换器
US8934268B2 (en) Power electronic converter for use in high voltage direct current power transmission
US9041251B2 (en) Boost converter with multiple inputs and inverter circuit
US8553432B2 (en) Power transmission method and power transmission apparatus
US20130170255A1 (en) Apparatus for controlling the electric power transmission in a hvdc power transmission system
US9611836B2 (en) Wind turbine power conversion system
WO2012037964A1 (en) Series - connected dc / dc converter for controlling the power flow in a hvdc power transmission system
US20120120694A1 (en) Power conditioner for photovoltaic power generation
WO2015144644A1 (en) Voltage source converter and control thereof
KR20140146338A (ko) 멀티레벨 인버터
WO2012041544A1 (en) Modular converter with reduced protection requirements that prevent damage to components by extinguishing fault currents
US9774187B2 (en) Coupling-in and coupling-out of power in a branch of a DC voltage network node comprising a longitudinal voltage source
EP3446400A1 (en) Converter arrangement
US9602024B2 (en) DC/AC converter, power generation plant and operating method for a DC/AC converter
US11233463B2 (en) Modular multilevel converter
KR20210004589A (ko) 멀티 레벨 컨버터
CN212435577U (zh) 具有故障电流关断能力的电力变换器装置
US20230070123A1 (en) 3-phase pv inverter with 2-phase isolated operation in the event of a network fault
US10468884B2 (en) Device and method for controlling a load flow in an alternating-voltage network
CN117730476A (zh) 具有多种运行模式的基于单元的多电平转换器和相关联的控制方法
US10958190B2 (en) Multi-level voltage sourced converter

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211223

Address after: Munich, Germany

Patentee after: Siemens energy Global Ltd.

Address before: Munich, Germany

Patentee before: SIEMENS AG