KR102121932B1 - 고전압 직류 송전 시스템의 절연 설계 장치 - Google Patents

고전압 직류 송전 시스템의 절연 설계 장치 Download PDF

Info

Publication number
KR102121932B1
KR102121932B1 KR1020140166283A KR20140166283A KR102121932B1 KR 102121932 B1 KR102121932 B1 KR 102121932B1 KR 1020140166283 A KR1020140166283 A KR 1020140166283A KR 20140166283 A KR20140166283 A KR 20140166283A KR 102121932 B1 KR102121932 B1 KR 102121932B1
Authority
KR
South Korea
Prior art keywords
insulation
model
hvdc system
unit
hvdc
Prior art date
Application number
KR1020140166283A
Other languages
English (en)
Other versions
KR20160062949A (ko
Inventor
최호석
최용길
Original Assignee
엘에스일렉트릭(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스일렉트릭(주) filed Critical 엘에스일렉트릭(주)
Priority to KR1020140166283A priority Critical patent/KR102121932B1/ko
Priority to US14/793,420 priority patent/US10270250B2/en
Publication of KR20160062949A publication Critical patent/KR20160062949A/ko
Application granted granted Critical
Publication of KR102121932B1 publication Critical patent/KR102121932B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/4505Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/19Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only arranged for operation in series, e.g. for voltage multiplication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/7575Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only for high voltage direct transmission link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

실시 예에 따른 절연 설계 장치는, 고전압 직류 송전(high voltage direct current transmission, HVDC) 시스템의 절연 설계를 수행하는 절연 설계 장치에 있어서, 상기 HVDC 시스템의 전체 시스템에 대한 절연 모델을 생성하는 제 1 절연 모델 생성부; 상기 HVDC 시스템을 복수의 영역으로 구분하고, 상기 구분한 영역별로 절연 모델을 생성하는 제 2 절연 모델 생성부; 및 상기 제 1 절연 모델 생성부를 통해 생성된 절연 모델과, 상기 제 2 절연 모델 생성부를 통해 생성된 영역별 절연 모델이 요구 내전압을 만족하는지 검증하는 절연 검증부를 포함하며, 상기 제 2 절연 모델 생성부는, 시스템 단선도를 통하여 상기 HVDC 시스템의 각 설비, 기기 및 피뢰기의 위치를 선정하여 상기 HVDC 시스템에서 대표되는 설비를 선정하고, 상기 선정된 대표 설비를 기준으로 상기 HVDC 시스템을 복수의 영역으로 구분하며, 상기 구분된 영역별로 절연 모델을 생성한다.

Description

고전압 직류 송전 시스템의 절연 설계 장치{APPARATUS FOR INSULATION DESIGN OF HIGH VOLTAGE DIRECT CURRENT TRANSMISSION SYSTEM}
본 발명은 고전압 직류 송전(high voltage direct current transmission, HVDC) 시스템에 관한 것이다. 특히, 본 발명은 HVDC 시스템의 절연 설계 방법에 관한 것이다.
고전압 직류 송전(high voltage direct current transmission, HVDC) 시스템은 고전압 직류를 통해 전기를 멀리 보낸다.
일반적으로 HVDC 시스템은 가공 선로나 해저 케이블을 이용하여 전기를 전달한다.
HVDC 시스템은 투자 비용 적다는 것과, 케이블 길이의 한계가 없다는 것과, 전력 전송 손실이 적다는 장점으로 인해, 많이 활용되고 있다.
HVDC 시스템은 고전압 직류를 통해 전기를 전달하므로, 절연 설계의 중요도가 높다. 종래의 절연 설계 방식은 정해진 전압 값에 환경 요소와 오염도를 곱하는 방식을 취한다. 이 방식에 따르면, 시스템이 변할 때 마다 계산을 다시 수행되어야 하고, HVDC 시스템의 설계 값이 절연 설계에 반영되지 못하는 문제점이 있다. 특히, 실제 시스템 적용 시에는 각 섹션 별, 전압 변동 별로 절연을 재 설계해야 하는 번거로움이 존재한다.
실시 예에서는, 절연 설계의 편의성을 제공하고 설계의 번거로움을 제거하는 절연 설계 장치 및 방법을 제공한다.
또한, 실시 예에서는 HVDC 시스템을 복수의 영역으로 구분하고, 상기 구분한 영역별로 절연 모델링을 수행할 수 있는 절연 설계 장치 및 방법을 제공한다.
또한, 실시 예에서는 HVDC 시스템이 변경되는 경우, 전체 시스템에 대한 절연 설계를 재해석하지 않으면서 필요한 특정 영역에 대한 절연 설계만을 부분적으로 수행할 수 있도록 한 절연 설계 장치 및 방법을 제공한다.
제안되는 실시 예에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 제안되는 실시 예가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
실시 예에 따른 절연 설계 장치는, 고전압 직류 송전(high voltage direct current transmission, HVDC) 시스템의 절연 설계를 수행하는 절연 설계 장치에 있어서, 상기 HVDC 시스템의 전체 시스템에 대한 절연 모델을 생성하는 제 1 절연 모델 생성부; 상기 HVDC 시스템을 복수의 영역으로 구분하고, 상기 구분한 영역별로 절연 모델을 생성하는 제 2 절연 모델 생성부; 및 상기 제 1 절연 모델 생성부를 통해 생성된 절연 모델과, 상기 제 2 절연 모델 생성부를 통해 생성된 영역별 절연 모델이 요구 내전압을 만족하는지 검증하는 절연 검증부를 포함하며, 상기 제 2 절연 모델 생성부는, 시스템 단선도를 통하여 상기 HVDC 시스템의 각 설비, 기기 및 피뢰기의 위치를 선정하여 상기 HVDC 시스템에서 대표되는 설비를 선정하고, 상기 선정된 대표 설비를 기준으로 상기 HVDC 시스템을 복수의 영역으로 구분하며, 상기 구분된 영역별로 절연 모델을 생성한다.
또한, 상기 제 2 절연 모델 생성부는, 상기 HVDC 시스템을 복수의 영역으로 구분하기 위한 자료를 수집하는 자료 수집부와, 상기 수집된 자료를 기초로 상기 HVDC 시스템을 복수의 영역으로 구분하는 절연 설계 영역 구분부와, 상기 절연 설계 영역 구분부를 통해 구분된 복수의 영역의 각각에 대한 절연 모델을 생성하는 절연 모델링부를 포함한다.
또한, 상기 절연 설계 영역 구분부는, 상기 HVDC 시스템을 송전 측 교류 파트, 송전 측 변전 파트, 직류 송전 파트, 수요 측 변전 파트, 수요 측 교류 파트, 송전 측 트랜스포머 파트, 송전 측 교류-직류 컨버터 파트, 수요 측 직류-교류 컨버터 파트 및 수요 측 트랜스포머 파트 중 적어도 2개 이상을 포함하는 영역으로 구분한다.
또한, 상기 제 2 절연 모델 생성부는, 상기 구분된 영역별로 스트레스 전압을 구분하여 적용하고, 상기 적용된 스트레스 전압을 기준으로 상기 구분된 영역별 절연 거리를 산정하는 시스템 절연 설계부를 더 포함한다.
또한, 상기 제 2 절연 모델 생성부는, 운전 최고 전압을 기준으로 상기 구분된 영역별로 절연 모델을 생성하는 영역별 제 1 모델링부와, 환경 요소 팩터를 토대로 절연 거리 변화를 검토하여 상기 제 1 모델링부를 통해 생성된 영역별 절연 모델을 수정하는 영역별 제 2 모델링부를 포함한다.
또한, 상기 제 1 절연 모델 생성부는, 상기 HVDC 시스템의 과전압 및 상기 정격 전압에 기초하여 상기 HVDC 시스템을 모델링하여 상기 HVDC 시스템의 절연 기본 모델을 생성하는 제1 절연 모델링부와, 상기 절연 기본 모델의 절연 산정을 수행하여 상기 HVDC 시스템의 절연 기본 모델의 기능 수행에 적합한 절연 협조 내전압을 결정하는 절연 레벨 산정부와, 상기 절연 협조 내전압에 기초하여 상기 HVDC 시스템의 절연 기본 모델을 수정하여 상기 HVDC 시스템의 절연 모델을 생성하는 제2 절연 모델링부와, 상기 HVDC 시스템의 절연 모델의 기준 내전압을 만족하는 정격 절연 레벨을 산정하는 정격 절연 레벨 산정부와, 상기 HVDC 시스템을 분석하여 상기 HVDC 시스템의 과전압 및 정격 전압을 산출하는 시스템 분석부를 포함한다.
또한, 상기 제 1 절연 모델 생성부는, 상기 제 2 절연 모델 생성부를 통해 생성된 영역별 절연 모델을 토대로 상기 영역별 임피던스 변화에 기초하여 상기 HVDC 시스템의 절연 모델을 수정하여 수정된 절연 모델을 생성하는 제3 절연 모델링부를 더 포함한다.
또한, 상기 제2 절연 모델링부는 상기 HVDC 시스템의 실제 운전 상태와 상기 HVDC 시스템의 절연 기본 모델의 상태의 차이 및 절연 협조 내전압에 기초하여 상기 HVDC 시스템의 절연 기본 모델을 수정하여 상기 HVDC 시스템의 절연 모델을 생성한다.
또한, 상기 HVDC 시스템의 실제 운전 상태와 상기 HVDC 시스템의 절연 기본 모델의 상태의 차이는 환경 요소의 차이, 구성 요소의 시험의 차이, 제품 특성의 편차, 설치 상태의 차이, 운전 수명의 차이, 안전을 위해 고려되어야 할 안전 팩터 중 적어도 하나를 포함한다.
또한, 상기 제 1 절연 모델 생성부는, 상기 HVDC 시스템의 절연 모델의 요구 내전압을 산정하는 요구 내전압 산정부와, 상기 HVDC 시스템의 절연 모델의 요구 내전압으로부터 상기 HVDC 시스템의 절연 모델의 기준 내전압을 산정하는 기준 내전압 산정부를 더 포함한다.
또한, 상기 기준 내전압 산정부는 시험 상태, 시험 변환 요소, 전압 범위 중 적어도 하나에 기초하여 상기 HVDC 시스템의 절연 모델의 요구 내전압으로부터 상기 HVDC 시스템의 절연 모델의 기준 내전압을 산정한다.
또한, 상기 정격 절연 레벨은 상기 HVDC 시스템의 하나 이상의 위치의 전압값 및 거리값을 포함한다.
또한, 상기 절연 레벨 산정부는 상기 HVDC 시스템의 절연 기본 모델의 절연 특성, 상기 HVDC 시스템의 절연 기본 모델의 기능, 상기 HVDC 시스템의 절연 기본 모델 상의 데이터의 통계적 분포, 상기 HVDC 시스템의 절연 기본 모델의 입력 데이터의 부정확성, 상기 HVDC 시스템의 절연 기본 모델의 구성 요소의 결합에 영향을 주는 요인 중 적어도 하나에 기초하여 상기 HVDC 시스템의 절연 기본 모델의 절연 산정을 수행한다.
실시예에 따르면, 절연 설계 모델링을 하여 실제 시스템에 절연 설계 값을 적용할 때, 편의성을 제공할 수 있다.
실시예에 따르면, 시스템 설계, 전압, 환경 요소, 오염도가 변하는 경우 모든 변수를 재설계해야하는 불편함을 제거하여 절연 설계 적용의 편의성을 제공할 수 있다.
실시예에 따르면, 절연 설계의 번거로움을 없애기 위해 모델링을 통하여 인가 전압 변동에 대한 절연 값을 구하여 절연 설계의 편의성 및 설계의 번거로움을 제거할 수 있다.
실시 예에 따르면, HVDC 절연설계와 관련하여 절연 모델을 개발하고, 절연 설계 절차에 적용하여 설계를 검증함으로써 기존의 설계 방식에 비해 설계 근거에 대한 신뢰도를 향상시킬 수 있다.
실시 예에 따르면, 모델이 없는 기존의 방식과 비교하여 새로운 시스템의 설계 또는 설계에 영향을 주는 요소가 발생하였을 경우 많은 시간과 비용을 투자해 재설계를 해야 하는 번거로움을 줄일수 있다.
실시 예에 따르면, 전체 시스템을 복수의 영역으로 구분하고, 상기 구분된 영역별로 절연 설계 모델링을 진행함으로써, 설계 대상 시스템이 변경되는 경우에 전체 시스템에 대한 절연 설계를 재해석하지 않고 변경된 영역에 대해서만 별도로 절연 설계 모델링을 진행해도 됨에 따른 절연 설계 적용의 편의성을 달성할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 고전압 직류 송전(high voltage direct current transmission, HVDC transmission) 시스템의 구성을 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시 예에 따른 모노폴라 방식의 고전압 직류 송전 시스템의 구성을 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시 예에 따른 바이폴라 방식의 고전압 직류 송전 시스템의 구성을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시 예에 따른 트랜스포머와 3상 밸브 브릿지의 결선을 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시 예에 따른 모듈형 멀티레벨 컨버터의 구성 블록도이다.
도 6은 본 발명의 다른 실시 예에 따른 모듈형 멀티레벨 컨버터의 구성 블록도이다.
도 7은 본 발명의 일 실시 예에 따른 복수의 서브 모듈의 연결을 나타낸다.
도 8은 본 발명의 일 실시 예에 따른 서브 모듈 구성의 예시도이다.
도 9는 본 발명의 일 실시 예에 따른 서브 모듈의 등가 모델을 나타낸다.
도 10 내지 도 13은 본 발명의 일 실시 예에 따른 서브 모듈의 동작을 나타낸다.
도 14는 본 발명의 실시예에 따른 HVDC 시스템의 절연 설계 장치의 구성을 보여주는 블록도이다.
도 15는 도 14의 전체 시스템 모델링부의 상세 구성을 보여주는 블록도이다.
도 16은 도 14의 영역별 모델링부의 상세 구성을 보여주는 블록도이다.
도 17은 본 발명의 실시예에 따른 HVDC 시스템의 절연 설계 장치의 동작 방법을 보여주는 흐름도이다.
도 18은 도 17의 전체 시스템의 절연 모델 생성 과정을 보다 구체적으로 보여주는 흐름도이다.
도 19는 도 17의 영역별 절연 모델 생성 과정을 보다 구체적으로 보여주는 흐름도이다.
도 20은 본 발명의 실시 예에 따른 영역별 절연 설계 모델 및 검증의 일 예를 보여주는 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시 예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
첨부된 도면의 각 블록과 흐름도의 각 단계의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수도 있다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 도면의 각 블록 또는 흐름도의 각 단계에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 도면의 각 블록 또는 흐름도 각 단계에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 도면의 각 블록 및 흐름도의 각 단계에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록 또는 각 단계는 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시 예들에서는 블록들 또는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들 또는 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들 또는 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
도 1은 본 발명의 실시예에 따른 고전압 직류 송전(high voltage direct current transmission, HVDC transmission) 시스템을 보여준다.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 HVDC 시스템(100)은 발전 파트(101), 송전 측 교류 파트(110), 송전 측 변전 파트(103), 직류 송전 파트(140), 수요 측 변전 파트(105), 수요 측 교류 파트(170), 수요 파트(180), 및 제어 파트(190)를 포함한다. 송전 측 변전 파트(103)는 송전 측 트랜스포머 파트(120), 송전 측 교류-직류 컨버터 파트(130)를 포함한다. 수요 측 변전 파트(105)는 수요 측 직류-교류 컨버터 파트(150), 수요 측 트랜스포머 파트(160)를 포함한다.
발전 파트(101)는 3상의 교류 전력을 생성한다. 발전 파트(101)는 복수의 발전소를 포함할 수 있다.
송전 측 교류 파트(110)는 발전 파트(101)가 생성한 3상 교류 전력을 송전 측 트랜스포머 파트(120)와 송전 측 교류-직류 컨버터 파트(130)를 포함하는 DC 변전소에 전달한다.
송전 측 트랜스포머 파트(120)는 송전 측 교류 파트(110)를 송전 측 교류-직류 컨버터 파트(130) 및 직류 송전 파트(140)로부터 격리한다(isolate).
송전 측 교류-직류 컨버터 파트(130)는 송전 측 트랜스포머 파트(120)의 출력에 해당하는 3상 교류 전력를 직류 전력으로 변환한다.
직류 송전 파트(140)는 송전 측의 직류 전력을 수요 측으로 전달한다.
수요 측 직류-교류 컨버터 파트(150)는 직류 송전 파트(140)에 의해 전달된 직류 전력을 3상 교류 전력으로 변환한다.
수요 측 트랜스포머 파트(160)는 수요 측 교류 파트(170)를 수요 측 직류-교류 컨버터 파트(150)와 직류 송전 파트(140)로부터 격리한다.
수요 측 교류 파트(170)는 수요 측 트랜스포머 파트(160)의 출력에 해당하는 3상 교류 전력을 수요 파트(180)에 제공한다.
제어 파트(190)는 발전 파트(101), 송전 측 교류 파트(110), 송전 측 변전 파트(103), 직류 송전 파트(140), 수요 측 변전 파트(105), 수요 측 교류 파트(170), 수요 파트(180), 제어 파트(190), 송전 측 교류-직류 컨버터 파트(130), 수요 측 직류-교류 컨버터 파트(150) 중 적어도 하나를 제어한다. 특히, 제어 파트(190)는 송전 측 교류-직류 컨버터 파트(130)와 수요 측 직류-교류 컨버터 파트(150) 내의 복수의 밸브의 턴온 및 턴오프의 타이밍을 제어할 수 있다. 이때, 밸브는 싸이리스터 또는 절연 게이트 양극성 트랜지스터(insulated gate bipolar transistor, IGBT)에 해당할 수 있다.
도 2는 본 발명의 실시예에 따른 모노폴라 방식의 고전압 직류 송전 시스템을 보여준다.
특히, 도 2는 단일의 극의 직류 전력을 송전하는 시스템을 보여준다. 이하의 설명에서는 단일의 극은 양극(positive pole)임을 가정하여 설명하나 이에 한정될 필요는 없다.
송전 측 교류 파트(110)는 교류 송전 라인(111)과 교류 필터(113)를 포함한다.
교류 송전 라인(111)은 발전 파트(101)가 생성한 3상의 교류 전력을 송전 측 변전 파트(103)로 전달한다.
교류 필터(113)는 변전 파트(103)이 이용하는 주파수 성분 이외의 나머지 주파수 성분을 전달된 3상 교류 전력에서 제거한다.
송전 측 트랜스포머 파트(120)는 양극을 위하여 하나 이상의 트랜스포머(121)를 포함한다. 양극을 위하여 송전 측 교류-직류 컨버터 파트(130)는 양극 직류 전력을 생성하는 교류-양극 직류 컨버터(131)를 포함하고, 이 교류-양극 직류 컨버터(131)는 하나 이상의 트랜스포머(121)에 각각 대응하는 하나 이상의 3상 밸브 브릿지(131a)를 포함한다.
하나의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 6개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.
2개의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 12개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다.
3개의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 18개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 양극 직류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.
직류 송전 파트(140)는 송전 측 양극 직류 필터(141), 양극 직류 송전 라인(143), 수요 측 양극 직류 필터(145)를 포함한다.
송전 측 양극 직류 필터(141)는 인덕터(L1)와 커패시터(C1)를 포함하며, 교류-양극 직류 컨버터(131)가 출력하는 양극 직류 전력을 직류 필터링한다.
양극 직류 송전 라인(143)는 양극 직류 전력의 전송을 위한 하나의 DC 라인을 가지고, 전류의 귀환 통로로는 대지가 이용할 수 있다. 이 DC 라인 상에는 하나 이상의 스위치가 배치될 수 있다.
수요 측 양극 직류 필터(145)는 인덕터(L2)와 커패시터(C2)를 포함하며, 양극 직류 송전 라인(143)을 통해 전달된 양극 직류 전력을 직류 필터링한다.
수요 측 직류-교류 컨버터 파트(150)는 양극 직류-교류 컨버터(151)를 포함하고, 양극 직류-교류 컨버터(151)는 하나 이상의 3상 밸브 브릿지(151a)를 포함한다.
수요 측 트랜스포머 파트(160)는 양극을 위하여 하나 이상의 3상 밸브 브릿지(151a)에 각각 대응하는 하나 이상의 트랜스포머(161)를 포함한다.
하나의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 6개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.
2개의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 12개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다.
3개의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 18개의 펄스를 가지는 교류 전력을 생성할 수 있다. 교류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.
수요 측 교류 파트(170)는 교류 필터(171)와 교류 송전 라인(173)을 포함한다.
교류 필터(171)는 수요 파트(180)가 이용하는 주파수 성분(예컨데, 60Hz) 이외의 나머지 주파수 성분을, 수요 측 변전 파트(105)가 생성하는 교류 전력에서 제거한다.
교류 송전 라인(173)은 필터링된 교류 전력을 수요 파트(180)에 전달한다.
도 3은 본 발명의 실시예에 따른 바이폴라 방식의 고전압 직류 송전 시스템을 보여준다.
특히, 도 3은 2개의 극의 직류 전력을 송전하는 시스템을 보여준다. 이하의 설명에서는 2개의 극은 양극(positive pole)과 음극(negative pole)임을 가정하여 설명하나 이에 한정될 필요는 없다.
송전 측 교류 파트(110)는 교류 송전 라인(111)과 교류 필터(113)를 포함한다.
교류 송전 라인(111)은 발전 파트(101)가 생성한 3상의 교류 전력을 송전 측 변전 파트(103)로 전달한다.
교류 필터(113)는 변전 파트(103)이 이용하는 주파수 성분 이외의 나머지 주파수 성분을 전달된 3상 교류 전력에서 제거한다.
송전 측 트랜스포머 파트(120)는 양극을 위한 하나 이상의 트랜스포머(121)를 포함하고, 음극을 위한 하나 이상의 트랜스포머(122)를 포함한다. 송전 측 교류-직류 컨버터 파트(130)는 양극 직류 전력을 생성하는 교류-양극 직류 컨버터(131)와 음극 직류 전력을 생성하는 교류-음극 직류 컨버터(132)를 포함하고, 교류-양극 직류 컨버터(131)는 양극을 위한 하나 이상의 트랜스포머(121)에 각각 대응하는 하나 이상의 3상 밸브 브릿지(131a)를 포함하고, 교류-음극 직류 컨버터(132)는 음극을 위한 하나 이상의 트랜스포머(122)에 각각 대응하는 하나 이상의 3상 밸브 브릿지(132a)를 포함한다.
양극을 위하여 하나의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 6개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.
양극을 위하여 2개의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 12개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다.
양극을 위하여 3개의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 18개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 양극 직류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.
음극을 위하여 하나의 3상 밸브 브릿지(132a)가 이용되는 경우, 교류-음극 직류 컨버터(132)는 6개의 펄스를 가지는 음극 직류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(122)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.
음극을 위하여 2개의 3상 밸브 브릿지(132a)가 이용되는 경우, 교류-음극 직류 컨버터(132)는 12개의 펄스를 가지는 음극 직류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(122)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(122)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다.
음극을 위하여 3개의 3상 밸브 브릿지(132a)가 이용되는 경우, 교류-음극 직류 컨버터(132)는 18개의 펄스를 가지는 음극 직류 전력을 생성할 수 있다. 음극 직류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.
직류 송전 파트(140)는 송전 측 양극 직류 필터(141), 송전 측 음극 직류 필터(142), 양극 직류 송전 라인(143), 음극 직류 송전 라인(144), 수요 측 양극 직류 필터(145), 수요 측 음극 직류 필터(146)를 포함한다.
송전 측 양극 직류 필터(141)는 인덕터(L1)와 커패시터(C1)를 포함하며, 교류-양극 직류 컨버터(131)가 출력하는 양극 직류 전력을 직류 필터링한다.
송전 측 음극 직류 필터(142)는 인덕터(L3)와 커패시터(C3)를 포함하며, 교류-음극 직류 컨버터(132)가 출력하는 음극 직류 전력을 직류 필터링한다.
양극 직류 송전 라인(143)는 양극 직류 전력의 전송을 위한 하나의 DC 라인을 가지고, 전류의 귀환 통로로는 대지가 이용할 수 있다. 이 DC 라인 상에는 하나 이상의 스위치가 배치될 수 있다.
음극 직류 송전 라인(144)는 음극 직류 전력의 전송을 위한 하나의 DC 라인을 가지고, 전류의 귀환 통로로는 대지가 이용할 수 있다. 이 DC 라인 상에는 하나 이상의 스위치가 배치될 수 있다.
수요 측 양극 직류 필터(145)는 인덕터(L2)와 커패시터(C2)를 포함하며, 양극 직류 송전 라인(143)을 통해 전달된 양극 직류 전력을 직류 필터링한다.
수요 측 음극 직류 필터(146)는 인덕터(L4)와 커패시터(C4)를 포함하며, 음극 직류 송전 라인(144)을 통해 전달된 음극 직류 전력을 직류 필터링한다.
수요 측 직류-교류 컨버터 파트(150)는 양극 직류-교류 컨버터(151)와 음극 직류-교류 컨버터(152)를 포함하고, 양극 직류-교류 컨버터(151)는 하나 이상의 3상 밸브 브릿지(151a)를 포함하고, 음극 직류-교류 컨버터(152)는 하나 이상의 3상 밸브 브릿지(152a)를 포함한다.
수요 측 트랜스포머 파트(160)는 양극을 위하여 하나 이상의 3상 밸브 브릿지(151a)에 각각 대응하는 하나 이상의 트랜스포머(161)를 포함하고, 음극을 위하여 하나 이상의 3상 밸브 브릿지(152a)에 각각 대응하는 하나 이상의 트랜스포머(162)를 포함한다.
양극을 위하여 하나의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 6개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.
양극을 위하여 2개의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 12개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다.
양극을 위하여 3개의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 18개의 펄스를 가지는 교류 전력을 생성할 수 있다. 교류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.
음극을 위하여 하나의 3상 밸브 브릿지(152a)가 이용되는 경우, 음극 직류-교류 컨버터(152)는 음극 직류 전력을 이용하여 6개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(162)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.
음극을 위하여 2개의 3상 밸브 브릿지(152a)가 이용되는 경우, 음극 직류-교류 컨버터(152)는 음극 직류 전력을 이용하여 12개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(162)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(162)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다.
음극을 위하여 3개의 3상 밸브 브릿지(152a)가 이용되는 경우, 음극 직류-교류 컨버터(152)는 음극 직류 전력을 이용하여 18개의 펄스를 가지는 교류 전력을 생성할 수 있다. 교류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.
수요 측 교류 파트(170)는 교류 필터(171)와 교류 송전 라인(173)을 포함한다.
교류 필터(171)는 수요 파트(180)가 이용하는 주파수 성분(예컨데, 60Hz) 이외의 나머지 주파수 성분을, 수요 측 변전 파트(105)가 생성하는 교류 전력에서 제거한다.
교류 송전 라인(173)은 필터링된 교류 전력을 수요 파트(180)에 전달한다.
도 4는 본 발명의 실시예에 따른 트랜스포머와 3상 밸브 브릿지의 결선을 보여준다.
특히, 도 4는 양극을 위한 2개의 트랜스포머(121)와 양극을 위한 2개의 3상 밸브 브릿지(131a)의 결선을 보여준다. 음극을 위한 2개의 트랜스포머(122)와 음극을 위한 2개의 3상 밸브 브릿지(132a)의 결선, 양극을 위한 2개의 트랜스포머(161)와 양극을 위한 2개의 3상 밸브 브릿지(151a)의 결선, 음극을 위한 2개의 트랜스포머(162)와 음극을 위한 2개의 3상 밸브 브릿지(152a)의 결선, 양극을 위한 1개의 트랜스포머(121)와 양극을 위한 1개의 3상 밸브 브릿지(131a), 양극을 위한 1개의 트랜스포머(161)와 양극을 위한 1개의 3상 밸브 브릿지(151a)의 결선 등은 도 4의 실시예로부터 용이하게 도출할 수 있으므로, 그 도면과 설명은 생략한다.
도 4에서, Y-Y 형상의 결선을 가지는 트랜스포머(121)를 상측 트랜스포머, Y-Δ 형상의 결선을 가지는 트랜스포머(121)를 하측 트랜스포머, 상측 트랜스포머에 연결되는 3상 밸브 브릿지(131a)를 상측 3상 밸브 브릿지, 하측 트랜스포머에 연결되는 3상 밸브 브릿지(131a)를 하측 3상 밸브 브릿지라고 부르도록 한다.
상측 3상 밸브 브릿지와 하측 3상 밸브 브릿지는 직류 전력을 출력하는 2개의 출력단인 제1 출력단(OUT1)과 제2 출력단(OUT2)을 가진다.
상측 3상 밸브 브릿지는 6개의 밸브(D1-D6)를 포함하고, 하측 3상 밸브 브릿지는 6개의 밸브(D7-D12)를 포함한다.
밸브(D1)는 제1 출력단(OUT1)에 연결되는 캐소드와 상측 트랜스포머의 2차측 코일의 제1 단자에 연결되는 애노드를 가진다.
밸브(D2)는 밸브(D5)의 애노드에 연결되는 캐소드와 밸브(D6)의 애노드에 연결되는 애노드를 가진다.
밸브(D3)는 제1 출력단(OUT1)에 연결되는 캐소드와 상측 트랜스포머의 2차측 코일의 제2 단자에 연결되는 애노드를 가진다.
밸브(D4)는 밸브(D1)의 애노드에 연결되는 캐소드와 밸브(D6)의 애노드에 연결되는 애노드를 가진다.
밸브(D5)는 제1 출력단(OUT1)에 연결되는 캐소드와 상측 트랜스포머의 2차측 코일의 제3 단자에 연결되는 애노드를 가진다.
밸브(D6)는 밸브(D3)의 애노드에 연결되는 캐소드를 가진다.
밸브(D7)는 밸브(D6)의 애노드에 연결되는 캐소드와 하측 트랜스포머의 2차측 코일의 제1 단자에 연결되는 애노드를 가진다.
밸브(D8)는 밸브(D11)의 애노드에 연결되는 캐소드와 제2 출력단(OUT2)에 연결되는 애노드를 가진다.
밸브(D9)는 밸브(D6)의 애노드에 연결되는 캐소드와 하측 트랜스포머의 2차측 코일의 제2 단자에 연결되는 애노드를 가진다.
밸브(D10)는 밸브(D7)의 애노드에 연결되는 캐소드와 제2 출력단(OUT2)에 연결되는 애노드를 가진다.
밸브(D11)는 밸브(D6)의 애노드에 연결되는 캐소드와 하측 트랜스포머의 2차측 코일의 제3 단자에 연결되는 애노드를 가진다.
밸브(D12)는 밸브(D9)의 애노드에 연결되는 캐소드와 제2 출력단(OUT2)에 연결되는 애노드를 가진다.
한편, 수요 측 직류-교류 컨버터 파트(150)는 모듈형 멀티레벨 컨버터(Modular Mulit-Level Converter, 200)로 구성될 수 있다.
모듈형 멀티레벨 컨버터(200)는 복수의 서브 모듈(210)을 이용하여 직류 전력을 교류 전력으로 변환할 수 있다.
도 5 및 6을 참고하여 모듈형 멀티레벨 컨버터(200)의 구성을 설명한다.
도 5 및 6은 모듈형 멀티레벨 컨버터(200)의 구성 블록도이다.
모듈형 멀티레벨 컨버터(200)는 중앙 제어기(250), 복수의 서브 제어기(230), 복수의 서브 모듈(210)을 포함한다.
중앙 제어기(250)는 복수의 서브 제어기(230)를 제어하고, 각각의 서브 제어기(230)는 자신과 연결된 각각의 서브 모듈(210)을 제어할 수 있다.
이때, 도 5에서와 같이, 하나의 서브 제어기(230)는 하나의 서브 모듈(210)과 연결되고, 그에 따라 상기 중앙 제어기(250)를 통해 전송되는 제어 신호를 기준으로 자신과 연결된 하나의 서브 모듈(210)의 스위칭 동작을 제어할 수 있다.
또한, 이와 다르게, 도 6에서와 같이 하나의 서브 제어기(230)는 복수의 서브 모듈(210)과 연결되고, 그에 따라 상기 중앙 제어기(250)를 통해 전송되는 복수의 제어 신호를 이용하여 상기 자신과 연결된 복수의 서브 모듈(210)에 대한 각각의 제어 신호를 확인하고, 상기 확인한 제어 신호를 기준으로 상기 복수의 서브 모듈(210)을 각각 제어할 수 있다.
상기 중앙 제어기(250)는 상기 복수의 서브 모듈(210)의 동작 조건을 결정하고, 상기 결정한 동작 조건에 따라 상기 복수의 서브 모듈(210)의 동작을 제어하기 위한 제어 신호를 생성한다.
상기 동작 조건은, 방전 동작, 충전 동작 및 바이패스 동작을 포함할 수 있다.
이때, 상기 복수의 서브 모듈(210) 각각에는 서로 다른 어드레스가 할당되어 있다.
바람직하게, 상기 복수의 서브 모듈(210) 각각에는 배치 순서대로 앞에서부터 순차적으로 증가하는 어드레스가 할당된다.
즉, 서브 모듈(210)은 직류 전력을 입력받아 충전, 방전 및 바이패스 동작 중 어느 하나의 동작을 수행할 수 있다.
서브 모듈(210)은 다이오드를 포함하는 스위칭 소자로 구성되며, 이에 따라 스위칭 동작과 다이오드의 정류 동작으로 서브 모듈(210)의 충전, 방전 및 바이패스 동작 중 어느 하나의 동작을 수행할 수 있다.
상기 서브 제어기(230) 각각은, 상기 중앙 제어기(250)를 통해 상기 복수의 서브 모듈(210)을 제어하기 위한 스위칭 신호를 전달받고, 상기 전달받은 스위칭 신호에 따라 상기 서브 모듈(210)의 스위칭 동작을 제어한다.
즉, 중앙 제어기(250)는 모듈형 멀티레벨 컨버터(200)의 전반적인 동작을 제어할 수 있다.
중앙 제어기(250)는 자신과 연계된 교류 파트(110, 170) 및 직류 송전 파트(140)의 전류, 전압을 측정할 수 있다.
또한, 중앙 제어기(250)는 전체 제어값을 산출할 수 있다.
여기서 전체 제어값이란, 모듈형 멀티레벨 컨버터(200)의 출력 교류 전력의 전압, 전류, 주파수 크기에 대한 목표값일 수 있다.
중앙 제어기(250)는 모듈형 멀티레벨 컨버터(200)와 연계된 교류 파트(110, 170)의 전류, 전압 및 직류 송전 파트(140)의 전류, 전압 중 하나 이상을 기초로 전체 제어값을 산출할 수 있다.
한편, 중앙 제어기(250)는 통신 장치(미도시)를 통해 상위 제어기(미도시)로부터 수신한 기준 유효 전력, 기준 무효 전력, 기준 전류, 기준 전압 중 하나 이상을 기초로 모듈형 멀티레벨 컨버터(200)의 동작을 제어할 수도 있다.
중앙 제어기(250)는 상기 서브 제어기(230)와 데이터를 주고 받을 수 있다.
이때, 본 발명에서의 중앙 제어기(250)는 상기 복수의 서브 모듈(210)의 배치 순서대로 어드레스를 할당하고, 상기 할당된 어드레스를 이용하여 상기 복수의 서브 모듈(210)의 스위칭 순서를 결정한다.
즉, 일반적으로 상기 복수의 서브 모듈(210)은 모두 동일한 스위칭 조건 내에서 동작하는 것이 아니라, 현재 필요한 목표 전압에 따라 특정 서브 모듈은 충전 또는 바이패스 동작을 수행하고, 나머지 서브 모듈은 방전 동작을 수행하게 된다.
이에 따라, 상기 중앙 제어기(250)는 상기 방전 동작을 수행할 서브 모듈을 우선적으로 결정해야 한다.
이때, 상기 방전 동작을 수행함에 따라 상기 복수의 서브 모듈(210)이 서로 균형성 있는 빈도 내에서 방전 동작을 수행해야만 상기 복수의 서브 모듈(210)의 수명을 증가시킬 수 있다.
다시 말해서, 특정 서브 모듈의 방전 동작 빈도가 높으면, 상기 특정 서브 모듈의 수명은 방전 동작 빈도가 낮은 다른 서브 모듈의 수명보다 낮게 나타난다.
따라서, 상기 복수의 서브 모듈(210)의 스위칭 빈도의 균형성을 유지하면서, 보다 빠른 시간에 상기 복수의 서브 모듈(210)의 스위칭 조건을 결정하는 것은 매우 중요한 요소이다.
이에 따라, 본 발명에서는 상기 순차적으로 할당된 어드레스의 순서대로 상기 복수의 서브 모듈(210)의 스위칭 순서를 결정한다.
예를 들어, 1번에서 5번까지의 어드레스가 각각 할당된 서브 모듈이 존재하는 경우, 상기 중앙 제어기(250)는 상기 1번에서부터 방전 동작이 이루어지도록 한다. 이때, 상기 방전 동작이 이루어지는 서브 모듈의 수는 상기 복수의 서브 모듈이 각각 충전한 전압 값과, 목표 값을 기준으로 결정된다.
즉, 상기 중앙 제어기(250)는 복수의 서브 모듈이 가지는 충전 전압 값의 합이 상기 목표 값에 도달하도록 상기 스위칭 조건을 결정한다. 다시 말해서, 1번 어드레스가 할당된 서브 모듈과, 2번 어드레스가 할당된 서브 모듈만이 방전해도 상기 목표 값에 대응하는 전력을 출력할 수 있다면, 상기 중앙 제어기(250)는 상기 1번 및 2 번 어드레스가 할당된 서브 모듈만이 방전 동작을 수행하도록 한다.
그리고, 상기 중앙 제어기(250)는 다음 스위칭 조건을 결정할 때, 이전 시점에서 방전 동작을 수행한 서브 모듈 중 가장 마지막 어드레스를 가진 서브 모듈의 다음 서브모듈부터 상기 방전 동작을 수행할 서브 모듈을 결정한다.
이에 대해서는 하기에서 더욱 상세히 설명하기로 한다.
도 7을 참고하여, 모듈형 멀티레벨 컨버터(200)에 포함되는 복수의 서브 모듈(210)의 연결을 설명한다.
도 7은 3상 모듈형 멀티레벨 컨버터(200)에 포함되는 복수의 서브 모듈(210)의 연결을 나타낸다.
도 7을 참고하면, 복수의 서브 모듈(210)은 직렬로 연결될 수 있으며, 하나의 상(Phase)의 양극 또는 음극에 연결된 복수의 서브 모듈(210)을 하나의 암(Arm)을 구성할 수 있다.
3상 모듈형 멀티레벨 컨버터(200)는 일반적으로 6개의 암(Arm)으로 구성될 수 있으며, A, B, C인 3상 각각에 대해 양극과 음극으로 구성되어 6개의 암(Arm)으로 구성될 수 있다.
이에 따라, 3상 모듈형 멀티레벨 컨버터(200)는 A상 양극에 대한 복수의 서브 모듈(210)로 구성되는 제1 암(221), A상 음극에 대한 복수의 서브 모듈(210)로 구성되는 제2 암(222), B상 양극에 대한 복수의 서브 모듈(210)로 구성되는 제3 암(223), B상 음극에 대한 복수의 서브 모듈(210)로 구성되는 제4 암(224), C상 양극에 대한 복수의 서브 모듈(210)로 구성되는 제5 암(225), C상 음극에 대한 복수의 서브 모듈(210)로 구성되는 제6 암(226)으로 구성될 수 있다.
그리고 하나의 상(Phase)에 대한 복수의 서브 모듈(210)은 레그(Leg)를 구성할 수 있다.
이에 따라, 3상 모듈형 멀티레벨 컨버터(200)는 A상에 대한 복수의 서브 모듈(210)을 포함하는 A상 레그(227)과, B상에 대한 복수의 서브 모듈(210)을 포함하는 B상 레그(228), C상에 대한 복수의 서브 모듈(210)을 포함하는 C상 레그(229)로 구성될 수 있다.
그래서 제1 암(221) 내지 제 6암(226)은 각각 A, B, C상 레그(227, 228, 229)에 포함된다.
구체적으로, A상 레그(227)에는 A상의 양극 암인 제1 암(221)과 음극 암인 제2 암(222)이 포함되며, B상 레그(228)에는 B상의 양극 암인 제3 암(223)과 음극 암인 제4 암(224)가 포함된다. 그리고 C상 레그(229)에는 C상의 양극 암인 제5 암(225)과 음극 암인 제6 암(226)이 포함된다.
또한, 복수의 서브 모듈(210)은 극성에 따라 양극 암(Arm, 227)과 음극 암(Arm, 228)을 구성할 수 있다.
구체적으로 도 7을 참고하면, 모듈형 멀티레벨 컨버터(200)에 포함되는 복수의 서브 모듈(210)은 중성선(n)을 기준으로 양극에 대응하는 복수의 서브 모듈(210)과 음극에 대응하는 복수의 서브 모듈(210)로 분류할 수 있다.
그래서 모듈형 멀티레벨 컨버터(200)는 양극에 대응하는 복수의 서브 모듈(210)로 구성되는 양극 암(227), 음극에 대응하는 복수의 서브 모듈(210)로 구성되는 음극 암(228)로 구성될 수 있다.
이에 따라, 양극 암(227)은 제1 암(221), 제3 암(223), 제5 암(225)로 구성될 수 있고, 음극 암(228)은 제2 암(222), 제4 암(224), 제6 암(226)으로 구성될 수 있다.
이어서 도 8을 참고하여, 서브 모듈(210)의 구성을 설명한다.
도 8은 서브 모듈(210)의 구성에 대한 예시도이다.
도 8을 참고하면, 서브 모듈(210)은 2개의 스위치, 2개의 다이오드, 커패시터를 포함한다. 이러한 서브 모듈(210)의 형태를 하프 브릿지(half-bridge) 형태 또는 반파 인버터(half bridge inverter)라고도 한다.
그리고 스위칭부(217)에 포함되는 스위치는 전력 반도체를 포함할 수 있다.
여기서 전력 반도체는 전력 장치용 반도체 소자를 말하며, 전력의 변환이나 제어용에 최적화될 수 있다. 그리고 전력 반도체는 밸브 장치라고 하기도 한다.
이에 따라 스위칭부(217)에 포함되는 스위치는 전력 반도체로 구성될 수 있어서, 예를 들면 IGBT(Insulated Gate Bipolar Transistor), GTO(Gate Turn-off Thyristor), IGCT(Integrated Gate Commutated Thyristor) 등으로 구성될 수 있다.
저장부(219)는 커패시터를 포함하고 있어서, 에너지를 충전 또는 방전할 수 있다. 한편, 서브 모듈(210)의 구성 및 동작을 기초로 서브 모듈(210)을 등가 모델로 나타낼 수 있다.
도 9는 서브 모듈(210)의 등가 모델을 나타내며, 도 9를 참고하면 서브 모듈(210)은 스위치와 커패시터로 구성된 에너지 충전 및 방전 장치로 나타낼 수 있다.
이에 따라 서브 모듈(210)은 출력 전압이 Vsm인 에너지 충전 및 방전장치와 동일함을 확인할 수 있다.
이어서 도 10 내지 도 13을 참고하여, 서브 모듈(210)의 동작을 설명한다.
도 10 내지 도 13의 서브 모듈(210)의 스위치부(217)는 복수의 스위치 T1, T2를 포함하고, 각각의 스위치는 각각의 다이오드 D1, D2에 연결된다. 그리고 서브 모듈(210)의 저장부(219)는 커패시터를 포함한다.
도 10 및 도 11을 참고하여 서브 모듈(210)의 충전 및 방전동작을 설명한다.
도 10 및 도 11은 서브 모듈(210)의 커패시터 전압(Vsm) 형성을 나타낸다.
도 10 및 도 11을 참고하면, 스위치부(217)의 스위치 T1은 턴온, 스위치 T2는 턴오프 된 상태를 나타낸다. 이에 따라 서브 모듈(210)은 각각의 스위치 동작에 따라 커패시터 전압을 형성할 수 있다.
구체적으로, 도 10을 참고하면 서브 모듈(210)에 유입되는 전류는 다이오드 D1을 거쳐 커패시터에 전달되어 커패시터 전압을 형성한다. 그리고 형성된 커패시터 전압은 커패시터에 에너지를 충전할 수 있다.
그리고 서브 모듈(210)은 충전된 에너지를 방출하는 방출 동작을 할 수 있다.
구체적으로, 도 11을 참고하면 서브 모듈(210)에 충전된 에너지인 커패시터의 저장 에너지는 스위치 T1을 거쳐 출력된다. 따라서 서브 모듈(210)은 저장된 에너지를 방출할 수 있다.
도 12 및 도 13을 참고하여 서브 모듈(210)의 바이패스(Bypass) 동작을 설명한다.
도 12 및 도 13은 서브 모듈(210)의 영 전압 형성을 나타낸다.
도 12 및 도 13을 참고하면, 스위치부(217)의 스위치 T1은 턴오프, 스위치 T2는 턴온 된 상태를 나타낸다. 이에 따라 서브 모듈(210)의 커패시터에 전류가 흐르지 않게 되어, 서브 모듈(210)은 영 전압을 형성할 수 있다.
구체적으로, 도 12를 참고하면 서브 모듈(210)로 유입되는 전류는 스위치 T2를 통해 출력되어 서브 모듈(210)은 영 전압을 형성할 수 있다.
그리고 도 13을 참고하면, 서브 모듈(210)에 유입되는 전류는 다이오드 D2를 통해 출력되어 서브 모듈(210)은 영 전압을 형성할 수 있다.
이처럼 서브 모듈(210)은 영 전압을 형성할 수 있어서, 흐르는 전류가 서브 모듈(210)에 유입되지 않고 통과하는 바이패스 동작을 수행할 수 있다.
도 14는 본 발명의 실시예에 따른 HVDC 시스템의 절연 설계 장치의 구성을 보여주는 블록도이다.
도 14에 도시된 바와 같이, HVDC 시스템의 절연 설계 장치(300)는 전체 시스템 모델링부(310), 영역별 모델링부(320) 및 절연 검증부(330)를 포함한다.
전체 시스템 모델링부(310)는 HVDC 시스템의 전체 구성을 기준으로 절연 모델을 생성한다.
영역별 모델링부(320)는 HVDC 시스템을 복수의 영역으로 구분하고, 상기 구분한 영역별로 각각 절연 모델을 생성한다.
이때, 상기 영역별 모델링부(320)를 통해 영역별 절연 모델이 생성되면, 전체 시스템 모델링부(310)는 상기 생성된 영역별 절연 모델을 기준으로 상기 전체 시스템의 절연 모델을 수정한다.
여기에서, 상기 전체 시스템의 절연 모델 수정은, 상기 영역별 모델링부(320)를 통해 구분된 복수의 영역 및 임피던스 변화에 따라 이루어진다.
절연 검증부(330)는 상기 전체 시스템 모델링부(310)를 통해 최종 생성된 절연 모델과, 상기 영역별 모델링부(320)를 통해 생성된 영역별 절연 모델이 요구 내전압을 만족하는지를 검증한다.
도 15는 도 14의 전체 시스템 모델링부의 상세 구성을 보여주는 블록도이다.
도 15를 참조하며, 상기 전체 시스템 모델링부(310)에 대해 구체적으로 설명하면, 상기 전체 시스템 모델링부(310)는 시스템 분석부(311), 제1 절연 모델링부(312), 절연 레벨 산정부(313), 제2 절연 모델링부(314), 요구 내전압 산정부(315), 기준 내전압 산정부(316), 정격 절연 레벨 산정부(317), 및 제3 절연 모델링부(318)를 포함한다.
시스템 분석부(311)는 HVDC 시스템(100)을 분석하여 HVDC 시스템(100)의 과전압 및 정격 전압을 산출한다.
제1 절연 모델링부(312)는 상기 산출된 과전압 및 산출된 정격 전압에 기초하여 HVDC 시스템(100)을 모델링하여, HVDC 시스템(100)의 절연 기본 모델을 생성한다.
절연 레벨 산정부(313)는 HVDC 시스템(100)의 절연 기본 모델의 절연 산정을 수행하여 HVDC 시스템(100)의 절연 기본 모델의 기능 수행에 적합한 절연 협조 내전압을 결정한다.
제2 절연 모델링부(314)는 HVDC 시스템(100)의 실제 운전 상태와 HVDC 시스템(100)의 절연 기본 모델의 상태의 차이를 HVDC 시스템(100)의 절연 기본 모델에 적용하여, HVDC 시스템(100)의 절연 기본 모델을 수정하여 HVDC 시스템(100)의 절연 모델을 생성한다.
요구 내전압 산정부(315)는 HVDC 시스템(100)의 절연 모델의 요구 내전압을 산정한다.
기준 내전압 산정부(316)는 HVDC 시스템(100)의 절연 모델의 요구 내전압으로부터 HVDC 시스템(100)의 절연 모델의 기준 내전압을 산정한다.
정격 절연 레벨 산정부(170)는 HVDC 시스템(100)의 절연 모델의 기준 내전압을 만족하는 정격 절연 레벨을 산정한다.
제3 절연 모델링부(318)는 영역별 모델링부(320)를 통해 생성된 영역별 절연 모델을 기초로 상기 HVDC 시스템(100)의 절연 모델을 수정하여 절연 모델을 생성한다.
이때, 제3 절연 모델링부(318)는 상기 영역별 모델링부(320)를 통해 HVDC 시스템(100)의 구분된 영역에서의 임피던스 변화에 기초하여 HVDC 시스템(100)의 절연 모델을 수정하여 수정된 절연 모델을 생성한다.
도 16은 도 14의 영역별 모델링부의 상세 구성을 보여주는 블록도이다.
도 16을 참조하면, 영역별 모델링부(320)는 자료 수집부(321), 절연 설계 영역 구분부(322), 시스템 절연 설계부(323), 영역별 제 1 모델링부(324) 및 영역별 제 2 모델링부(325)를 포함한다.
자료 수집부(321)는 상기 HVDC 시스템(100)을 복수의 영역으로 구분하기 위한 자료를 수집한다. 다시 말해서, 자료 수집부(321)는 상기 HVDC 시스템(100)의 영역 구분을 위한 조건이될 자료를 수집한다.
자료 수집부(321)는 HVDC 시스템(100)의 구성 및 상세 기기 사양을 검토하고, 그에 따라 설계 임피던스를 분석한다.
또한, 자료 수집부(321)는 시스템 단선도를 통하여 각 설비 및 기기, 보호 설비인 피뢰기의 위치를 선정한다.
절연 설계 영역 구분부(322)는 상기 자료 수집부(321)를 통해 수집된 자료를 기초로 HVDC 시스템(100)을 복수의 영역으로 구분한다.
상기 절연 설계 영역 구분부(322)는 HVDC 시스템(100)을 송전 측 교류 파트(110), 송전 측 변전 파트(103), 직류 송전 파트(140), 수요 측 변전 파트(105), 수요 측 교류 파트(170), 송전 측 트랜스포머 파트(120), 송전 측 교류-직류 컨버터 파트(130), 수요 측 직류-교류 컨버터 파트(150), 및 수요 측 트랜스포머 파트(160)로 구분할 수 있다.
시스템 절연 설계부(323)는 위치별 스트레스 전압을 구분 및 정의하고, 그에 따라 상기 절연 설계 영역 구분부(322)를 통해 구분된 영역별 절연 거리를 산정한다.
영역별 제 1 모델링부(324)는 상기 절연 설계 영역 구분부(322)를 통해 구분된 영역별로 1차 모델링을 진행한다. 여기에서, 영역별 제 1 모델링부(324)는 운전 최고 전압을 기준으로 상기 구분된 영역별 1차 모델링을 진행한다.
영역별 제 2 모델링부(325)는 환경 요소 팩터를 적용하여 상기 1차 모델링 결과를 2차 모델링한다.
이때, 영역별 제 2 모델링부(325)는 절연거리의 변화를 검토하여 영역별 절연 모델을 생성한다.
도 17은 본 발명의 실시예에 따른 HVDC 시스템의 절연 설계 장치의 동작 방법을 보여주는 흐름도이다.
도 17을 참조하면, 전체 시스템 모델링부(310)는 HVDC 시스템(100)의 전체 구성에 대한 절연 모델을 생성한다(101단계).
이어서, 영역별 모델링부(320)는 HVDC 시스템(100)의 전체 구성을 복수의 영역을 구분하고, 상기 구분한 영역별로 영역별 절연 모델을 생성한다(102단계).
상기 영역별 절연 모델이 생성되면, 상기 전체 시스템 모델링부(310)는 상기 영역별 절연 모델을 기초로 하여 상기 구분된 영역별 임피던스 변화에 따라 상기 전체 구성에 대한 절연 모델을 수정한다(103단계).
상기와 같이, 전체 시스템의 절연 모델 및 영역별 절연 모델이 생성되면, 절연 검증부(330)는 상기 생성된 절연 모델에 대한 검증 과정을 진행한다(104단계). 상기 절연 검증 과정은, 상기 전체 시스템의 절연 모델이 요구 내전압을 만족하는지를 검증할 수 있다. 이때, 상기 검증은 절연 모델의 검증을 위한 절연 산정 수식 기반의 설계 툴을 개발하고, 상기 개발한 설계 툴을 기초로 하여 상기 생성한 절연 모델을 검증할 수 있다.
도 18은 도 17의 전체 시스템의 절연 모델 생성 과정을 보다 구체적으로 보여주는 흐름도이다.
도 18을 참조하면, 시스템 분석부(311)는 HVDC 시스템(100)을 분석하여(S201) 과전압 및 정격 전압을 산출한다(S202). 시스템 분석부(311)는 분류된 스트레스 전압, 산정된 과전압 보호 레벨, 및 절연 특성 중 적어도 하나에 기초하여 HVDC 시스템(100)을 분석하여 과전압 및 정격 전압을 산출할 수도 있다.
제1 절연 모델링부(312)는 산출된 과전압 및 산출된 정격 전압에 기초하여 HVDC 시스템(100)을 모델링하여, HVDC 시스템(100)의 절연 기본 모델을 생성한다(S203).
절연 레벨 산정부(313)는 HVDC 시스템(100)의 절연 기본 모델의 절연 산정을 수행하여(S204) HVDC 시스템(100)의 절연 기본 모델의 기능 수행에 적합한 절연 협조 내전압을 결정한다(S205). 이때, 절연 레벨 산정부(313)는 HVDC 시스템(100)의 절연 기본 모델의 절연 특성, HVDC 시스템(100)의 절연 기본 모델의 기능, HVDC 시스템(100)의 절연 기본 모델 상의 데이터의 통계적 분포, HVDC 시스템(100)의 절연 기본 모델의 입력 데이터의 부정확성, HVDC 시스템(100)의 절연 기본 모델의 구성 요소의 결합에 영향을 주는 요인 중 적어도 하나에 기초하여 HVDC 시스템(100)의 절연 기본 모델의 절연 산정을 수행하여 HVDC 시스템(100)의 절연 기본 모델의 기능 수행에 적합한 절연 협조 내전압을 결정할 수 있다.
제2 절연 모델링부(314)는 HVDC 시스템(100)의 실제 운전 상태와 HVDC 시스템(100)의 절연 기본 모델의 상태의 차이를 HVDC 시스템(100)의 절연 기본 모델에 적용하여(S206), HVDC 시스템(100)의 절연 기본 모델을 수정하여 HVDC 시스템(100)의 절연 모델을 생성한다(S207). 제2 절연 모델링부(314)는 HVDC 시스템(100)의 실제 운전 상태와 HVDC 시스템(100)의 절연 기본 모델의 상태의 차이 및 절연 협조 내전압에 기초하여 HVDC 시스템(100)의 절연 기본 모델을 수정하여 HVDC 시스템(100)의 절연 모델을 생성할 수 있다. 이때, HVDC 시스템(100)의 실제 운전 상태와 HVDC 시스템(100)의 절연 기본 모델의 상태의 차이는 HVDC 시스템(100)의 환경 요소의 차이, HVDC 시스템(100)의 구성 요소의 시험의 차이, HVDC 시스템(100)의 제품 특성의 편차, HVDC 시스템(100)의 설치 상태의 차이, HVDC 시스템(100)의 운전 수명의 차이, HVDC 시스템(100)의 안전을 위해 고려되어야 할 안전 팩터 중 적어도 하나를 포함할 수 있다. HVDC 시스템(100)의 절연 모델은 환경 요소 및 오염도를 고려한 절연 모델에 해당할 수 있다.
요구 내전압 산정부(315)는 HVDC 시스템(100)의 절연 모델의 요구 내전압을 산정한다(S208).
기준 내전압 산정부(316)는 HVDC 시스템(100)의 절연 모델의 요구 내전압으로부터 HVDC 시스템(100)의 절연 모델의 기준 내전압을 산정한다(S209). 기준 내전압 산정부(316)는 시험 상태, 시험 변환 요소, 전압 범위 중 적어도 하나에 기초하여 HVDC 시스템(100)의 절연 모델의 요구 내전압으로부터 HVDC 시스템(100)의 절연 모델의 기준 내전압을 산정할 수 있다.
정격 절연 레벨 산정부(317)는 HVDC 시스템(100)의 절연 모델의 기준 내전압을 만족하는 정격 절연 레벨을 산정한다(S210). 이때, 정격 절연 레벨은 HVDC 시스템(100)의 하나 이상의 위치의 전압값 및 거리값을 포함할 수 있다.
제3 절연 모델링부(318)는 HVDC 시스템(100)의 구분된 복수의 영역에서의 임피던스 변화에 기초하여 HVDC 시스템(100)의 절연 모델을 수정하여 수정된 절연 모델을 생성한다(S211). 이때, 구분된 섹션은 송전 측 교류 파트(110), 송전 측 변전 파트(103), 직류 송전 파트(140), 수요 측 변전 파트(105), 수요 측 교류 파트(170), 송전 측 트랜스포머 파트(120), 송전 측 교류-직류 컨버터 파트(130), 수요 측 직류-교류 컨버터 파트(150), 수요 측 트랜스포머 파트(160) 중 적어도 하나를 포함할 수 있다.
도 19는 도 17의 영역별 절연 모델 생성 과정을 보다 구체적으로 보여주는 흐름도이다.
도 19를 참조하면, 자료 수집부(321)는 HVDC 시스템(100)을 특정 기준에 따라 복수의 영역으로 구분하기 위한 자료를 수집하고, 상기 수집한 자료를 검토한다(S301단계). 이때, 자료 수집부(321)는 HVDC 시스템 구성 및 상세 기기들의 사양을 검토하고, 그에 따라 설계 임피던스를 분석한다.
이후, 자료 수집부(321)는 시스템 절연 단선도 획득(302단계)하고, 그에 따라 HVDC 기기 구성 및 피뢰기 위치를 선정한다. 즉, 자료 수집부(321)는 시스템 절연 단선도를 이용하여 각 설비 및 기기, 그리고 보호 설비인 피뢰기의 위치를 선정하고, 이를 토대로 대표되는 설비를 선정한다.
절연 설계 영역 구분부(322)는 상기 자료 수집부(321)를 통해 수집된 자료들을 이용하여 HVDC 시스템을 복수의 영역으로 구분한다(303단계). 절연 설계 영역 구분부(322)는 송전 측 교류 파트(110), 송전 측 변전 파트(103), 직류 송전 파트(140), 수요 측 변전 파트(105), 수요 측 교류 파트(170), 송전 측 트랜스포머 파트(120), 송전 측 교류-직류 컨버터 파트(130), 수요 측 직류-교류 컨버터 파트(150), 수요 측 트랜스포머 파트(160)와 같은 영역으로 HVDC 시스템을 구분할 수 있다.
이어서, 시스템 절연 설계부(323)는 HVDC 시스템(100)의 위치별 스트레스 전압을 구분 및 정의하고, 그에 따라 상기 구분된 영역별 절연 거리를 산정하여 시스템 절연을 설계한다(304단계). 이때, 상기 절연 거리는 상기 구분된 영역별로 뇌 임펄스, 스위칭 임펄스 등 스트레스 전압을 구분하여 적용함으로써 산정될 수 있다.
또한, 시스템 절연 설계부(323)는 기기별 임피던스 특성의 최고값을 기준으로 상기 구분한 영역별 등가 임피던스 단선도 획득한다(305단계).
그리고, 영역별 제 1 모델링부(324)는 운전 최고 전압을 기준으로 상기 구분된 영역별로 1차 모델링을 진행하여 절연 모델을 생성한다(306단계).
이어서, 영역별 제 2 모델링부(325)는 환경 요소를 고려하여 상기 구분된 영역별로 2차 모델링을 진행하여 상기 생성된 절연 모델을 수정한다(307단계).
실시예에 따르면, 절연 설계 모델링을 하여 실제 시스템에 절연 설계 값을 적용할 때, 편의성을 제공할 수 있다.
실시예에 따르면, 시스템 설계, 전압, 환경 요소, 오염도가 변하는 경우 모든 변수를 재설계해야하는 불편함을 제거하여 절연 설계 적용의 편의성을 제공할 수 있다.
실시예에 따르면, 절연 설계의 번거로움을 없애기 위해 모델링을 통하여 인가 전압 변동에 대한 절연 값을 구하여 절연 설계의 편의성 및 설계의 번거로움을 제거할 수 있다.
실시 예에 따르면, HVDC 절연설계와 관련하여 절연 모델을 개발하고, 절연 설계 절차에 적용하여 설계를 검증함으로써 기존의 설계 방식에 비해 설계 근거에 대한 신뢰도를 향상시킬 수 있다.
실시 예에 따르면, 모델이 없는 기존의 방식과 비교하여 새로운 시스템의 설계 또는 설계에 영향을 주는 요소가 발생하였을 경우 많은 시간과 비용을 투자해 재설계를 해야 하는 번거로움을 줄일수 있다.
실시 예에 따르면, 전체 시스템을 복수의 영역으로 구분하고, 상기 구분된 영역별로 절연 설계 모델링을 진행함으로써, 설계 대상 시스템이 변경되는 경우에 전체 시스템에 대한 절연 설계를 재해석하지 않고 변경된 영역에 대해서만 별도로 절연 설계 모델링을 진행해도 됨에 따른 절연 설계 적용의 편의성을 달성할 수 있다.
도 20은 본 발명의 실시 예에 따른 영역별 절연 설계 모델 및 검증의 일 예를 보여주는 도면이다.
도 20은 송전측 교류 파트(110)의 상단 단지락 사고 발생을 모의한 것으로, 고장 상황 시의 고장 전압 및 전류를 모의 가능한 절연 설계 모델의 일 예이다.
(a)는 입력 전원이고, (b)는 고장 상황 시에 발생하는 전류 변화를 나타낸 것이며, (c)는 고장 상황 시에 발생하는 전압 변화를 나타낸 것이다.
일반적으로 절연 설계는 전압을 기준으로 이루어지며, 이에 따라 상기 (c)에 나타난 바와 같이, 정상 상태에서의 절연 설계가 아닌 고장 상태에서의 상태 값을 적용하여 절연 설계가 이루어진다.
상기와 같이 기재된 실시예들은 설명된 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (13)

  1. 고전압 직류 송전(high voltage direct current transmission, HVDC) 시스템의 절연 설계를 수행하는 절연 설계 장치에 있어서,
    상기 HVDC 시스템의 전체 시스템에 대한 절연 모델을 생성하는 제 1 절연 모델 생성부;
    상기 HVDC 시스템을 복수의 영역으로 구분하고, 상기 구분한 영역별로 절연 모델을 생성하는 제 2 절연 모델 생성부; 및
    상기 제 1 절연 모델 생성부를 통해 생성된 절연 모델과, 상기 제 2 절연 모델 생성부를 통해 생성된 영역별 절연 모델이 요구 내전압을 만족하는지 검증하는 절연 검증부를 포함하며,
    상기 제 2 절연 모델 생성부는,
    시스템 단선도를 통하여 상기 HVDC 시스템의 각 설비, 기기 및 피뢰기의 위치를 선정하여 상기 HVDC 시스템에서 대표되는 설비를 선정하고, 상기 선정된 대표 설비를 기준으로 상기 HVDC 시스템을 복수의 영역으로 구분하며, 상기 구분된 영역별로 절연 모델을 생성하고,
    상기 제 1 절연 모델 생성부는,
    상기 제 2 절연 모델 생성부를 통해 생성된 영역별 절연 모델을 토대로 영역별 임피던스 변화에 기초하여 상기 HVDC 시스템의 절연 모델을 수정하여 수정된 절연 모델을 생성하는 제3 절연 모델링부를 더 포함하는
    절연 설계 장치.
  2. 제 1항에 있어서,
    상기 제 2 절연 모델 생성부는,
    상기 HVDC 시스템을 복수의 영역으로 구분하기 위한 자료를 수집하는 자료 수집부와,
    상기 수집된 자료를 기초로 상기 HVDC 시스템을 복수의 영역으로 구분하는 절연 설계 영역 구분부와,
    상기 절연 설계 영역 구분부를 통해 구분된 복수의 영역의 각각에 대한 절연 모델을 생성하는 절연 모델링부를 포함하는
    절연 설계 장치.
  3. 제 2항에 있어서,
    상기 절연 설계 영역 구분부는,
    상기 HVDC 시스템을 송전 측 교류 파트, 송전 측 변전 파트, 직류 송전 파트, 수요 측 변전 파트, 수요 측 교류 파트, 송전 측 트랜스포머 파트, 송전 측 교류-직류 컨버터 파트, 수요 측 직류-교류 컨버터 파트 및 수요 측 트랜스포머 파트 중 적어도 2개 이상을 포함하는 영역으로 구분하는
    절연 설계 장치.
  4. 제 2항에 있어서,
    상기 제 2 절연 모델 생성부는,
    상기 구분된 영역별로 스트레스 전압을 구분하여 적용하고, 상기 적용된 스트레스 전압을 기준으로 상기 구분된 영역별 절연 거리를 산정하는 시스템 절연 설계부를 더 포함하는
    절연 설계 장치.
  5. 제 2항에 있어서,
    상기 제 2 절연 모델 생성부는,
    운전 최고 전압을 기준으로 상기 구분된 영역별로 절연 모델을 생성하는 영역별 제 1 모델링부와,
    환경 요소 팩터를 토대로 절연 거리 변화를 검토하여 상기 제 1 모델링부를 통해 생성된 영역별 절연 모델을 수정하는 영역별 제 2 모델링부를 포함하는
    절연 설계 장치.
  6. 제 1항에 있어서,
    상기 제 1 절연 모델 생성부는,
    상기 HVDC 시스템의 과전압 및 정격 전압에 기초하여 상기 HVDC 시스템을 모델링하여 상기 HVDC 시스템의 절연 기본 모델을 생성하는 제1 절연 모델링부와,
    상기 절연 기본 모델의 절연 산정을 수행하여 상기 HVDC 시스템의 절연 기본 모델의 기능 수행에 적합한 절연 협조 내전압을 결정하는 절연 레벨 산정부와,
    상기 절연 협조 내전압에 기초하여 상기 HVDC 시스템의 절연 기본 모델을 수정하여 상기 HVDC 시스템의 절연 모델을 생성하는 제2 절연 모델링부와,
    상기 HVDC 시스템의 절연 모델의 기준 내전압을 만족하는 정격 절연 레벨을 산정하는 정격 절연 레벨 산정부와,
    상기 HVDC 시스템을 분석하여 상기 HVDC 시스템의 과전압 및 정격 전압을 산출하는 시스템 분석부를 포함하는
    절연 설계 장치.
  7. 삭제
  8. 제 6항에 있어서,
    상기 제2 절연 모델링부는 상기 HVDC 시스템의 실제 운전 상태와 상기 HVDC 시스템의 절연 기본 모델의 상태의 차이 및 절연 협조 내전압에 기초하여 상기 HVDC 시스템의 절연 기본 모델을 수정하여 상기 HVDC 시스템의 절연 모델을 생성하는
    절연 설계 장치.
  9. 제8항에 있어서,
    상기 HVDC 시스템의 실제 운전 상태와 상기 HVDC 시스템의 절연 기본 모델의 상태의 차이는 환경 요소의 차이, 구성 요소의 시험의 차이, 제품 특성의 편차, 설치 상태의 차이, 운전 수명의 차이, 안전을 위해 고려되어야 할 안전 팩터 중 적어도 하나를 포함하는
    절연 설계 장치.
  10. 제 6항에 있어서,
    상기 제 1 절연 모델 생성부는,
    상기 HVDC 시스템의 절연 모델의 요구 내전압을 산정하는 요구 내전압 산정부와,
    상기 HVDC 시스템의 절연 모델의 요구 내전압으로부터 상기 HVDC 시스템의 절연 모델의 기준 내전압을 산정하는 기준 내전압 산정부를 더 포함하는
    절연 설계 장치.
  11. 제10항에 있어서,
    상기 기준 내전압 산정부는 시험 상태, 시험 변환 요소, 전압 범위 중 적어도 하나에 기초하여 상기 HVDC 시스템의 절연 모델의 요구 내전압으로부터 상기 HVDC 시스템의 절연 모델의 기준 내전압을 산정하는
    절연 설계 장치.
  12. 제6항에 있어서,
    상기 정격 절연 레벨은 상기 HVDC 시스템의 하나 이상의 위치의 전압값 및 거리값을 포함하는
    절연 설계 장치.
  13. 제6항에 있어서,
    상기 절연 레벨 산정부는 상기 HVDC 시스템의 절연 기본 모델의 절연 특성, 상기 HVDC 시스템의 절연 기본 모델의 기능, 상기 HVDC 시스템의 절연 기본 모델 상의 데이터의 통계적 분포, 상기 HVDC 시스템의 절연 기본 모델의 입력 데이터의 부정확성, 상기 HVDC 시스템의 절연 기본 모델의 구성 요소의 결합에 영향을 주는 요인 중 적어도 하나에 기초하여 상기 HVDC 시스템의 절연 기본 모델의 절연 산정을 수행하는
    절연 설계 장치.
KR1020140166283A 2014-11-26 2014-11-26 고전압 직류 송전 시스템의 절연 설계 장치 KR102121932B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140166283A KR102121932B1 (ko) 2014-11-26 2014-11-26 고전압 직류 송전 시스템의 절연 설계 장치
US14/793,420 US10270250B2 (en) 2014-11-26 2015-07-07 Insulation design apparatus of high voltage direct current transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140166283A KR102121932B1 (ko) 2014-11-26 2014-11-26 고전압 직류 송전 시스템의 절연 설계 장치

Publications (2)

Publication Number Publication Date
KR20160062949A KR20160062949A (ko) 2016-06-03
KR102121932B1 true KR102121932B1 (ko) 2020-06-11

Family

ID=56011210

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140166283A KR102121932B1 (ko) 2014-11-26 2014-11-26 고전압 직류 송전 시스템의 절연 설계 장치

Country Status (2)

Country Link
US (1) US10270250B2 (ko)
KR (1) KR102121932B1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639863B1 (ko) * 2014-05-13 2016-07-14 엘에스산전 주식회사 고전압 직류 송전 시스템을 설계하는 장치 및 방법
CN107179706B (zh) * 2017-05-26 2020-05-05 国网河南省电力公司 适用于受端大电网仿真分析的uhvdc模型及建模方法
EP3639352B1 (de) * 2017-07-31 2023-10-04 Siemens Energy Global GmbH & Co. KG Stromrichteranordnung mit einer abschaltungsfähigkeit eines fehlerstroms und ein verfahren zur abschaltung eines fehlerstroms bei einer solchen stromrichteranordnung
CN108964111B (zh) * 2018-08-22 2020-06-30 国家电网有限公司 一种具有中压侧直流出线的直流输电系统及其控制方法
EP3713073A1 (de) * 2019-03-19 2020-09-23 Siemens Aktiengesellschaft Stromrichter und verfahren zu dessen regelung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292856B1 (ko) * 2012-04-13 2013-08-02 엘에스산전 주식회사 Hvdc 시스템의 절연 레벨 설계 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057736A (en) * 1974-09-13 1977-11-08 Jeppson Morris R Electrical power generation and distribution system
JP2003157291A (ja) * 2001-11-21 2003-05-30 Toshiba Corp 電界強度分布解析装置および電界強度分布解析方法
EP2110677B1 (en) * 2008-04-14 2011-08-24 ABB Research Ltd. Determining degraded insulating ability in insulation provided between two objects of an inductively operating element
CN102185307A (zh) * 2011-04-08 2011-09-14 中国电力科学研究院 模块化多电平变流器柔性直流输电系统的绝缘配置方法
KR101907951B1 (ko) * 2013-05-13 2018-10-16 엘에스산전 주식회사 Hvdc 시스템 및 그의 제어 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292856B1 (ko) * 2012-04-13 2013-08-02 엘에스산전 주식회사 Hvdc 시스템의 절연 레벨 설계 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
권준범 외 5인, "±80kV 60MW HVDC System의 절연협조 설계 시 PSCAD를 이용한 Switching Impulse 검증 방법, 2011년도 대한전기학회 하계학술대회 논문집, 2011년.
이욱화 외 5인, "PSCAD를 이용한 80kV 60MW HVDC System의 AC Filter 절연 협조 설계", 대한전기학회 논문집, 2011년7월.

Also Published As

Publication number Publication date
US20160149508A1 (en) 2016-05-26
KR20160062949A (ko) 2016-06-03
US10270250B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
KR101666712B1 (ko) 모듈형 멀티레벨 컨버터
KR102121932B1 (ko) 고전압 직류 송전 시스템의 절연 설계 장치
KR101553773B1 (ko) 고전압 직류 송전 시스템의 피뢰기 검증 장치
KR101630510B1 (ko) 모듈형 멀티레벨 컨버터
KR101622461B1 (ko) 계기용 변압기의 편차 보상 방법
EP2947742A1 (en) Apparatus and method for insulation design of high voltage direct current transmission system
KR101578292B1 (ko) 계기용 변압기의 편차 보상 방법
KR20170013774A (ko) 사이리스터 밸브를 위한 합성 시험 회로
EP2945248B1 (en) Apparatus and method for design of high voltage direct current transmission system
CN105870954A (zh) 用于测量hvdc系统电力的方法
KR101659252B1 (ko) 모듈형 멀티레벨 컨버터 및 그의 제어 방법
KR101678802B1 (ko) 모듈형 멀티레벨 컨버터 및 그의 제어 방법
KR20150130863A (ko) 모듈형 멀티레벨 컨버터 및 그의 제어 방법
KR101622462B1 (ko) 고전압 직류 송전 시스템의 절연 설계 장치 및 방법
KR20150130864A (ko) 모듈형 멀티레벨 컨버터 및 그의 제어 방법
KR101622458B1 (ko) Hvdc 시스템의 컨버터 장치 및 그의 제어 방법
KR101707735B1 (ko) Hvdc 시스템의 컨버터 장치 및 그의 제어 방법
Fidai Implementation of DC Supervisory Control: Optimal Power Flow Calculator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right