CN211654822U - Unidirectional negative resistance electrostatic discharge protection device - Google Patents

Unidirectional negative resistance electrostatic discharge protection device Download PDF

Info

Publication number
CN211654822U
CN211654822U CN202020751159.8U CN202020751159U CN211654822U CN 211654822 U CN211654822 U CN 211654822U CN 202020751159 U CN202020751159 U CN 202020751159U CN 211654822 U CN211654822 U CN 211654822U
Authority
CN
China
Prior art keywords
region
well region
doping
well
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020751159.8U
Other languages
Chinese (zh)
Inventor
庄翔
张超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiejie Semiconductor Co ltd
Original Assignee
Jiejie Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiejie Semiconductor Co ltd filed Critical Jiejie Semiconductor Co ltd
Priority to CN202020751159.8U priority Critical patent/CN211654822U/en
Application granted granted Critical
Publication of CN211654822U publication Critical patent/CN211654822U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

The application provides a one-way negative resistance electrostatic discharge protection device, includes: the epitaxial layer is positioned above the front surface of the substrate; the first well region is positioned in the epitaxial layer and connected with the substrate; the second well regions and the third well regions are alternately positioned in the epitaxial layer; the first doped region, the second doped region and the third doped region are respectively positioned in the first well region, the second well region and the third well region; the first electrode is positioned above the contact hole of the second doping region, the second electrode is positioned above the contact hole of the first doping region to the contact hole of the third doping region, and the contact holes of the first doping region, the second doping region and the third doping region are respectively formed on interlayer dielectric layers formed on the surfaces of the annealed epitaxial layer, the first doping region, the second doping region and the third doping region through process treatment; the third electrode is located on the back surface of the substrate. The surge protection capability can be improved.

Description

Unidirectional negative resistance electrostatic discharge protection device
Technical Field
The present disclosure relates to the field of semiconductor technologies, and in particular, to a method for manufacturing an unidirectional negative Static Discharge (ESD) protection device and an ESD protection device.
Background
With the rapid development of electronic products, ESD protection devices are widely used in electronic products to overcome the static electricity generated during the manufacturing, packaging, testing, transportation and use of electronic products. Statistically, among the functional failures of Integrated Circuits (ICs) of electronic products, the failure of the ESD protection device due to the electrostatic surge is one of the important factors. Taking a battery module of a consumer electronic product as an example, the battery module is impacted by a large surge current during the insertion and extraction process, so the ESD Protection device in the battery module needs to be capable of adapting to surge Protection of different voltages at a power supply Voltage (VBAT) end and a USB Voltage (VBUS) end, for example, the Voltage at the VBAT end is generally 4.5V, the VBUS end Voltage is matched with an Over Voltage Protection (OVP) scheme, and the Voltage varies from 7V to 30V. Particularly, with the increase of the demand for high-speed fast charging, the operating voltage of the electronic product is gradually switched from the conventional 7V and 12V to 18V, 22V, 24V or even higher voltage, so that the ESD protection device not only needs to bypass the large surge in the breakdown direction and the forward conduction direction to the ground, but also needs to ensure that the rear-stage IC is not impacted by the surge due to the surge residual voltage of the ESD protection device, so that how to design the ESD protection device with smaller and thinner cost and meeting different actual surge requirements in the circuit by packaging the surge capability becomes a technical problem to be solved urgently.
The existing ESD protection device generally adopts a unidirectional negative resistance ESD protection device, fig. 1 is a schematic structural diagram of the unidirectional negative resistance ESD protection device, and as shown in fig. 1, an N + region is formed on a P substrate single crystal through double-sided lithography, so as to form a vertical base region-opened bipolar transistor; and a P + region is formed on the back surface, a back metal is formed to be in short circuit with the N + region, and an equivalent circuit of the device is that a base-opened region bipolar transistor and a diode are connected in parallel to form a unidirectional negative resistance ESD protection device. However, the unidirectional negative resistance ESD protection device needs to perform double-sided lithography, and has the problem of alignment accuracy between front-side lithography and back-side lithography, so that surge current and residual voltage between batches are inconsistent, the surge protection capability is not high, the requirement of high-voltage surge protection cannot be met, and the surge protection requirement of consumer products is difficult to meet.
SUMMERY OF THE UTILITY MODEL
In view of the above, an objective of the present application is to provide a unidirectional negative resistance electrostatic discharge protection device to improve surge protection capability.
In a first aspect, an embodiment of the present application provides a unidirectional negative resistance electrostatic discharge protection device, including: the epitaxial layer is positioned above the front surface of the substrate; the first well region is positioned in the epitaxial layer and connected with the substrate; the second well region and the third well region are positioned in the epitaxial layer, and the first well region, the second well region and the third well region are arranged at intervals; the first doped region is positioned in the first well region, the second doped region is positioned in the second well region, and the third doped region is positioned in the third well region; the first electrode is positioned above the contact hole of the second doping region, the second electrode is positioned above the contact holes from the first doping region to the contact hole of the third doping region, and the contact hole of the first doping region, the contact hole of the second doping region and the contact hole of the third doping region are respectively formed on an interlayer dielectric layer formed on the surfaces of the annealed epitaxial layer, the first doping region, the second doping region and the third doping region through process treatment; the third electrode is located on the back surface of the substrate.
In combination with the first aspect, an embodiment of the present application provides a first possible implementation manner of the first aspect, wherein the second doping region forms an emitter region of a lateral open base region NPN transistor, the first well region, the epitaxial layer, and the second well region form a base region of the lateral open base region NPN transistor, the third doping region forms a collector region of the lateral open base region NPN transistor, and the unidirectional negative resistance electrostatic discharge protection device is obtained by plastic-packaging the open base region NPN transistor.
With reference to the first aspect or the first possible implementation manner of the first aspect, an embodiment of the present application provides a second possible implementation manner of the first aspect, where a direction from the second electrode, the first doped region, and the first well region to the substrate forms a negative resistance characteristic direction of the unidirectional negative resistance electrostatic discharge protection device.
With reference to the first aspect or the first possible implementation manner of the first aspect, an embodiment of the present application provides a third possible implementation manner of the first aspect, where the substrate, the epitaxial layer, the second well region to the second doped region constitute a first branch of forward static and surge leakage of the unidirectional negative-resistance electrostatic discharge protection device.
With reference to the first aspect or the first possible implementation manner of the first aspect, an embodiment of the present application provides a fourth possible implementation manner of the first aspect, where a direction from the substrate, the first well region, and the first doping region to the second electrode forms a second branch of forward static and surge discharging of the unidirectional negative-resistance electrostatic discharge protection device.
With reference to the first aspect or the first possible implementation manner of the first aspect, an embodiment of the present application provides a fifth possible implementation manner of the first aspect, where the second electrode, the first doped region, and the direction from the first well region to the substrate form a first branch of reverse static and surge discharging of the unidirectional negative-resistance electrostatic discharge protection device.
With reference to the first aspect or the first possible implementation manner of the first aspect, an embodiment of the present application provides a sixth possible implementation manner of the first aspect, where the second doped region, the second well region, the epitaxial layer, and the substrate form a second branch of reverse static and surge leakage of the unidirectional negative-resistance electrostatic discharge protection device.
With reference to the first aspect or the first possible implementation manner of the first aspect, an embodiment of the present application provides a seventh possible implementation manner of the first aspect, where the unidirectional negative-resistance electrostatic discharge protection device further includes:
and the interlayer dielectric layer is positioned on the surfaces of the epitaxial layer, the first doped region, the second doped region and the third doped region.
With reference to the first aspect or the first possible implementation manner of the first aspect, an embodiment of the present application provides an eighth possible implementation manner of the first aspect, where the unidirectional negative-resistance electrostatic discharge protection device further includes: a fourth well region and a fifth well region, wherein,
the fourth well region is located between the second doped region and the first well region, and the fifth well region is located between the third doped region and the third well region.
With reference to the eighth possible implementation manner of the first aspect, an embodiment of the present application provides a ninth possible implementation manner of the first aspect, where the second doped region and the fourth well region form an emitter region of the NPN transistor with a laterally open base region, the second well region, the epitaxial layer, and the third well region form a base region of the NPN transistor with a laterally open base region, and the fifth well region and the third doped region form a collector region of the NPN transistor with a laterally open base region.
The one-way negative resistance electrostatic discharge protection device that this application embodiment provided includes: the epitaxial layer is positioned above the front surface of the substrate; the first well region is positioned in the epitaxial layer and connected with the substrate; the second well region and the third well region are positioned in the epitaxial layer, and the first well region, the second well region and the third well region are arranged at intervals; the first doped region is positioned in the first well region, the second doped region is positioned in the second well region, and the third doped region is positioned in the third well region; the first electrode is positioned above the contact hole of the second doping region, the second electrode is positioned above the contact holes from the first doping region to the contact hole of the third doping region, and the contact hole of the first doping region, the contact hole of the second doping region and the contact hole of the third doping region are respectively formed on an interlayer dielectric layer formed on the surfaces of the annealed epitaxial layer, the first doping region, the second doping region and the third doping region through process treatment; the third electrode is located on the back surface of the substrate. Therefore, an emitter region-base region PN junction is formed by the first doping region and the first well region, a collector region-base region PN junction is formed by the second doping region and the second well region, and the two PN junctions are matched by doping concentration, so that bidirectional low-voltage ESD protection can be realized in a punch-through breakdown mode, bidirectional high-voltage ESD protection can be realized in an avalanche breakdown mode, and the surge protection capability of the unidirectional negative resistance ESD protection device is effectively improved.
In order to make the aforementioned objects, features and advantages of the present application more comprehensible, preferred embodiments accompanied with figures are described in detail below.
Drawings
In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings that are required to be used in the embodiments will be briefly described below, it should be understood that the following drawings only illustrate some embodiments of the present application and therefore should not be considered as limiting the scope, and for those skilled in the art, other related drawings can be obtained from the drawings without inventive effort.
FIG. 1 shows a schematic diagram of a prior art unidirectional negative resistance ESD protection device;
FIG. 2a is a schematic diagram illustrating a structure of a unidirectional negative resistance ESD protection device provided by an embodiment of the present application;
FIG. 2b is a schematic diagram of a unidirectional negative resistance ESD protection device according to another embodiment of the present application;
FIG. 3 is a schematic flow chart illustrating a method for manufacturing a unidirectional negative resistance ESD protection device according to an embodiment of the present application;
FIG. 4a is a schematic structural diagram of the embodiment of the present application after being processed in step 302;
FIG. 4b is a schematic structural diagram obtained by processing in step 303 according to an embodiment of the present application;
FIG. 4c is a schematic structural diagram of the embodiment of the present application after being processed in step 304;
FIG. 4d is a schematic structural diagram obtained by processing in step 305 according to the embodiment of the present application;
FIG. 4e is a schematic structural diagram obtained by processing in step 307 in the embodiment of the present application;
fig. 4f shows a schematic structural diagram obtained by processing in step 308 in the embodiment of the present application.
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application, and it is obvious that the described embodiments are only a part of the embodiments of the present application, and not all the embodiments. The components of the embodiments of the present application, generally described and illustrated in the figures herein, can be arranged and designed in a wide variety of different configurations. Thus, the following detailed description of the embodiments of the present application, presented in the accompanying drawings, is not intended to limit the scope of the claimed application, but is merely representative of selected embodiments of the application. All other embodiments, which can be derived by a person skilled in the art from the embodiments of the present application without making any creative effort, shall fall within the protection scope of the present application.
The embodiment of the present application provides a method for manufacturing a unidirectional negative resistance ESD protection device and a unidirectional negative resistance ESD protection device, which are described below by way of an embodiment.
Fig. 2a shows a schematic structural diagram of a unidirectional negative resistance ESD protection device provided by an embodiment of the present application. As shown in fig. 2a, the unidirectional negative resistance ESD protection device comprises: substrate 100, epitaxial layer 101, first well region 102, second well region 103, third well region 104, first doped region 105, second doped region 106, third doped region 107, first electrode 108, second electrode 109, third electrode 110, wherein,
epitaxial layer 101 is located over the front side of substrate 100;
the first well region 102 is positioned in the epitaxial layer 101 and connected with the substrate;
the second well region 103 and the third well region 104 are located in the epitaxial layer 101, and the first well region 102, the second well region 103 and the third well region 104 are arranged alternately;
the first doped region 105 is located in the first well region 102, the second doped region 106 is located in the second well region 103, and the third doped region 107 is located in the third well region 104;
the first electrode 108 is positioned above the second doping region contact hole, the second electrode 109 is positioned above the first doping region contact hole and the third doping region contact hole, and the first doping region contact hole, the second doping region contact hole and the third doping region contact hole are respectively formed on interlayer dielectric layers formed on the surfaces of the annealed epitaxial layer 101, the first doping region 105, the second doping region 106 and the third doping region 107 through process treatment;
the third electrode 110 is located on the back surface of the substrate 100.
In the embodiment of the present application, as an optional embodiment, the doping types of the substrate 100, the epitaxial layer 101, the first well region 102, the second well region 103, the third well region 104, and the first doping region 105 are a first doping type;
the doping types of the second doping region 106 and the third doping region 107 are a second doping type opposite to the first doping type;
the doping concentration of the first well region 102 is greater than that of the epitaxial layer 101;
the doping concentration of the second well region 103 is the same as that of the third well region 104;
the doping concentration of the second doped region 106 is the same as the doping concentration of the third doped region 107;
the doping concentration of the first doping region 105 is greater than the doping concentration of the first well region 102.
In the embodiment of the present application, as an optional embodiment, the first doping type is an N type, and the second doping type is a P type; as another alternative, the first doping type is P-type and the second doping type is N-type. In the following description, the doping type of the substrate 100 is exemplified as P-type doping.
In the embodiment of the present application, as an optional embodiment, the substrate 100 is heavily doped, the epitaxial layer 101 is lightly doped, the first well region 102, the second well region 103, and the third well region 104 are lightly doped, and the first doped region 105, the second doped region 106, and the third doped region 107 are heavily doped.
In the embodiment of the application, the second doping region 106 forms an emitter region of a lateral base region-opened NPN transistor, the first well region 102, the epitaxial layer 101, and the second well region 103 form a base region of the lateral base region-opened NPN transistor, the third doping region 107 forms a collector region of the lateral base region-opened NPN transistor, and the unidirectional negative resistance ESD protection device is obtained by plastic-sealing the base region-opened NPN transistor.
In the embodiment of the application, the doping concentration matching of the emitter region-base region and the collector region-base region is set by using the characteristics of the lateral base region-opened NPN transistor, that is, the first doping region 104 and the first well region 102 are used to form an emitter region-base region PN junction, the second doping region 105 and the second well region 103 are used to form a collector region-base region PN junction, and the two PN junctions (the doping region-well region and the collector region-well region) are matched by using the doping concentration, so that bidirectional low-voltage ESD protection can be realized by a punch-through breakdown mode, and bidirectional high-voltage ESD protection can be realized by an avalanche breakdown mode.
In the embodiment of the present application, when the ESD pulse or surge received by the first electrode 108 is positive (the potential of the first electrode 108 is positive, the potential of the third electrode 110 is negative, and the first electrode 108 and the third electrode 110 form a reverse breakdown direction of the unidirectional negative resistance electrostatic discharge protection device), the forward ESD pulse or surge flows through the laterally open base region NPN transistor, wherein,
the direction from the second electrode 109, the first doped region 105, the first well region 102 to the substrate 100 forms a breakdown voltage direction of the unidirectional negative resistance ESD protection device, the breakdown voltage direction is a negative resistance characteristic direction of the unidirectional negative resistance ESD protection device, namely a first branch of reverse static and surge discharge, and the direction from the substrate 100, the first well region 102, the first doped region 105 to the second electrode 109 forms a second branch of forward static and surge discharge;
the substrate 100, the epitaxial layer 101, the second well region 103 and the second doped region 106 form a forward characteristic direction of the unidirectional negative resistance ESD protection device, that is, a first branch of forward static and surge discharge, and the second doped region 106, the second well region 103, the epitaxial layer 101 and the substrate 100 form a second branch of reverse static and surge discharge.
When the ESD pulse or surge received by the first electrode 108 is negative (the potential of the first electrode 108 is negative, and the potential of the third electrode 110 is positive), a forward diode is formed between the third electrode 110 and the first electrode 108, and a forward conduction direction is formed, that is: the substrate 100, the epitaxial layer 101, the direction from the second well region 103 to the second doped region 106 form a positive characteristic direction of a positive conduction (positive static electricity) direction of the unidirectional negative resistance ESD protection device and a first branch circuit for discharging negative ESD and surge; the substrate 100, the first well region 102, the first doped region 105 and the second electrode 109 form a second branch for discharging negative ESD and surge in the positive electrostatic direction.
In this embodiment, as an optional embodiment, the unidirectional negative resistance ESD protection device further includes:
an interlayer dielectric layer (not shown) is formed on the surfaces of the epitaxial layer 101, the first doped region 105, the second doped region 106 and the third doped region 107.
In the embodiment of the present application, the interlayer dielectric layer is a silicon dioxide layer formed on the surfaces of the epitaxial layer 101, the first doped region 105, the second doped region 106 and the third doped region 107 after annealing, or is an SI layer formed on the surface of the silicon dioxide layer by a Chemical Vapor Deposition (CVD) process3N4And (3) a layer.
Fig. 2b shows a schematic structural diagram of a unidirectional negative resistance ESD protection device according to another embodiment of the present application. As shown in fig. 2b, compared to fig. 2a, the method further includes: a fourth well region 211, and a fifth well region 212, wherein,
the fourth well region 211 is located between the second doped region 106 and the first well region 102, and the fifth well region 212 is located between the third doped region 107 and the third well region 104;
the doping concentration of the fourth well region 211 is lower than that of the second doping region 106, and the doping concentration of the fifth well region 212 is lower than that of the third doping region 107.
In this embodiment, as an optional embodiment, the doping types of the fourth well region 211 and the fifth well region are both N-type doping, and the doping concentration is light doping.
In the embodiment of the present application, by adding the fourth well region 211 and the fifth well region 212, the second doping region 106 and the fourth well region 211 form an emitter region of the lateral open base region NPN transistor, the second well region 103, the epitaxial layer 101, and the third well region 104 form a base region of the lateral open base region NPN transistor, and the fifth well region 212 and the third doping region 107 form a collector region of the lateral open base region NPN transistor. Because the emitter region and the base region are added with the fourth well region 211, the collector region and the base region are added with the fifth well region 212, and the doping concentrations of the fourth well region 211 and the fifth well region 212 are low, the junction depletion regions of the emitter region-base region and the collector region-base region cannot be widened to the second doping region 106 and the third doping region 107, reverse breakdown occurs in vivo, and the breakdown mechanism is avalanche breakdown, so that the withstand voltage of the ESD protection device of the embodiment is larger than that of the unidirectional negative resistance ESD protection device shown in fig. 2a, when the first electrode 108 receives forward ESD and surge, higher reverse breakdown voltage can be borne, and the ESD protection device can be applied to ESD and surge protection in a circuit with higher working voltage.
In the present embodiment, the second electrode 109 is attached to the substrate 100; the substrate 100, the epitaxial layer 101 to the first doping area 105 form an ESD and surge discharge channel, a one-way negative resistance function can be realized, double-sided lithography precision registration errors can be effectively avoided, the surge capacity uniformity is improved, large surge capacity and low residual voltage are realized, when a rechargeable IC chip is protected, an OVP device is matched, the ultralow effect of positive surge clamping voltage and negative surge clamping voltage can be achieved, a good protection effect is provided for various rear-end IC chips, and the electrostatic and surge protection device can be widely applied to electrostatic and surge protection of interfaces such as consumer electronics, automotive electronics and industrial control.
Fig. 3 shows a flow chart of a method for manufacturing a unidirectional negative resistance ESD protection device according to an embodiment of the present application. As shown in fig. 3, the method includes:
step 301, epitaxially growing an epitaxial layer 101 on the front surface of the substrate 100;
in the embodiment of the present application, as an alternative embodiment, the doping type of the substrate 100 is P-type doping. The range of resistivity of the substrate 100 includes, but is not limited to: 0.1-0.001 omega cm. In some preferred embodiments, the substrate 100 is selected to have a low resistivity, for example, the substrate 100 is selected to have a resistivity of 0.004-0.008 Ω · cm, and in still other preferred embodiments, the substrate 100 is selected to have a resistivity of less than 0.006 Ω · cm, and the lower resistivity is effective to reduce the dynamic resistance of the ESD protection device.
In the embodiment of the present application, as an alternative embodiment, the substrate 100 is a P-type substrate sheet, and the epitaxial layer 101 is grown on the P-type substrate sheet at a high temperature by using an epitaxial furnace. The epitaxial layer 101 is a P-type epitaxial layer, has a resistivity in the range of 0.01-10 Ω · cm, and has a thickness of 5-15 μm.
Step 302, forming a first well region 102 in contact with the front surface of the substrate 100 in the epitaxial layer 101, and performing high-temperature annealing on the first well region 102;
fig. 4a shows a schematic structural diagram obtained by the processing in step 302 in the embodiment of the present application. As shown in fig. 4a, in the present embodiment, the first well region 102 is formed in the epitaxial layer 101 by a process including, but not limited to: and photoetching and etching. The first well region 102 is formed in the epitaxial layer 101 by conventional processes such as photolithography and etching, the doping type of the first well region 102 is P-type, and the doping impurities include, but are not limited to, boron. Taking boron as an example of a doping impurity, the ion implantation dosage of (boron) is 1E14/cm2-1E15/cm2The implantation energy is 50-120 KeV.
In the embodiment of the present application, as an alternative embodiment, the first well region 102 is located on one side, for example, the left side or the right side, of the epitaxial layer 101. After the first well region 102 is formed, a high temperature anneal is performed on the first well region 102. As an alternative embodiment, the annealing temperature is 1100-1200 ℃, and the annealing time is 1.0-3.0 h.
Step 303, forming other areas outside the first well region 102 in the epitaxial layer 101, synchronously forming a second well region 103 and a third well region 104, and performing high-temperature annealing on the second well region 103 and the third well region 104;
fig. 4b shows a schematic structural diagram obtained by processing in step 303 in the embodiment of the present application. As shown in fig. 4b, in the embodiment of the present invention, the second well region 103 and the third well region 104 are formed simultaneously in the epitaxial layer 101 by performing photolithography and etching on other regions outside the first well region 102, and the doping types of the second well region 103 and the third well region 104 are P-type. As an alternative embodiment, the dopant impurity may be boron and the ion implantation dose is 1E13/cm2-1E15/cm2The implantation energy is 50-120 Kev.
In the embodiment of the present application, after the second well region 103 and the third well region 104 are formed, high temperature annealing is performed on the second well region 103 and the third well region. As an alternative embodiment, the annealing temperature is 1000-1100 ℃, and the annealing time is 0.5-2 h.
Step 304, forming a first doped region 105 in the first well region 102;
FIG. 4c shows an embodiment of the present applicationThe embodiment is a schematic structural diagram obtained through the processing in step 304. As shown in fig. 4c, in the embodiment of the present application, the first doped region 105 is formed in the first well region 102 by conventional processes such as photolithography and etching, the doping type of the first doped region 105 is P-type, the doping impurity may be boron, and the ion implantation dosage is 1E15/cm2-8e15/cm2The implantation energy is 40-80 KeV.
Step 305, forming a second doped region 106 in the second well 103, forming a third doped region 107 in the third well 104, and performing high temperature annealing on the second doped region 106 and the third doped region 107;
fig. 4d shows a schematic structural diagram obtained by processing in step 305 according to an embodiment of the present application. As shown in fig. 4d, in the embodiment of the present application, a second doped region 106 and a third doped region 107 are formed in the second well 103 and the third well 104 respectively by conventional processes such as photolithography and etching, the doping type of the second doped region 106 and the third doped region 107 are both N-type, the doping may be phosphorus, and the ion implantation dosage is 1E15/cm2-1E16/cm2The implantation capacity is 40-80 KeV.
In the present embodiment, after the second doped region 106 and the third doped region 107 are formed, a high temperature anneal is performed on the second doped region 106 and the third doped region 107. As an alternative embodiment, the annealing temperature is 950-1050 ℃, and the annealing time is 0.5-1 h.
In the embodiment of the present application, as an optional embodiment, the doping types of the substrate 100, the epitaxial layer 101, the first well region 102, the second well region 103, the third well region 104, and the first doping region 105 are a first doping type; the doping type of the second doping region 106 and the third doping region 107 is a second doping type opposite to the first doping type.
In the embodiment of the present application, as an optional embodiment, the first doping type is an N type, and the second doping type is a P type; or the first doping type is P type, and the second doping type is N type.
In the embodiment of the present application, the doping concentration of the first well region 102 is greater than the doping concentration of the epitaxial layer 101; the doping concentration of the second well region 103 is the same as that of the third well region 104; the doping concentration of the second doped region 106 is the same as the doping concentration of the third doped region 107; the doping concentration of the first doping region 105 is greater than the doping concentration of the first well region 102.
In the embodiment of the present application, as an optional embodiment, the substrate 100 is heavily doped, the epitaxial layer 101 is lightly doped, the first well region 102, the second well region 103, and the third well region 104 are lightly doped, and the first doped region 105, the second doped region 106, and the third doped region 107 are heavily doped.
In the embodiment of the application, the second doping region 106 forms an emitter region of a lateral base region-opened NPN transistor, the first well region 102, the epitaxial layer 101, and the second well region 103 form a base region of the lateral base region-opened NPN transistor, the third doping region 107 forms a collector region of the lateral base region-opened NPN transistor, and the base region-opened NPN transistor is plastically packaged subsequently to obtain the unidirectional negative resistance ESD protection device.
Step 306, forming contact holes on interlayer dielectric layers formed on the surfaces of the annealed epitaxial layer 101, the first doped region 105, the second doped region 106 and the third doped region 107;
in the embodiment of the present application, the interlayer dielectric layer (not shown) is a silicon dioxide layer formed after annealing, or SI formed by a Chemical Vapor Deposition (CVD) process on the surface of the silicon dioxide layer3N4And (3) a layer.
In the embodiment of the present application, a contact hole (not shown in the figure) is formed on the interlayer dielectric layer by conventional processes such as photolithography and etching, and the contact hole includes: the first doping region contact hole, the second doping region contact hole and the third doping region contact hole.
Step 307, sputtering metal on the contact hole to form a first electrode 108 and a second electrode 109 above the contact hole respectively;
fig. 4e shows a schematic structural diagram obtained by processing in step 307 in the embodiment of the present application. As shown in fig. 4e, in the embodiment of the present application, an aluminum layer with a thickness of 2-5um is formed by an evaporation or sputtering process, and conventional processes such as photolithography and etching are performed on the aluminum layer formed on the surface, so as to form the first electrode 108 on the metal above the contact hole of the second doped region; a common second electrode 109 is formed over the third doped region contact and the metal over the first doped region contact.
In the embodiment of the present disclosure, an interlayer dielectric layer is formed on the surfaces of the epitaxial layer 101, the first doped region 105, the second doped region 106, and the third doped region 107; photoetching and etching the interlayer dielectric layer to form contact holes comprising a first doping area contact hole, a second doping area contact hole and a third doping area contact hole; metal (aluminum) is sputtered at the contact holes to form a first electrode 108 over the second doped region contact holes, and a common second electrode 109 is formed over the first doped region contact holes and the third doped region contact holes.
In step 308, a third electrode 110 is formed on the back side of the substrate 100.
Fig. 4f shows a schematic structural diagram obtained by processing in step 308 in the embodiment of the present application. In the embodiment of the present application, as shown in fig. 4f, after performing lapping and silicon etching on the back surface of the substrate 100, a metallization process, such as evaporating metal, is performed, so that the metal under the back surface of the substrate 100 forms the third electrode 110.
It is noted that, in the embodiments of the present application, relational terms such as first and second, and the like are used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Also, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Without further limitation, an element defined by the phrase "comprising an … …" does not exclude the presence of other identical elements in a process, method, article, or apparatus that comprises the element.
In accordance with the embodiments of the present application, as described above, these embodiments are not intended to be exhaustive or to limit the application to the precise embodiments described. Obviously, many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the application and its practical application, to thereby enable others skilled in the art to best utilize the application and its various modifications as are suited to the particular use contemplated. The application is limited only by the claims and their full scope and equivalents.

Claims (10)

1. A unidirectional negative resistance electrostatic discharge protection device, comprising: a substrate, an epitaxial layer, a first well region, a second well region, a third well region, a first doped region, a second doped region, a third doped region, a first electrode, a second electrode, a third electrode,
the epitaxial layer is positioned above the front surface of the substrate;
the first well region is positioned in the epitaxial layer and connected with the substrate;
the second well region and the third well region are positioned in the epitaxial layer, and the first well region, the second well region and the third well region are arranged at intervals;
the first doped region is positioned in the first well region, the second doped region is positioned in the second well region, and the third doped region is positioned in the third well region;
the first electrode is positioned above the contact hole of the second doping region, the second electrode is positioned above the contact holes from the first doping region to the contact hole of the third doping region, and the contact hole of the first doping region, the contact hole of the second doping region and the contact hole of the third doping region are respectively formed on an interlayer dielectric layer formed on the surfaces of the annealed epitaxial layer, the first doping region, the second doping region and the third doping region through process treatment;
the third electrode is located on the back surface of the substrate.
2. The unidirectional negative resistance electrostatic discharge protection device according to claim 1, wherein the second doped region forms an emitter region of a lateral open base region NPN transistor, the first well region, the epitaxial layer, and the second well region form a base region of the lateral open base region NPN transistor, the third doped region forms a collector region of the lateral open base region NPN transistor, and the unidirectional negative resistance electrostatic discharge protection device is obtained by plastic-molding the open base region NPN transistor.
3. The esd protection device of claim 1 or 2, wherein the direction from the second electrode, the first doped region, and the first well region to the substrate constitutes a negative resistance characteristic direction of the esd protection device.
4. The device according to claim 1 or 2, wherein the substrate, the epitaxial layer, the second well region to the second doped region form a first branch of forward static and surge leakage of the device.
5. The esd protection device of claim 1 or 2, wherein the direction from the substrate, the first well region, and the first doped region to the second electrode forms a second branch of forward static and surge leakage of the esd protection device.
6. The esd protection device of claim 1 or 2, wherein the direction from the second electrode, the first doped region, and the first well region to the substrate forms a first branch of reverse static and surge discharge of the esd protection device.
7. The device according to claim 1 or 2, wherein the second doped region, the second well region, the epitaxial layer and the substrate form a second branch of reverse electrostatic and surge discharge of the device.
8. A unidirectional negative resistance electrostatic discharge protection device according to claim 1 or 2, further comprising:
and the interlayer dielectric layer is positioned on the surfaces of the epitaxial layer, the first doped region, the second doped region and the third doped region.
9. A unidirectional negative resistance electrostatic discharge protection device according to claim 1 or 2, further comprising: a fourth well region and a fifth well region, wherein,
the fourth well region is located between the second doped region and the first well region, and the fifth well region is located between the third doped region and the third well region.
10. The device according to claim 9, wherein the second doped region and the fourth well region form an emitter region of a lateral open base region NPN transistor, the second well region, the epitaxial layer, and the third well region form a base region of the lateral open base region NPN transistor, and the fifth well region and the third doped region form a collector region of the lateral open base region NPN transistor.
CN202020751159.8U 2020-05-09 2020-05-09 Unidirectional negative resistance electrostatic discharge protection device Active CN211654822U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020751159.8U CN211654822U (en) 2020-05-09 2020-05-09 Unidirectional negative resistance electrostatic discharge protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020751159.8U CN211654822U (en) 2020-05-09 2020-05-09 Unidirectional negative resistance electrostatic discharge protection device

Publications (1)

Publication Number Publication Date
CN211654822U true CN211654822U (en) 2020-10-09

Family

ID=72690073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020751159.8U Active CN211654822U (en) 2020-05-09 2020-05-09 Unidirectional negative resistance electrostatic discharge protection device

Country Status (1)

Country Link
CN (1) CN211654822U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540711A (en) * 2020-05-09 2020-08-14 捷捷半导体有限公司 Method for manufacturing unidirectional negative resistance ESD protection device and unidirectional negative resistance ESD protection device
CN112614782A (en) * 2020-12-15 2021-04-06 扬州杰利半导体有限公司 Manufacturing method of unidirectional negative resistance surge protection chip
CN117116936A (en) * 2023-09-25 2023-11-24 深圳长晶微电子有限公司 Unidirectional surge protection device and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540711A (en) * 2020-05-09 2020-08-14 捷捷半导体有限公司 Method for manufacturing unidirectional negative resistance ESD protection device and unidirectional negative resistance ESD protection device
CN111540711B (en) * 2020-05-09 2024-05-14 捷捷半导体有限公司 Method for manufacturing unidirectional negative resistance ESD protection device and unidirectional negative resistance ESD protection device
CN112614782A (en) * 2020-12-15 2021-04-06 扬州杰利半导体有限公司 Manufacturing method of unidirectional negative resistance surge protection chip
CN117116936A (en) * 2023-09-25 2023-11-24 深圳长晶微电子有限公司 Unidirectional surge protection device and manufacturing method thereof
CN117116936B (en) * 2023-09-25 2024-04-26 深圳长晶微电子有限公司 Unidirectional surge protection device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN211654822U (en) Unidirectional negative resistance electrostatic discharge protection device
US20220165725A1 (en) High Voltage ESD Protection Apparatus
US9837516B2 (en) Bi-directional punch-through semiconductor device and manufacturing method thereof
US8252656B2 (en) Zener triggered ESD protection
US9330961B2 (en) Stacked protection devices and related fabrication methods
US20140027815A1 (en) Fast Turn On Silicon Controlled Rectifiers for ESD Protection
US20170309610A1 (en) Rectification device, method for manufacturing the same and esd protection device
US20140126091A1 (en) Protection Device And Related Fabrication Methods
US9543420B2 (en) Protection device and related fabrication methods
CN111540711B (en) Method for manufacturing unidirectional negative resistance ESD protection device and unidirectional negative resistance ESD protection device
CN211605156U (en) Electrostatic discharge protection device
CN105679836B (en) Ultra-low capacitance TVS diode structure and preparation method thereof
CN108565260B (en) Semiconductor device with a plurality of transistors
JP2024520102A (en) GGNMOS TRANSISTOR STRUCTURE, ESD PROTECTION DEVICE AND CIRCUIT
KR100936644B1 (en) Semiconductor device and method for manufacturing thereof
US10910501B2 (en) Stucture and method for SIC based protection device
US8941959B2 (en) ESD protection apparatus
CN108565259B (en) Semiconductor device and method for manufacturing the same
KR101407273B1 (en) Semiconductor Device for Surge Protection and Method for Manufacturing Thereof
CN105977160A (en) Highly reliable VDMOS input terminal static electricity leakage manufacture method
US9478531B2 (en) Semiconductor device comprising an ESD protection device, an ESD protection circuitry, an integrated circuit and a method of manufacturing a semiconductor device
CN111430305B (en) Method for manufacturing electrostatic discharge protection device and electrostatic discharge protection device
CN115954356B (en) High-voltage bidirectional silicon controlled electrostatic discharge protection device and preparation method thereof
KR102670357B1 (en) Structure and method for sic based protection device
EP4376079A1 (en) A semiconductor device

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant