CN211576208U - 姿态信息采集设备 - Google Patents
姿态信息采集设备 Download PDFInfo
- Publication number
- CN211576208U CN211576208U CN202020173384.8U CN202020173384U CN211576208U CN 211576208 U CN211576208 U CN 211576208U CN 202020173384 U CN202020173384 U CN 202020173384U CN 211576208 U CN211576208 U CN 211576208U
- Authority
- CN
- China
- Prior art keywords
- attitude
- information
- optical
- reticle
- optical collimating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
本申请公开了一种姿态信息采集设备,包括:光学准直装置,用于检测与设置于被测物体的测量面之间的对准状态并生成对准信息,其中对准信息用于指示光学准直装置与测量面之间的对准状态,并且其中在光学准直装置与测量面对准的情况下,光学准直装置的轴线与测量面的法线平行;以及姿态测量装置,与光学准直装置连接,用于测量与光学准直装置的姿态相关的测量信息。
Description
技术领域
本申请涉及姿态信息获取技术领域,特别是涉及一种姿态信息采集设备。
背景技术
现有的对物体的姿态进行测量的方式为接触式姿态测量,例如将陀螺仪放置在被测物体上,用以测量被测物体的姿态。然而,在实际的应用场景中,会存在无法直接将陀螺仪放置在被测物体上的情况。因此,需要一种非接触式姿态测量方式,使得在不与被测物体接触的情况下,采集与被测物体姿态相关的测量信息。
但是,在不与被测物体接触的情况下,如何采集与被测物体姿态相关的测量信息的技术问题,目前尚未提出有效的解决方案。
实用新型内容
本公开提供了一种姿态信息采集设备,以至少解决现有技术中存在的在不与被测物体接触的情况下,如何采集与被测物体姿态相关的测量信息的技术问题。
根据本申请,提供了一种姿态信息采集设备,包括光学准直装置和姿态测量装置。其中光学准直装置用于检测与设置于被测物体的测量面之间的对准状态并生成对准信息,其中对准信息用于指示光学准直装置与测量面之间的对准状态,并且其中在光学准直装置与测量面对准的情况下,光学准直装置的轴线与测量面的法线平行。姿态测量装置,与光学准直装置连接,用于测量与光学准直装置的姿态相关的测量信息。
可选地,光学准直装置包括:光源;图像采集单元;设置于光源前的第一分划板;设置于图像采集单元前的第二分划板;以及光学系统。其中,光学系统用于将由光源发射并且穿过第一分划板的光源光投射到测量面上,以及将从测量面反射回的光源光经由第二分划板投射到图像采集单元;以及图像采集单元用于采集检测图像作为对准信息,其中检测图像包含第一分划板的第一刻线的第一影像和第二分划板的第二刻线的第二影像。
可选地,姿态测量装置包括陀螺仪和加速度计。
可选地,姿态测量装置的陀螺仪包括彼此垂直设置的第一陀螺仪、第二陀螺仪以及第三陀螺仪,姿态测量装置的加速度计包括彼此垂直设置的第一加速度计、第二加速度计以及第三加速度计。
可选地,姿态测量装置还包括与陀螺仪和加速度计连接的信号采集电路,其中信号采集电路用于从陀螺仪和加速度计采集测量信息。
可选地,姿态测量装置还包括电源电路,电源电路用于为陀螺仪、加速度计和信号采集电路供电。
可选地,姿态测量装置还包括箱体,用于容纳陀螺仪、加速度计以及信号采集电路。
可选地,箱体上设置有信号输出接口,并且信号输出接口通过走线底板与信号采集电路连接。
可选地,姿态测量装置还包括设置于箱体表面的手持部件。
可选地,姿态信息采集设备还包括:处理器装置,处理器装置与光学准直装置以及姿态测量装置通信连接。
可选地,光学准直装置还包括用于向处理器装置传输对准信息的对准信息输出接口。
在本申请实施例中,在不与被测物体接触的情况下,通过光学准直装置确定与被测物体之间的对准信息。从而能够根据所确定的对准信息,判定光学准直装置与被测物体的对准情况。然后,通过与光学准直装置连接的姿态测量装置(例如陀螺仪)测量与光学准直装置的姿态相关的测量信息。在光学准直装置与被测物体对准的情况下,意味着与光学准直装置的姿态相关的测量信息能够用于确定被测物体的姿态信息。从而,达到了在不与被测物体接触的情况下,能够采集与被测物体姿态相关的测量信息的技术效果。进而解决了现有技术中存在的在不与被测物体接触的情况下,如何采集与被测物体姿态相关的测量信息的技术问题。
根据下文结合附图对本申请的具体实施例的详细描述,本领域技术人员将会更加明了本申请的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本申请实施例所述的姿态信息采集设备的结构示意图;
图2是根据本申请实施例所示的非接触姿态测量系统的光学准直装置与被测物体的测量面对准状态下的示意图;
图3是根据本申请实施例所述的光学准直装置的载体坐标系与地理坐标系之间的欧拉角的示意图;
图4是图1所示的姿态信息采集设备的光学准直装置的示意性内剖图;以及
图5是根据本申请实施例所述的光学准直装置的光学系统的结构示意图。
图6A是根据本申请实施例所示的第一分划板和第二分划板共同投影在成像面上形成的检测图像的一个示意图,其中根据图6A所示光学准直装置与测量面没有对准;
图6B是根据本申请实施例所示的第一分划板和第二分划板共同投影在成像面上形成的检测图像的又一个示意图,其中根据图6B所示光学准直装置与测量面没有对准;
图7是图1所示的姿态信息采集设备的姿态测量装置的示意性内剖图;
图8是图1所示的姿态信息采集设备的示意性仰视图;以及
图9是本实用新型的又一改进例所述的姿态信息采集设备的结构示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本公开的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
此外,本说明书中涉及到的术语解释如下:
地理坐标系(简称t系):原点在被测对象的重心,xt轴指向东,yt轴指北, zt轴沿垂线指向天,通常称东北天坐标系。对于地理坐标系还有不同的取法,如北西天、北东地等。坐标系指向不同仅仅影响某一矢量在坐标系中求取投影分量的正负号不同而已,而不影响研究被测对象导航基本原理的阐述和导航参数计算结果的正确性。
载体坐标系(简称b系):载体坐标系是固连在被测对象上的,其原点在被测对象的重心,xb轴指向被测对象纵轴向前,yb轴指向被测对象右方,zb轴垂直Oxbyb平面向上。
图1示出了本实施例所述的姿态信息采集设备的结构示意图。参照图1所示,本实施例所述的姿态信息采集设备包括光学准直装置10和姿态测量装置 20。其中光学准直装置10用于检测与设置于被测物体的测量面S1之间的对准状态并生成对准信息。其中对准信息用于指示光学准直装置10与测量面S1之间的对准状态。并且其中在光学准直装置10与测量面S1对准的情况下,光学准直装置10的轴线与测量面S1的法线平行。姿态测量装置20与光学准直装置10连接,用于测量与光学准直装置10的姿态相关的测量信息。
正如背景技术中所述的,现有的对物体的姿态进行测量的方式为接触式姿态测量,例如将陀螺仪放置在被测物体上,用以测量被测物体的姿态。然而,在实际的应用场景中,会存在无法直接将陀螺仪放置在被测物体上的情况。因此,需要一种非接触式姿态测量方式,使得在不与被测物体接触的情况下,采集与被测物体姿态相关的测量信息。但是,在不与被测物体接触的情况下,如何采集与被测物体姿态相关的测量信息的技术问题,目前尚未提出有效的解决方案。
针对该技术问题,本申请提供了一种姿态信息采集设备,参照图1所示,在不与被测物体接触的情况下,姿态信息采集设备通过光学准直装置10确定与被测物体之间的对准信息。从而能够根据所确定的对准信息,判定光学准直装置10与被测物体是否对准。具体地,参考图2所示,在光学准直装置10与被测物体的测量面S1对准的情况下,光学准直装置10的轴线与测量面S1的法线平行。从而,例如在测量面S1与被测物体的载体坐标系的x轴(即xb3轴) 垂直的情况下,则被测物体的载体坐标系Oxb3yb3zb3与光学准直装置10的载体坐标系Oxb1yb1zb1之间对准。因此,至少被测物体的载体坐标系Oxb3yb3zb3相对于光学准直装置10的载体坐标系Oxb1yb1zb1不存在方位角和俯仰角的偏差。从而在此情况下,可以根据光学准直装置10的姿态信息来确定被测物体的姿态信息。其中,后文详细描述了关于光学准直装置10的进一步细节。
然后,可以通过与光学准直装置10连接的姿态测量装置20测量与光学准直装置10的姿态相关的测量信息。如后面所述,可以利用加速度计和陀螺仪测量与光学准直装置10的姿态相关的角度以及加速度信息作为测量信息。从而用于确定光学准直装置10的姿态信息。具体地,例如(但不限于)参考图3所示,光学准直装置10的姿态信息例如可以是光学准直装置10的载体坐标系 Oxb1yb1zb1相对于光学准直装置10的地理坐标系Oxt1yt1zt1的欧拉角(α1,β1,θ1),用于表示光学准直装置10相对于地理坐标系的方位角、俯仰角以及横滚角。
在光学准直装置10与被测物体对准的情况下,意味着光学准直装置10的姿态信息能够用于确定被测物体的姿态信息。例如可以根据光学准直装置10 相对于地理坐标系的方位角α1和俯仰角β1,确定被测物体的方位角和俯仰角作为姿态信息。
从而,通过本实施例的技术方案,达到了在不与被测物体接触的情况下,能够采集与被测物体姿态相关的测量信息的技术效果。进而解决了现有技术中存在的在不与被测物体接触的情况下,如何采集与被测物体相关的姿态信息的技术问题。
可选地,光学准直装置10包括:光源110;图像采集单元120;设置于光源110前的第一分划板130;设置于图像采集单元120前的第二分划板140;以及光学系统。其中,光学系统用于将由光源发射并且穿过第一分划板130的光源光投射到测量面S1上,以及将从测量面S1反射回的光源光经由第二分划板 140投射到图像采集单元120。图像采集单元120用于采集检测图像作为对准信息,其中检测图像包含第一分划板130的第一刻线的第一影像和第二分划板140 的第二刻线的第二影像。
具体地,图4示例性的示出了光学准直装置的示意性内剖图。参照图4所示,光学准直装置10包括:光源110、图像采集单元120、设置于光源前的第一分划板130、设置于图像采集单元120前的第二分划板140以及光学系统。其中,图5示例性的示出了光学系统的结构示意图。参照图5所示,光学系统包括物镜150、棱镜160和目镜170,其中第一分划板130和第二分划板140 通过棱镜160分光共轭位于物镜系统与目镜系统的焦平面上。
进一步地,参照图4以及图5所示,例如可以在被测物体上设置反射镜作为测量面S1。依据光路可逆成像原理,光源110发出的光源光经过第一分划板 130后经物镜150后成平行光照射至设置于被测物体上的测量面S1。然后,经测量面S1反射再次经由物镜150目镜170后成像于物镜150的像面位置。由于第二分划板140位于物镜150的像面位置,因此光学系统将从被测物体反射回的光源光经由第二分划板140成平行光投射到图像采集单元120。使得设置于成像面上的图像采集单元120能够采集到包含第一分划板130的第一刻线的第一影像和第二分划板140的第二刻线的第二影像的检测图像,参见图6A和图6B所示。
其中,在第一影像的十字中心与第二影像的十字中心重合的情况下,可以判定光学准直装置10与测量面S1对准。具体地,若设置于被测物体上的反射镜垂直于光学系统光轴,第一分划板130和第二分划板140的图像十字中心应完成重合,意味着光学准直装置10与被测物体对准;若设置于被测物体上的反射镜与光学系统光轴有一定的夹角,则第一分划板130和第二分划板140的图像十字中心分开一定距离,不处于重合位置,意味着光学准直装置10与被测物体没有对准。从而通过这种方式,可以通过后续的处理器装置根据从姿态测量装置20获取的姿态信息确定与光学准直装置10相关的姿态信息,进而确定被测物体的姿态信息。
其中,在东北天坐标系下,当测量面的法线与光学准直装置10的轴线不平行时,即两个空间异面直线间横滚差角、俯仰差角和方位差角不为零时,则第一分划板130和第二分划板140共同投影在成像面上形成的图像如图6A或者图6B所示。具体地,在图6A或者图6B中,第一分划板130和第二分划板140 的刻线的影像分开一定距离,不处于重合位置,则意味着光学准直装置10与被测物体没有对准。
从而,通过这种方式,本实施例的技术方案能够利用光学投影成像以及图像处理技术来确定光学准直装置10与测量面S1的对准状态,从而既能够保证检测的准确性,也能够实时根据对准信息判定光学准直装置10与测量面S1是否对准,并且确定被测物体的姿态信息。
其中,光源可以采用1550nm的光纤光源(SFS),光纤光源(SFS)基于掺铒光纤的放大自发辐射(ASE),具有很好的温度稳定性,输出功率大、寿命长,低偏振相关性。此外,图像采集单元120例如但不限于为触发式CCD 摄像机。
可选地,姿态测量装置20包括陀螺仪陀螺仪210a、210b、210c和加速度计220a、220b、220c。进一步地,姿态测量装置20的陀螺仪包括彼此垂直设置的第一陀螺仪210a、第二陀螺仪210b以及第三陀螺仪210c。姿态测量装置 20的加速度计包括彼此垂直设置的第一加速度计220a、第二加速度计220b以及第三加速度计220c。
具体地,图7示例性的示出了姿态测量装置20的示意性内剖图,图8示例性的示出了非接触姿态测量系统的示意性仰视图。参照图7和图8所示,姿态测量装置20包括彼此垂直设置的第一陀螺仪210a、第二陀螺仪210b以及第三陀螺仪210c。并且姿态测量装置20还包括第一加速度计220a、第二加速度计 220b以及第三加速度计220c。其中通过陀螺仪210a、210b、210c测量光学准直装置10的角运动信息,通过加速度计220a、220b、220c测量光学准直装置 10的线速度信息,从而可以依据捷联惯导算法,计算得到光学准直装置10的载体坐标系相对于地理坐标系的方位关系,即光学准直装置10的第三姿态信息。而关于捷联惯导算法的具体细节,可以参考相关现有技术,本说明书中不再进行详细赘述。
进一步地,由于陀螺仪210a、210b、210c精度的高低直接影响到测量的光学准直装置10的第一姿态信息的精度,最终影响所确定的被测物体的姿态的精度。为了保证精度,可以采用高精度的光纤陀螺。或者选取精度为1%的陀螺仪,该精度陀螺仪可以保证航向保持0.01度每小时,满足测量精度的要求。
此外,加速度计220a、220b、220c可以采用石英挠性加速度计,它是机械摆式力平衡伺服加速度计。当检测摆感受输入加速度时,它将产生绕挠性枢轴的惯性力矩,在此力矩的作用下,摆绕挠性枢轴作角运动,产生角位移。由差动电容传感器将该位移变换成电容变化量,输给模拟放大器,模拟放大器将其变换成电流信号输送到力矩器,产生一恢复力矩。当恢复力矩与摆的惯性力矩相平衡时,输向力矩器的电流值可用来度量输入加速度的量值。
可选地,姿态测量装置20还包括与陀螺仪210a、210b、210c和加速度计 220a、220b、220c连接的信号采集电路230,信号采集电路230用于从陀螺仪 210a、210b、210c的和加速度计220a、220b、220c采集测量信息。
具体地,参照图7和图8所示,姿态测量装置20还包括与陀螺仪210a、 210b、210c和加速度计220a、220b、220c连接的信号采集电路230。其中,信号采集电路230主要用于采集陀螺仪210a、210b、210c和加速度计220a、252 和253的陀螺信号以及加速度信号,然后将陀螺信号和加速度信号处理后发送给后续的处理器装置30(参考图9所示)。使得处理器装置30可以对接收到的陀螺信号和加速度信号进行姿态解算,确定光学准直装置10的姿态。从而确定与光学准直装置10对准的被测物体的姿态。
可选地,姿态测量装置20还包括电源电路250,电源电路250用于为陀螺仪210a、210b、210c、加速度计220a、220b、220c和信号采集电路230供电。
具体地,参照图7所示,姿态测量装置20还包括电源电路250,用于为陀螺仪210a、210b、210c和信号采集电路230供电。此外,电源电路250可以根据需求进行定制,除了向陀螺仪210a、210b、210c、加速度计220a、220b、220c 和信号采集电路230供电外,还对电源电路250进行了电磁兼容的设计考虑,输入电压由处理器装置30中的电池提供。
可选地,姿态测量装置20还包括箱体240,用于容纳陀螺仪210a、210b、 210c、加速度计220a、220b、220c以及信号采集电路230。
具体地,图8示例性的示出了非接触姿态测量系统的示意性仰视图。参照图7和图8所示,姿态测量装置20还包括箱体240,用于容纳陀螺仪210a、210b、 210c、加速度计220a、220b、220c以及信号采集电路230。
可选地,箱体240上设置有设置有信号输出接口241,其中信号采集电路 230通过走线底板与信号采集电路230连接。
具体地,箱体240上设置有信号输出接口241,信号输出接口241例如可以通过走线底板(图中未示出)与信号采集电路230连接。从而,在信号采集电路230采集到陀螺信号和加速度信号后,可以通过走线底板将信号中转至信号输出接口241,最后通过信号输出接口241将陀螺信号和加速度信号发送至后续的处理器装置30。
可选地,姿态测量装置20还包括手持部件260,箱体240对称的两侧的外表面各自设置有一个手持部件260,使用者可以通过手握该手持部件260,灵活的移动姿态测量装置20,从而可以适用于多种测量场合
可选地,参考图9所示,姿态信息采集设备还包括处理器装置30。处理器装置30与光学准直装置10以及测量装置20通信连接。
具体地,在获取到与被测物体相关的姿态信息的情况下,还需要确定被测物体的姿态。为了解决该问题,参照图9所示,姿态信息获取设备还包括处理器装置30,与光学准直装置10以及姿态测量装置20连接,从光学准直装置10 接收对准信息和从姿态测量装置20接收光学准直装置10的姿态信息。然后处理器装置30可以用于对接收到的对准信息进行计算处理,从而判定光学准直装置10与被测物体是否对准。在判定光学准直装置10与被测物体对准的情况下,依据对准的两个物体的姿态信息相同的原理,处理器装置能够根据从姿态测量装置20接收的姿态信息,确定被测物体的姿态。达到了在获取到与被测物体相关的姿态信息的情况下,能够确定被测物体的姿态的目的。从而解决了在获取到与被测物体相关的姿态信息的情况下,如何确定被测物体的姿态的问题。
可选地,光学准直装置10还包括用于向处理器装置30传输对准信息的对准信息输出接口。从而,在光学准直装置10采集到对准信息后,可以通过对准信息输出接口将对准信息传输至处理器装置30。
综上所述,在本申请实施例中,在不与被测物体接触的情况下,通过光学准直装置确定与被测物体之间的对准信息。从而能够根据所确定的对准信息,判定光学准直装置与被测物体的对准情况。然后,通过与光学准直装置连接的姿态测量装置(例如陀螺仪)测量与光学准直装置的姿态相关的测量信息。在光学准直装置与被测物体对准的情况下,意味着与光学准直装置的姿态相关的测量信息能够用于确定被测物体的姿态信息。从而,达到了在不与被测物体接触的情况下,能够采集与被测物体姿态相关的测量信息的技术效果。进而解决了现有技术中存在的在不与被测物体接触的情况下,如何采集与被测物体姿态相关的测量信息的技术问题。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
在本公开的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。
Claims (10)
1.一种姿态信息采集设备,其特征在于,包括:
光学准直装置(10),用于检测与设置于被测物体的测量面(S1)之间的对准状态并生成对准信息,其中所述对准信息用于指示所述光学准直装置(10)与所述测量面(S1)之间的对准状态,并且其中在所述光学准直装置(10)与所述测量面(S1)对准的情况下,所述光学准直装置(10)的轴线与所述测量面(S1)的法线平行;以及
姿态测量装置(20),与所述光学准直装置(10)连接,用于测量所述光学准直装置(10)的姿态测量信息。
2.根据权利要求1所述的姿态信息采集设备,其特征在于,光学准直装置(10)包括:光源(110);图像采集单元(120);设置于所述光源(110)前的第一分划板(130);设置于所述图像采集单元(120)前的第二分划板(140);以及光学系统,其中
所述光学系统用于将由所述光源发射并且穿过所述第一分划板(130)的光源光投射到所述测量面(S1)上,以及将从所述测量面(S1)反射回的所述光源光经由所述第二分划板(140)投射到所述图像采集单元(120);以及
所述图像采集单元(120)用于采集检测图像作为所述对准信息,其中所述检测图像包含所述第一分划板(130)的第一刻线的第一影像和所述第二分划板(140)的第二刻线的第二影像。
3.根据权利要求1所述的姿态信息采集设备,其特征在于,所述姿态测量装置(20)包括陀螺仪(210a、210b、210c)和加速度计(220a、220b、220c)。
4.根据权利要求3所述的姿态信息采集设备,其特征在于,所述姿态测量装置(20)的陀螺仪(210a、210b、210c)包括彼此垂直设置的第一陀螺仪(210a)、第二陀螺仪(210b)以及第三陀螺仪(210c),所述姿态测量装置(20)的加速度计(220a、220b、220c)包括彼此垂直设置的第一加速度计(220a)、第二加速度计(220b)以及第三加速度计(220c)。
5.根据权利要求3所述的姿态信息采集设备,其特征在于,所述姿态测量装置(20)还包括与所述陀螺仪(210a、210b、210c)和所述加速度计(220a、220b、220c)连接的信号采集电路(230),其中所述信号采集电路(230)用于从所述陀螺仪(210a、210b、210c)和所述加速度计(220a、220b、220c)采集所述姿态测量信息。
6.根据权利要求5所述的姿态信息采集设备,其特征在于,所述姿态测量装置(20)还包括电源电路(250),所述电源电路(250)用于为所述陀螺仪(210a、210b、210c)、所述加速度计(220a、220b、220c)和所述信号采集电路(230)供电。
7.根据权利要求5所述的姿态信息采集设备,其特征在于,所述姿态测量装置(20)还包括箱体(240),用于容纳所述陀螺仪(210a、210b、210c)、所述加速度计(220a、220b、220c)以及所述信号采集电路(230)。
8.根据权利要求7所述的姿态信息采集设备,其特征在于,所述箱体(240)上设置有信号输出接口(241),并且所述信号输出接口(241)通过走线底板与所述信号采集电路(230)连接;和/或
所述姿态测量装置(20)还包括设置于所述箱体(240)表面的手持部件(260)。
9.根据权利要求1所述的姿态信息采集设备,其特征在于,还包括处理器装置(30),所述处理器装置(30)与所述光学准直装置(10)以及所述姿态测量装置(20)通信连接。
10.根据权利要求9所述的姿态信息采集设备,其特征在于,所述光学准直装置(10)还包括用于向所述处理器装置(30)传输所述对准信息的对准信息输出接口。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020173384.8U CN211576208U (zh) | 2020-02-14 | 2020-02-14 | 姿态信息采集设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020173384.8U CN211576208U (zh) | 2020-02-14 | 2020-02-14 | 姿态信息采集设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211576208U true CN211576208U (zh) | 2020-09-25 |
Family
ID=72525235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020173384.8U Active CN211576208U (zh) | 2020-02-14 | 2020-02-14 | 姿态信息采集设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211576208U (zh) |
-
2020
- 2020-02-14 CN CN202020173384.8U patent/CN211576208U/zh active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11035659B2 (en) | Inertial dimensional metrology | |
Deilamsalehy et al. | Sensor fused three-dimensional localization using IMU, camera and LiDAR | |
CN101523154B (zh) | 用于确定细长物体的定向参数的装置和方法 | |
JP2009503538A (ja) | 測定システムに用いる測定方法及び測定装置 | |
JP6997112B2 (ja) | 加速度計 | |
CN104380137A (zh) | 通过图像辅助的角度确定功能来间接测距的方法和手持测距设备 | |
Sabato et al. | Development of a camera localization system for three-dimensional digital image correlation camera triangulation | |
US7120875B2 (en) | Method and apparatus for augmented reality hybrid tracking system with fiducial-based heading correction | |
Ruotsalainen et al. | Mitigation of attitude and gyro errors through vision aiding | |
CN111238438B (zh) | 非接触姿态测量方法以及存储介质 | |
CN211576208U (zh) | 姿态信息采集设备 | |
CN111238440B (zh) | 非接触姿态测量系统 | |
CN111623775B (zh) | 运载体姿态测量系统、方法以及存储介质 | |
CN211601925U (zh) | 角度偏差测量系统 | |
CN111238439B (zh) | 角度偏差测量系统 | |
CN111238441B (zh) | 角度偏差测量方法、装置以及存储介质 | |
CN103630109A (zh) | 一种基于星光折射确定地心矢量的方法 | |
CN111678451B (zh) | 运载体的变形测量方法、装置以及存储介质 | |
CN112683198B (zh) | 一种三自由度角度光电测量装置及其测量方法 | |
CN111256650A (zh) | 非接触姿态测量方法、装置以及存储介质 | |
CN111307072B (zh) | 测量平台系统和测量系统 | |
CN111238412B (zh) | 测量方法、系统以及存储介质 | |
CN111504344B (zh) | 用于对非接触姿态测量设备进行标定的标定系统及方法 | |
JPS61266911A (ja) | 光フアイバジヤイロを用いた測量装置 | |
Köppe et al. | Radio-based multi-sensor system for person tracking and indoor positioning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |