CN211426839U - 一种晶体阵列式全庞加莱光束产生器 - Google Patents
一种晶体阵列式全庞加莱光束产生器 Download PDFInfo
- Publication number
- CN211426839U CN211426839U CN202020356423.8U CN202020356423U CN211426839U CN 211426839 U CN211426839 U CN 211426839U CN 202020356423 U CN202020356423 U CN 202020356423U CN 211426839 U CN211426839 U CN 211426839U
- Authority
- CN
- China
- Prior art keywords
- crystal
- beam generator
- poincare
- sector
- crystal array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 86
- 230000003287 optical effect Effects 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 230000010287 polarization Effects 0.000 description 69
- 230000000737 periodic effect Effects 0.000 description 29
- 238000000034 method Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Optical Head (AREA)
Abstract
本实用新型公开一种晶体阵列式全庞加莱光束产生器,该产生器由多块尺寸相同的扇形晶体以圆心角相对应拼接构成圆盘光学器件,各扇形晶体的折射率主轴方向按照拼接顺序沿圆盘角向变化,每一扇形晶体的厚度沿径向变化,本实用新型具有结构简单,透射耗损率低,对强度分布影响小等优点,适合推广使用。
Description
技术领域
本实用新型属于激光偏振调制领域,具体地说涉及一种晶体阵列式全庞加莱光束产生器。
背景技术
庞加莱球是光束偏振态的一种表示方法,其球面的每一点代表一种偏振态。庞加莱光束是指光束横截面具有复杂的偏振态分布,且其分布覆盖整个庞加莱球面,即遍历了所有可能偏振态。
目前能够产生庞加莱光束的器件主要有空间光调制器和亚波长光栅。由于空间光调制器需要对光束强度进行调制,光栅有多级次的衍射,所以这两种产生方式的最大缺点是透射损耗大。如果能将透射损耗降低,则庞加莱光束的产生有更广泛的用途。
因此,现有技术有待于进一步改进和发展。
实用新型内容
针对现有技术的种种不足,为了解决上述问题,现提出一种晶体阵列式全庞加莱光束产生器及光束产生方法,该方法透射耗损率低,结构简单。
本实用新型提供如下技术方案:
一种晶体阵列式全庞加莱光束产生器,由多块尺寸相同的扇形晶体以圆心角相对应拼接构成圆盘光学器件,各扇形晶体的折射率主轴方向按照拼接顺序沿圆盘角向变化,每一扇形晶体的厚度沿径向变化。
优选的,多块扇形晶体以圆盘中心为对称中心呈中心对称排列,形成双折射晶体阵列。
优选的,扇形晶体厚度d沿径向为r的函数:d=ar2+br+c,其中,a,b,c为实数,且a,b不能同时为0。
优选的,以圆盘中心为原点建立极坐标,设扇形晶体中心极角为θ,圆盘快轴与极轴的夹角为α,α与θ的关系为:α=qθ+α0,其中,q的取值为半整数,α0∈(-π/2,π/2]。
优选的,该圆盘光学器件的琼斯矩阵为:Jc=Jr(-α)Jw(d)Jr(α)
有益效果:
本实用新型提供了一种晶体阵列式全庞加莱光束产生器及光束产生方法,该实用新型能减少透射损耗率,对强度分布影响小,适合推广使用。
附图说明
图1是本实用新型具体实施例中晶体阵列式全庞加莱产生器件的结构示意图;
图2是本实用新型具体实施例中晶体阵列式全庞加莱产生器件扇形晶体结构示意图;
图3是本实用新型具体实施例中晶体阵列式全庞加莱产生器件的正视图;
图4是本实用新型具体实施例1所示条件下经过晶体前光束强度;
图5是本实用新型具体实施例1所示条件下经过晶体后光束强度;
图6是本实用新型具体实施例1所示条件下输出光束偏振态在庞加莱球上的分布;
图7是本实用新型具体实施例2所示条件下经过晶体后光束强度;
图8是本实用新型具体实施例3所示条件下经过晶体后光束强度;
图9是本实用新型具体实施例4所示条件下经过晶体后光束强度;
图10是本实用新型具体实施例5所示条件下经过晶体后光束强度;
图11是本实用新型具体实施例6所示条件下经过晶体后光束强度;
图12是本实用新型具体实施例7所示条件下经过晶体后光束强度;
图13是本实用新型具体实施例8所示条件下经过晶体后光束强度;
图14是本实用新型具体实施例9所示条件下经过晶体后光束强度;
图15是本实用新型具体实施例10所示条件下经过晶体后光束强度;
图16是本实用新型具体实施例11所示条件下经过晶体后光束强度;
图17是本实用新型具体实施例12所示条件下经过晶体后光束强度;
图18是本实用新型具体实施例13所示条件下经过晶体后光束强度;
图19是本实用新型具体实施例14所示条件下经过晶体后光束强度;
图20是本实用新型具体实施例15所示条件下经过晶体后光束强度。
附图中:100双折射晶体,200右旋圆偏,300左旋圆偏。
具体实施方式
为了使本领域的人员更好地理解本实用新型的技术方案,下面结合本实用新型的附图,对本实用新型的技术方案进行清楚、完整的描述,基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它类同实施例,都应当属于本申请保护的范围。此外,以下实施例中提到的方向用词,例如“上”“下”“左”“右”等仅是参考附图的方向,因此,使用的方向用词是用来说明而非限制本实用新型创造。
如图1-图3所示为本实用新型提供一种晶体阵列式全庞加莱光束产生器,由多块尺寸相同的扇形晶体以圆心角相对应拼接构成圆盘光学器件,各扇形晶体的折射率主轴方向按照拼接顺序沿圆盘角向变化,每一扇形晶体的厚度沿径向变化。
具体的,多块扇形晶体以圆盘中心为对称中心呈中心对称排列,形成双折射晶体阵列。
具体的,扇形晶体厚度d沿径向为r的函数:d=ar2+br+c,其中,a,b,c为实数,且a,b不能同时为0。
具体的,以圆盘中心为原点建立极坐标,设扇形晶体中心极角为θ,圆盘快轴(图3所示粗线条为圆盘的快轴)与极轴的夹角为α,α与θ的关系为:α=qθ+α0,其中,q的取值为半整数,α0∈(-π/2,π/2]。
具体的,该圆盘光学器件的琼斯矩阵为:Jc=Jr(-α)Jw(d)Jr(α)
一种晶体阵列式全庞加莱光束产生器产生全庞加莱光束的方法,入射光偏振态为右旋圆偏振,即χ=0时,晶体阵列式全庞加莱光束产生器的输出光束为全庞加莱光束。
以下为本实用新型具体实施例:
具体实施例1:
q=1/2,α0=π/4,a=0,b=0.002,c=0,此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图4图5所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。图6为该输出光束偏振态在庞加莱球上的表示,可见其偏振态遍历庞加莱球面,为全庞加莱光束。
具体实施例2:
q=1/2,α0=π/4,a=0,b=0.002,c=0.005此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图7所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例3:
q=1,α0=0,a=0,b=0.002,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图8所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例4:
q=1,α0=π/4,a=0,b=0.002,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图9所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例5:
q=1,α0=π/2,a=0,b=0.002,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图10所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例6:
q=1,α0=3π/4,a=0,b=0.002,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图11所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例7:
q=1,α0=π,a=0,b=0.002,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图12所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例8:
q=3/2,α0=0,a=0,b=0.002,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图13所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例9:
q=3/2,α0=π/8,a=0,b=0.002,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图14所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例10:
q=3/2,α0=π/4,a=0,b=0.002,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图15所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例11:
q=3/2,α0=π/2,a=0,b=0.002,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图16所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例12:
q=2,α0=0,a=0,b=0.002,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图17所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例13:
q=2,α0=π/4,a=0,b=0.002,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图18所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例14:
q=-2,α0=π/4,a=0,b=0.002,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图19所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
具体实施例15:
q=-2,α0=π/4,a=0.2,b=0,c=0此时器件的结构如图1-图3所示,设入射光偏振态为右旋圆偏振,即χ=0,则经过双折射晶体100前后的光强分布和偏振态分布如图20所示。可见,该过程中光强分布不变,偏振态变成沿径向和角向的周期性分布,即右旋圆偏200与左旋圆偏300呈周期性分布。
以上已将本实用新型做一详细说明,以上所述,仅为本实用新型之较佳实施例而已,当不能限定本实用新型实施范围,即凡依本申请范围所作均等变化与修饰,皆应仍属本实用新型涵盖范围内。
Claims (6)
1.一种晶体阵列式全庞加莱光束产生器,其特征在于,由多块尺寸相同的扇形晶体以圆心角相对应拼接构成圆盘光学器件,各扇形晶体的折射率主轴方向按照拼接顺序沿圆盘角向变化,每一扇形晶体的厚度沿径向变化。
2.根据权利要求1所述的晶体阵列式全庞加莱光束产生器,其特征在于,多块扇形晶体以圆盘中心为对称中心呈中心对称排列,形成双折射晶体阵列。
3.根据权利要求1所述的晶体阵列式全庞加莱光束产生器,其特征在于,扇形晶体厚度d沿径向为r的函数:d=ar2+br+c,其中,a,b,c为实数,且a,b不能同时为0。
4.根据权利要求1所述的晶体阵列式全庞加莱光束产生器,其特征在于,以圆盘中心为原点建立极坐标,设扇形晶体中心极角为θ,圆盘快轴与极轴的夹角为α,α与θ的关系为:α=qθ+α0,其中,q的取值为半整数,α0∈(-π/2,π/2]。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020356423.8U CN211426839U (zh) | 2020-03-19 | 2020-03-19 | 一种晶体阵列式全庞加莱光束产生器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020356423.8U CN211426839U (zh) | 2020-03-19 | 2020-03-19 | 一种晶体阵列式全庞加莱光束产生器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211426839U true CN211426839U (zh) | 2020-09-04 |
Family
ID=72254753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020356423.8U Expired - Fee Related CN211426839U (zh) | 2020-03-19 | 2020-03-19 | 一种晶体阵列式全庞加莱光束产生器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211426839U (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111239884A (zh) * | 2020-03-19 | 2020-06-05 | 中国工程物理研究院激光聚变研究中心 | 一种晶体阵列式全庞加莱光束产生器及光束产生方法 |
CN114755837A (zh) * | 2022-06-15 | 2022-07-15 | 苏州大学 | 一种全庞加莱球偏振阵列光束的产生方法及装置 |
-
2020
- 2020-03-19 CN CN202020356423.8U patent/CN211426839U/zh not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111239884A (zh) * | 2020-03-19 | 2020-06-05 | 中国工程物理研究院激光聚变研究中心 | 一种晶体阵列式全庞加莱光束产生器及光束产生方法 |
CN111239884B (zh) * | 2020-03-19 | 2023-06-13 | 中国工程物理研究院激光聚变研究中心 | 一种晶体阵列式全庞加莱光束产生器及光束产生方法 |
CN114755837A (zh) * | 2022-06-15 | 2022-07-15 | 苏州大学 | 一种全庞加莱球偏振阵列光束的产生方法及装置 |
CN114755837B (zh) * | 2022-06-15 | 2022-09-02 | 苏州大学 | 一种全庞加莱球偏振阵列光束的产生方法及装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113341569B (zh) | 一种偏振复用衍射波导大视场角度成像系统及方法 | |
US10802302B2 (en) | Waveplate lenses and methods for their fabrication | |
US10976595B2 (en) | Optical substrate and display device | |
US7764354B2 (en) | Multi-layer diffraction type polarizer and liquid crystal element | |
CN211426839U (zh) | 一种晶体阵列式全庞加莱光束产生器 | |
CN105229499A (zh) | 具有几何相位全息图的偏振转换系统 | |
CN114089531B (zh) | 一种基于反射式偏振复用液晶透镜的双目波导显示方法 | |
CN204557003U (zh) | 一种紧凑的反射型在线光纤激光隔离器 | |
Wang et al. | Multi-channel beam splitters based on gradient metasurfaces | |
CN208188393U (zh) | 波导组件和显示装置 | |
CN109073815A (zh) | 光学元件 | |
Sakamoto et al. | High-efficiency aerial display using a liquid crystal polarization grating, a retroreflector array, and a right-angle prism | |
CN111239884B (zh) | 一种晶体阵列式全庞加莱光束产生器及光束产生方法 | |
CN104597559A (zh) | 一种用于产生柱矢量光场的光子晶体光纤 | |
CN113189683B (zh) | 几何相位透镜 | |
CN102928990A (zh) | 改变光束偏振方向二维分布的装置 | |
WO2023103112A1 (zh) | 一种偏振传输不变光场的产生系统及方法 | |
JP2803181B2 (ja) | 複屈折回折格子型偏光子 | |
JPH01150117A (ja) | 反射型光変調装置 | |
CN111965750A (zh) | 一种提高传输视场的全息波导成像结构 | |
CN111668693A (zh) | 一种基于液晶几何相位调制的激光阵列光源 | |
CN108828798A (zh) | 一种高功率反射型光纤激光隔离器 | |
WO2022085247A1 (ja) | 液晶光学素子 | |
JP3011140B2 (ja) | ファイバ型光アイソレータ及びその製造方法 | |
CN210347979U (zh) | 柔性光学元件及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200904 Termination date: 20210319 |