CN114755837A - 一种全庞加莱球偏振阵列光束的产生方法及装置 - Google Patents

一种全庞加莱球偏振阵列光束的产生方法及装置 Download PDF

Info

Publication number
CN114755837A
CN114755837A CN202210674026.9A CN202210674026A CN114755837A CN 114755837 A CN114755837 A CN 114755837A CN 202210674026 A CN202210674026 A CN 202210674026A CN 114755837 A CN114755837 A CN 114755837A
Authority
CN
China
Prior art keywords
light
light beam
poincare sphere
array
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210674026.9A
Other languages
English (en)
Other versions
CN114755837B (zh
Inventor
刘永雷
陈亚红
王飞
蔡阳健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202210674026.9A priority Critical patent/CN114755837B/zh
Publication of CN114755837A publication Critical patent/CN114755837A/zh
Priority to PCT/CN2022/107026 priority patent/WO2023240741A1/zh
Application granted granted Critical
Publication of CN114755837B publication Critical patent/CN114755837B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种全庞加莱球偏振阵列光束的产生方法及装置。将完全相干光束通过预设阵列掩膜板生成多个光斑,将阵列掩膜信息编码到相干矩阵中,为了在远场得到阵列分布光束,设计具有特殊阵列分布形式的权重矩阵,得到相干矩阵元;将带有阵列掩膜信息的相干矩阵加载到光束定制的全庞加莱球偏振矩阵,实现相干结构和偏振信息的联合调控,将光束传输到远场,最终得到与光源偏振信息相同的部分相干阵列光束。通过灵活调控阵列掩膜板分布形式和庞加莱球偏振态,在远场就能灵活产生全庞加莱球偏振态的部分相干阵列光束。本发明解决了现阶段远场阵列偏振信息只能单一产生,不能灵活定制远场阵列光束偏振态的问题。

Description

一种全庞加莱球偏振阵列光束的产生方法及装置
技术领域
本发明涉及信息光学技术领域,特别是涉及一种全庞加莱球偏振阵列光束的产生方法及装置。
背景技术
结构光场具有振幅、相位、偏振及相干结构等多调控自由度,在多种应用中具有独特的优势。其中,具有阵列分布的结构光束作为一种典型的结构光,在多种实际应用中具有独特的优势和利用价值,如多纳米粒子捕获,生物活体的非破坏多重操纵,多维光学信息加密等。此外,它还可以被应用于大容量、大功率的自由空间光通信沟通。近年来,多种类型的标量或矢量阵列波束已经从理论上提出并在实验中生成,如激光照射周期振幅掩模板到空间光调制器及超表面阵列生成等。然而,传统的阵列波束仅限于完全相干的情况,因此,有几个负面作用是不能忽视的,比如固有的相干效应引起的散斑噪声,湍流引起的光束漂移,光束闪烁等,极大的限制了其在多种领域中的应用。
光学相干和偏振作为光场中的两个重要自由度,在控制光束及其传输特性,实现光束整形,降低复杂环境中湍流等介质引起的负面作用具有重要作用,因此在微粒操控,自由空间光通信,图像分辨增强,光成像等领域有着更加广泛的应用。另一方面,偏振信息作为一个强有力的自由度,在多维信息加密,存储及大容量通信中也有着重要的应用前景。因此利用相干结构及偏振调控产生阵列光束具有重要的实际意义。现有技术只能产生单一的径向或者角向偏振阵列光束,并且还要借助复杂的光学元器件(如径向偏振转化器),直接将生成的标量阵列光束转换为径向偏振阵列光束,并且该实验也只能产生单一的偏振阵列,另外,如果要产生其他偏振特性的阵列光束,还要相应的更改光学元件器,增加了系统的复杂性和成本,大大限制了其在实际应用中的灵活性。因此,现阶段,如何在不更改实验装置的情况下,同时产生更加复杂且偏振态可控的阵列光束是有待解决的问题。
发明内容
本发明的目的是提供一种全庞加莱球偏振阵列光束的产生方法及装置,以解决现有技术中现阶段远场阵列偏振信息只能单一产生,并且不能够灵活方便定制远场阵列光束偏振态的问题。
为解决上述技术问题,本发明提供一种全庞加莱球偏振阵列光束的产生方法,包括:
将完全相干光束照射预设阵列掩膜板生成多个光斑,将预设阵列掩膜信息编码到部分相干光束的相干结构中,根据光斑宽度及任意两个光斑之间的距离生成部分相干光束的相干矩阵;
根据部分相干光束的相干矩阵叠加全庞加莱球偏振矩阵,调控第一拓扑荷和第二拓扑荷的大小及全庞加莱球的纬度角和经度角得到任意全庞加莱球偏振态,得到合成的矢量全庞加莱球部分相干光束;
将合成的矢量全庞加莱球部分相干光束传输到远场,在远场进行偏振矩阵测量,得到任意全庞加莱球偏振态的部分相干阵列光束。
优选地,所述根据光斑宽度及任意两个光斑之间的距离生成部分相干光束的相干矩阵包括:
完全相干光束通过预设阵列掩膜板生成多个光斑,确定各个光斑的光斑宽度
Figure 440395DEST_PATH_IMAGE001
确定完全相干光束的相干度矩阵元:
Figure 42277DEST_PATH_IMAGE002
式中,
Figure 502208DEST_PATH_IMAGE003
Figure 873147DEST_PATH_IMAGE004
为光源处的任意两个位置,
Figure 9599DEST_PATH_IMAGE005
分别为r位置处的
Figure 833199DEST_PATH_IMAGE006
Figure 96821DEST_PATH_IMAGE007
方向,
Figure 322266DEST_PATH_IMAGE008
为波长,
Figure 629619DEST_PATH_IMAGE009
为傅里叶变换透镜的焦距,
Figure 206094DEST_PATH_IMAGE010
表示空间位置矢量,i为虚数,
Figure 7828DEST_PATH_IMAGE011
Figure 353359DEST_PATH_IMAGE012
对应的权重矩阵元;
确定具有阵列分布形式权重矩阵元为
Figure 97193DEST_PATH_IMAGE011
:
Figure 895384DEST_PATH_IMAGE013
式中,
Figure 500809DEST_PATH_IMAGE014
N个移位高斯函数的叠加,
Figure 435267DEST_PATH_IMAGE015
为第n个高斯光束的移位坐标,d为任意两个光斑之间的距离,
Figure 341213DEST_PATH_IMAGE016
为电场
Figure 626701DEST_PATH_IMAGE017
Figure 770238DEST_PATH_IMAGE018
之间的关联系数,
Figure 824781DEST_PATH_IMAGE001
为单个光斑的光斑宽度;
确定部分相干光束的相干矩阵元为:
Figure 910418DEST_PATH_IMAGE019
式中,
Figure 152043DEST_PATH_IMAGE020
为固定常数,
Figure 364850DEST_PATH_IMAGE021
为相干度函数,
Figure 539479DEST_PATH_IMAGE022
d是任意两个光斑之间的距离。
优选地,所述根据部分相干光束的相干矩阵叠加全庞加莱球偏振矩阵包括:
确定部分相干光束的交叉谱密度矩阵元
Figure 530438DEST_PATH_IMAGE023
Figure 790518DEST_PATH_IMAGE024
式中,
Figure 275857DEST_PATH_IMAGE020
为固定常数,
Figure 304993DEST_PATH_IMAGE003
Figure 466853DEST_PATH_IMAGE004
为光源处的任意两个位置,
Figure 214229DEST_PATH_IMAGE005
分别为r位置处的
Figure 503259DEST_PATH_IMAGE006
Figure 386902DEST_PATH_IMAGE007
方向,
Figure 988172DEST_PATH_IMAGE025
为电场,
Figure 957265DEST_PATH_IMAGE022
Figure 784406DEST_PATH_IMAGE008
为波长,
Figure 788135DEST_PATH_IMAGE026
为虚数,
Figure 291797DEST_PATH_IMAGE009
为傅里叶变换透镜的焦距,
Figure 748186DEST_PATH_IMAGE015
为第n个高斯光束的移位坐标,
Figure 379019DEST_PATH_IMAGE027
为构造矢量光束的相干长度;
利用广义柯林斯积分公式确定输出面处的交叉谱密度矩阵元:
Figure 237253DEST_PATH_IMAGE028
式中,
Figure 177396DEST_PATH_IMAGE029
Figure 121082DEST_PATH_IMAGE008
为波长,
Figure 290026DEST_PATH_IMAGE026
为虚数,
Figure 2767DEST_PATH_IMAGE030
,表示输出面的任意两位置矢量,A、B、C、D为光学系统传输矩阵元,在透镜聚焦系统下
Figure 113811DEST_PATH_IMAGE031
Figure 544793DEST_PATH_IMAGE032
Figure 517428DEST_PATH_IMAGE033
Figure 84675DEST_PATH_IMAGE034
根据部分相干光束的相干矩阵利用傅里叶变换和卷积理论及偏振矩阵和交叉谱密度矩阵之间的关系
Figure 369551DEST_PATH_IMAGE035
得出输出面处的偏振矩阵元
Figure 428774DEST_PATH_IMAGE036
Figure 64154DEST_PATH_IMAGE037
式中,
Figure 876121DEST_PATH_IMAGE038
,上标
Figure 469914DEST_PATH_IMAGE039
表示傅里叶变换,
Figure 485274DEST_PATH_IMAGE040
表示卷积运算,
Figure 189925DEST_PATH_IMAGE041
为部分相干光束的相干矩阵。
优选地,所述调控第一拓扑荷和第二拓扑荷的大小及全庞加莱球的纬度角和经度角得到任意全庞加莱球偏振态包括:
确定全庞加莱球上的北极电场
Figure 856399DEST_PATH_IMAGE042
和南极电场
Figure 89934DEST_PATH_IMAGE043
Figure 592591DEST_PATH_IMAGE044
Figure 835353DEST_PATH_IMAGE045
Figure 621912DEST_PATH_IMAGE046
式中,
Figure 291928DEST_PATH_IMAGE047
为拉盖尔高斯光束,
Figure 281881DEST_PATH_IMAGE048
是极坐标,
Figure 62755DEST_PATH_IMAGE049
是涡旋相位的拓扑荷数,
Figure 972330DEST_PATH_IMAGE050
为第一拓扑荷,
Figure 688613DEST_PATH_IMAGE051
为第二拓扑荷,
Figure 24916DEST_PATH_IMAGE052
表示虚数单位,
Figure 609482DEST_PATH_IMAGE053
Figure 105054DEST_PATH_IMAGE054
,且
Figure 257818DEST_PATH_IMAGE055
Figure 81417DEST_PATH_IMAGE056
xy方向上的单位矢量,
Figure 594307DEST_PATH_IMAGE057
为拉盖尔多项式的径向阶数,
Figure 819752DEST_PATH_IMAGE058
为拉盖尔光束光斑宽度;
确定全庞加莱球上任一点的电场
Figure 877838DEST_PATH_IMAGE059
Figure 454313DEST_PATH_IMAGE060
式中,
Figure 505314DEST_PATH_IMAGE061
Figure 585266DEST_PATH_IMAGE062
分别为庞加莱球的纬度角和经度角;
通过调整第一拓扑荷
Figure 79832DEST_PATH_IMAGE050
和第二拓扑荷
Figure 878024DEST_PATH_IMAGE051
的大小及全庞加莱球上的纬度角和经度角得到不同全庞加莱球的振幅函数,即得到不同全庞加莱球偏振态:
Figure 747365DEST_PATH_IMAGE063
Figure 681822DEST_PATH_IMAGE064
Figure 347290DEST_PATH_IMAGE065
式中,
Figure 367199DEST_PATH_IMAGE066
Figure 25582DEST_PATH_IMAGE067
为全庞加莱球上任一点在xy方向上的振幅函数,
Figure 80126DEST_PATH_IMAGE068
Figure 650916DEST_PATH_IMAGE069
为全庞加莱球上任一点在xy方向上的电场。
优选地,所述将合成的矢量全庞加莱球部分相干光束传输到远场,在远场进行偏振矩阵测量,得到任意全庞加莱球偏振态的部分相干阵列光束包括:
根据全庞加莱球偏振矩阵确定远场处的光强分布
Figure 423699DEST_PATH_IMAGE070
和偏振态分布
Figure 620194DEST_PATH_IMAGE071
Figure 529245DEST_PATH_IMAGE072
Figure 536515DEST_PATH_IMAGE073
式中,
Figure 531016DEST_PATH_IMAGE074
Figure 531202DEST_PATH_IMAGE075
分别表示为矩阵行列式及矩阵迹运算,
Figure 560337DEST_PATH_IMAGE076
为全庞加莱球偏振矩阵,(x,y)为输出面上的x、y方向;
或者借助全庞加莱球偏振矩阵
Figure 472930DEST_PATH_IMAGE076
采用四个斯托克斯参量
Figure 220306DEST_PATH_IMAGE077
确定部分相干阵列光束的光强分布
Figure 761533DEST_PATH_IMAGE070
和偏振态分布
Figure 645176DEST_PATH_IMAGE071
Figure 728669DEST_PATH_IMAGE078
Figure 697762DEST_PATH_IMAGE079
Figure 39751DEST_PATH_IMAGE080
式中,
Figure 777900DEST_PATH_IMAGE081
为单位矩阵,
Figure 297874DEST_PATH_IMAGE082
为三个泡利矩阵。
本发明还提供一种全庞加莱球偏振阵列光束的产生装置,包括:
阵列光束生成组件:用于生成具有阵列掩膜信息的部分相干光束;
矢量部分相干光束合成组件:用于生成全庞加莱球偏振光束,调控第一拓扑荷和第二拓扑荷的大小及全庞加莱球的纬度角和经度角得到任意全庞加莱球偏振态,得到合成的矢量部分相干光束;
全庞加莱球偏振阵列光束产生组件:用于将合成的矢量光束传输至远场,在远场中进行偏振矩阵测量,以生成全庞加莱球偏振阵列光束。
优选地,所述阵列光束生成组件包括:依次配置的激光器、第一衰减片、扩束器、阵列掩膜板、毛玻璃、第一薄透镜、第二薄透镜;
激光器:用于发射完全相干光束;
第一衰减片:用于调控完全相干光束的强度;
扩束器:用于对强度调控后的完全相干光束进行光束直径扩大,得到扩大后的完全相干光束;
阵列掩膜板:用于将扩大后的完全相干光束生成多个光斑,得到部分相干光束;
毛玻璃:用于降低部分相干光束的空间相干性;
第一薄透镜:用于将阵列掩膜信息编码到经过毛玻璃的部分相干光束的相干结构中,生成带有阵列掩膜信息的部分相干光束;
第二薄透镜:用于实现带有阵列掩膜信息的部分相干光束的聚焦。
优选地,所述矢量部分相干光束合成组件包括:依次配置的空间光调制器、第三薄透镜、遮光板、第二衰减片和第三衰减片、第四薄透镜、第一四分之一波片和第二四分之一波片、朗奇光栅、反射镜、第一半波片、第二半波片;
空间光调制器:用于对聚焦后的带有阵列掩膜信息的部分相干光束进行光束等分分束,得到第一光束和第二光束,并对第一光束和第二光束通过外部输入端分别输入第一拓扑荷和第二拓扑荷,得到第一线偏振光和第二线偏振光;
第三薄透镜:用于实现第一线偏振光和第二线偏振光的聚焦;
遮光板:用于分别滤出聚焦后的第一线偏振光和第二线偏振光的正一级光,得到第一正一级光和第二正一级光;
第二衰减片和第三衰减片:用于分别调控第一正一级光和第二正一级光的强度,以实现调控庞加莱球的纬度角;
第四薄透镜:用于实现强度调控后的第一正一级光和第二正一级光的聚焦;
第一四分之一波片和第二四分之一波片:分别用于将聚焦后的第一正一级光和第二正一级光调控为右旋偏振光和左旋偏振光;
朗奇光栅:用于将右旋偏振光和左旋偏振光稳定合成为全庞加莱球偏振光;
反射镜:用于实现全庞加莱球偏振光的反射;
第一半波片和第二半波片:用于调控庞加莱球的经度角,并将反射镜反射出的全庞加莱球偏振光合成矢量部分相干光束。
优选地,所述全庞加莱球偏振阵列光束产生组件包括第五薄透镜和电荷耦合元件;
第五薄透镜:用于实现合成的矢量部分相干光束的聚焦;
电荷耦合元件:即远场,用于对聚焦后的矢量部分相干光束进行偏振矩阵测量,得到全庞加莱球偏振阵列光束。
优选地,所述第二衰减片和第三衰减片通过调控第一正一级光和第二正一级光的强度比,以实现调控庞加莱球的纬度角;
所述第一半波片和第二半波片通过调节两者之间的夹角,以实现调控庞加莱球的经度角。
本发明所提供的全庞加莱球偏振阵列光束的产生方法及装置,通过预设阵列掩膜板,将完全相干光束通过预设阵列掩膜板生成多个光斑,根据光斑宽度及任意两光斑之间的距离将阵列掩膜信息编码到相干矩阵中;将带有阵列掩膜信息的相干矩阵加载到光束定制的全庞加莱球偏振矩阵,实现相干结构和偏振信息的联合调控,将光束传输到远场,最终得到与光源偏振信息相同的部分相干阵列光束。通过灵活调控阵列掩膜板分布形式和庞加莱球偏振态,在远场就能灵活产生全庞加莱球偏振态的部分相干阵列光束。本发明解决了现阶段远场阵列偏振信息只能单一产生,不能灵活定制远场阵列光束偏振态的问题。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供的全庞加莱球偏振阵列光束的产生方法的第一种具体实施例的流程图;
图2为本发明所提供的全庞加莱球偏振阵列光束的产生装置的一种具体实施例的结构图;
图中标记说明:1、532nm激光Nd:YAG;2、第一衰减片;3、扩束器;4、阵列掩膜板AM;5、旋转的毛玻璃RGGD;6、第一薄透镜L1;7、第二薄透镜L2;8、空间光调制器SLM;9、第三薄透镜L3;10、遮光板;11、第二衰减片和第三衰减片;12、第四薄透镜L4;13、第一四分之一波片和第二四分之一波片;14、朗奇光栅;15、反射镜;16、第一半波片;17、第二半波片;18、第五薄透镜L5;19、电荷耦合元件CCD;20、电脑PC1;21、电脑PC2。
具体实施方式
本发明的核心是提供一种全庞加莱球偏振阵列光束的产生方法及装置。本发明通过将完全相干光束通过预设阵列掩膜板生成多个光斑,将阵列掩膜信息编码到相干矩阵中,为了在远场得到阵列分布光束,设计具有阵列分布形式的权重矩阵,得到相干矩阵元;将带有阵列掩膜信息加载光束定制庞加莱球偏振态,实现相干结构和偏振信息的联合调控,将光束传输到远场,最终得到与光源偏振信息相同的阵列光束。通过灵活调控阵列掩膜板和庞加莱球偏振态,在远场就能灵活产生全庞加莱球偏振态的阵列光束。本发明解决了现阶段远场阵列偏振信息只能单一产生,不能灵活定制远场阵列偏振态的问题。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明所提供的全庞加莱球偏振阵列光束的产生方法的第一种具体实施例的流程图,首先将预设的阵列掩膜板加载至光束的相干结构中,然后携带有阵列信息的相干结构加载光束初始定制的庞加莱球偏振态,实现相干结构及初始偏振信息的联合调控。将光束进行远场传输后,最终在远场产生具有与光源偏振信息相同的阵列光束;通过灵活调控阵列掩膜板及初始庞加莱球偏振态,在远场就能灵活产生全庞加莱球偏振态的阵列光束。具体操作步骤如下:
S1. 生成阵列光束
设置阵列掩膜板,光束通过阵列掩膜板可以得到多个光斑,通过完全相干光束照射阵列掩膜板,将阵列掩膜信息编码到部分相干光束的相干结构中,具体如下:
首先,对于矢量部分相干光束,在空间频率域采用交叉谱密度矩阵进行表征:
Figure 754263DEST_PATH_IMAGE083
(1)
式中,
Figure 634363DEST_PATH_IMAGE084
Figure 492598DEST_PATH_IMAGE085
为光源处的任意两个位置矢量,并且交叉谱密度矩阵元表示为:
Figure 183473DEST_PATH_IMAGE086
(2)
式中,
Figure 127158DEST_PATH_IMAGE087
表示复共轭,
Figure 545370DEST_PATH_IMAGE088
表示系综平均运算,
Figure 258111DEST_PATH_IMAGE089
Figure 119888DEST_PATH_IMAGE090
表示在空间点
Figure 550870DEST_PATH_IMAGE084
Figure 775702DEST_PATH_IMAGE006
方向分量和点
Figure 342950DEST_PATH_IMAGE085
Figure 375628DEST_PATH_IMAGE007
方向分量的随机电场。
根据光源真实构建条件,矢量部分相干光束的交叉谱密度矩阵元可以表示为:
Figure 28326DEST_PATH_IMAGE091
(3)
其中,
Figure 53920DEST_PATH_IMAGE092
为权重矩阵元,且满足
Figure 741253DEST_PATH_IMAGE093
Figure 944832DEST_PATH_IMAGE094
Figure 84827DEST_PATH_IMAGE095
Figure 648532DEST_PATH_IMAGE096
Figure 455951DEST_PATH_IMAGE097
是两个任意核函数,即构造光学系统的响应函数。本实施例中固定选择的光学系统为傅里叶变换透镜光学系统,则相应的系统函数为:
Figure 361590DEST_PATH_IMAGE098
(4)
式中,
Figure 113514DEST_PATH_IMAGE052
表示虚数单位,
Figure 356277DEST_PATH_IMAGE008
为波长,
Figure 893568DEST_PATH_IMAGE029
为波数,
Figure 563584DEST_PATH_IMAGE009
为傅里叶变换透镜的焦距,
Figure 805734DEST_PATH_IMAGE099
是复值函数。
将公式(4)代入公式(3)中,得到交叉谱密度的另一种表达形式:
Figure 586608DEST_PATH_IMAGE100
(5)
Figure 243986DEST_PATH_IMAGE101
(6)
式(6)为矢量部分相干光束的相干度矩阵元,且
Figure 209537DEST_PATH_IMAGE012
与相应的权重矩阵元
Figure 545840DEST_PATH_IMAGE102
构成完美的傅里叶变换关系。
因此,为了在远场得到阵列分布光束,设计权重矩阵具有下面的阵列分布形式:
Figure 536930DEST_PATH_IMAGE103
(7)
式中,
Figure 32502DEST_PATH_IMAGE014
可以看作N个移位高斯函数的叠加,
Figure 44320DEST_PATH_IMAGE015
为第n个高斯光束的移位坐标,d是任意两个光斑之间的距离,
Figure 274445DEST_PATH_IMAGE016
为电场为
Figure 397121DEST_PATH_IMAGE017
Figure 12779DEST_PATH_IMAGE018
之间的关联系数,
Figure 195499DEST_PATH_IMAGE001
为单个光斑的光斑宽度。
因此得到光源相干矩阵元为:
Figure 647340DEST_PATH_IMAGE104
(8)
式中,
Figure 308129DEST_PATH_IMAGE020
为固定常数,
Figure 35083DEST_PATH_IMAGE021
为相干度函数,
Figure 264070DEST_PATH_IMAGE022
S2: 合成矢量部分相干光束;
将完全相干光束调控为全庞加莱球的右旋偏振光和左旋偏振光;将加载有相干矩阵的右旋偏振光和左旋偏振光稳定合成全庞加莱球偏振矩阵,得到合成的矢量部分相干光束。
主要过程为:完全相干矢量光束通过等分屏的空间光调制器进行加载两个阶数分别为
Figure 62262DEST_PATH_IMAGE050
Figure 916955DEST_PATH_IMAGE105
的涡旋相位,分别产生具有
Figure 116992DEST_PATH_IMAGE050
Figure 516880DEST_PATH_IMAGE105
的涡旋相位的线偏振光;从等分屏的空间光调制器(用于光束分束)出射的两个线偏振光中滤出各自的正一级涡旋线偏振光分别并调控为右旋圆偏振光和左旋圆偏振光,左旋圆偏振光和右旋圆偏振光分别为全庞加莱球的南极点和北极点。其中,全庞加莱球的阶数由产生右旋圆偏振和左旋圆偏振光加载的涡旋相位的拓扑荷数
Figure 802368DEST_PATH_IMAGE050
Figure 460751DEST_PATH_IMAGE051
进行控制。
之后,如何定制远场全庞加莱球偏振态,矢量部分相干光束的偏振态依赖于振幅函数
Figure 515295DEST_PATH_IMAGE106
,因此矢量光束的偏振态可以通过调整振幅函数
Figure 86085DEST_PATH_IMAGE107
来灵活制定。利用振幅函数在远场制定具有任意全庞加莱球偏振态的阵列光束,具体如下:
高阶偏振态可以由全庞加莱球上的点进行表征,并且全庞加莱球上的任一点的场可以由北极点电场
Figure 124448DEST_PATH_IMAGE108
和南极点场
Figure 320943DEST_PATH_IMAGE109
叠加进行表征。其中,
Figure 229993DEST_PATH_IMAGE053
Figure 502843DEST_PATH_IMAGE054
,且
Figure 231764DEST_PATH_IMAGE055
Figure 500459DEST_PATH_IMAGE056
xy面上的单位矢量;
Figure 139382DEST_PATH_IMAGE110
(9)
式中,
Figure 707766DEST_PATH_IMAGE111
为拉盖尔高斯光束,
Figure 314197DEST_PATH_IMAGE048
是极坐标,
Figure 727861DEST_PATH_IMAGE050
Figure 486870DEST_PATH_IMAGE051
是涡旋相位的拓扑荷数,p为拉盖尔多项式的径向阶数,
Figure 960576DEST_PATH_IMAGE058
为拉盖尔光束光斑宽度;因此,全庞加莱球上的任意一点的电场可以表示为:
Figure 54303DEST_PATH_IMAGE112
(10)
式中,
Figure 412603DEST_PATH_IMAGE061
Figure 150752DEST_PATH_IMAGE062
为全庞加莱球的纬度角和经度角。并且通过调整拓扑荷数
Figure 919994DEST_PATH_IMAGE050
Figure 641962DEST_PATH_IMAGE051
的大小及不同的纬度角和经度角,就可以得到不同的全庞加莱偏振态。公式(10)相应表示为:
Figure 272795DEST_PATH_IMAGE113
(11)
振幅函数为:
Figure 131029DEST_PATH_IMAGE114
(12)
利用部分相干光束的物理实现条件,得到:
Figure 74102DEST_PATH_IMAGE115
Figure 158733DEST_PATH_IMAGE116
交叉谱密度矩阵元,表示为:
Figure 717890DEST_PATH_IMAGE117
(13)
S4:远场中偏振矩阵测量,生成不同偏振态的阵列光束
研究光束在自由空间中的传输,利用广义柯林斯积分公式,输出面出的交叉谱密度矩阵元表示为:
Figure 555265DEST_PATH_IMAGE118
(14)
式中,
Figure 541675DEST_PATH_IMAGE119
,表示输出面的任意两位置矢量,AB、C、D为光学系统传输矩阵元,在透镜聚焦系统下,光学系统的传输矩阵元表示为:
Figure 848023DEST_PATH_IMAGE120
Figure 69926DEST_PATH_IMAGE121
Figure 902753DEST_PATH_IMAGE122
Figure 935431DEST_PATH_IMAGE123
利用傅里叶变换和卷积理论及偏振矩阵的交叉谱密度矩阵之间的关系
Figure 853708DEST_PATH_IMAGE035
得出输出面处的偏振矩阵元:
Figure 879302DEST_PATH_IMAGE124
(15)
式中,
Figure 566635DEST_PATH_IMAGE125
,上标
Figure 960095DEST_PATH_IMAGE039
表示傅里叶变换,
Figure 506614DEST_PATH_IMAGE040
表示卷积运算。
根据上式,就可以求得远场处的光强分布,偏振态和偏振度分布:
Figure 945685DEST_PATH_IMAGE126
(16)
Figure 877738DEST_PATH_IMAGE127
(17)
其中,
Figure 252219DEST_PATH_IMAGE074
Figure 145088DEST_PATH_IMAGE075
分别表示为矩阵行列式及矩阵迹运算。
另外,借助偏振矩阵,偏振态也可以由四个斯托克斯参量,
Figure 778064DEST_PATH_IMAGE128
进行计算,这里
Figure 49776DEST_PATH_IMAGE081
为单位矩阵,
Figure 719792DEST_PATH_IMAGE082
为三个泡利矩阵。
则全庞加莱球偏振阵列光束的光强分布和偏振度分布也可以相应的表示为:
Figure 896696DEST_PATH_IMAGE129
(18)
Figure 943149DEST_PATH_IMAGE130
(19)
利用上述公式推导的公式,通过改变第一拓扑荷
Figure 598863DEST_PATH_IMAGE050
和第二拓扑荷
Figure 439780DEST_PATH_IMAGE051
的大小及庞加莱球的纬度角和经度角,以实现灵活定制阵列光束的偏振态特性。
本发明还提供了一种全庞加莱球偏振阵列光束的产生装置,请参考图2,图2为本发明实施例提供的一种全庞加莱球偏振阵列光束的产生装置的结构框图,所有组件产生的光束平行;具体如下:
在本实施例中,首先一束波长为532nm的激光从Nd:YAG激光器发射,通过衰减片到达扩束器BE,然后到达阵列掩模板AM;介质照射到旋转的毛玻璃RGGD前表面,带有阵列掩膜信息的光束穿过RGGD,经过一焦距为f=250mm的准直透镜L1进而将阵列掩模板信息编码到部分相干光束中的相干结构里面。
通过一焦距为f的薄透镜L2构成2f成像系统将产生的带有阵列掩膜信息的部分相干光束的相干结构成像到空间光调制器SLM,空间光调制器与电脑PC2连接,电脑PC2加载阶数为
Figure 182608DEST_PATH_IMAGE050
Figure 157387DEST_PATH_IMAGE105
的涡旋相位全息片,进而光束通过SLM引入拓扑荷阶数为
Figure 528325DEST_PATH_IMAGE050
Figure 681089DEST_PATH_IMAGE051
的可控的涡旋相位,其中,L1到L2和L2到SLM1的距离都是2f。
然后由遮光板分别滤出来自等分屏空间光调制器的正一级光,两个正一级光分别通过第二衰减片和第三衰减片,通过薄透镜L4,接着利用第一四分之一波片和第二四分之一波片将两个正一级光分别调控为右旋圆偏振光和左旋圆偏振光,最后利用郎奇光栅稳定合成为阶数可控的全庞加莱球偏振矩阵,其中空间光调制器到透镜L3、透镜L3到遮光板、遮光板到薄透镜L4及薄透镜L4到朗奇光栅的距离均等于f,调节第一衰减片和第二衰减片用以调控右旋圆偏振光和左旋圆偏振光之间的强度比,进而可以用来调控全庞加莱球的纬度角θ。从朗奇光栅出射的光经反射镜反射后到达第一半波片和第二半波片,调节第一半波片和第二半波片之间的夹角可以用来调控全庞加莱球的经度角φ。其中反射镜放置位置在实际实验操作过程中进行调节。
通过全庞加莱球上的纬度角θ和径向角φ可以用来控制全庞加莱球上点的位置,不同点的位置具有不同的偏振态。通过第二波片的光束到达薄透镜L5的前表面就得到了具有初始全庞加莱球的矢量光束。经薄透镜L5聚焦后的光束到达电荷耦合元件CCD,即光束传输到远场,CCD与电脑PC1相连接,用于记录CCD拍摄的偏振矩阵信息。
通过改变拓扑荷
Figure 894901DEST_PATH_IMAGE050
Figure 283157DEST_PATH_IMAGE051
的大小及全庞加莱球的纬度角和经度角,以实现灵活定制阵列光束的偏振态特性。例如,当拓扑荷阶数选择
Figure 836498DEST_PATH_IMAGE131
时,并且
Figure 160164DEST_PATH_IMAGE132
Figure 471059DEST_PATH_IMAGE132
时,就分别得到了具有径向偏振和角向偏振的阵列光束,相应的还可以得到右旋圆偏振,左旋圆偏振,右旋椭圆偏振及左旋椭圆偏振阵列光束等。当拓扑荷阶数
Figure 790570DEST_PATH_IMAGE050
Figure 136100DEST_PATH_IMAGE051
灵活选择不同大小时,可以得到更加复杂的偏振态的阵列光束,如基础全庞加莱球偏振态阵列光束
Figure 630667DEST_PATH_IMAGE133
,高阶庞加莱偏振态阵列光束
Figure 553492DEST_PATH_IMAGE134
,杂化阶庞加莱球偏振态的阵列光束
Figure 549130DEST_PATH_IMAGE135
,大大提高了阵列光束定制偏振态的灵活性。
其中,衰减片用于实现光束的强度调节,扩束器用于扩大光束直径,透镜用于光束聚焦,毛玻璃用于降低部分相干光束的空间相干性。
其中激光器、第一衰减片、扩束器、阵列掩膜板、毛玻璃、第一薄透镜、第二薄透镜、空间光调制器、第三薄透镜的光学中心位于同一水平线;遮光板生成的平行的第一正一级光和第二正一级光分别穿过第二衰减片和第三衰减片的光学中心,再分别穿过第四薄透镜的两个焦点及第一四分之一波片和第二四分之一波片的光学中心,最后汇聚在朗奇光栅的中心位置得到全庞加莱球偏振光;全庞加莱球偏振光经过反射镜生成的反射光依次穿过第一半波片、第二半波片的光学中心,第一半波片、第二半波片、第五薄透镜和电荷耦合元件的光学中心位于同一水平线。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上对本发明所提供的全庞加莱球偏振阵列光束的产生方法以及装置进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

1.一种全庞加莱球偏振阵列光束的产生方法,其特征在于,包括:
将完全相干光束照射预设阵列掩膜板生成多个光斑,将预设阵列掩膜信息编码到部分相干光束的相干结构中,根据光斑宽度及任意两个光斑之间的距离生成部分相干光束的相干矩阵;
根据部分相干光束的相干矩阵叠加全庞加莱球偏振矩阵,调控第一拓扑荷和第二拓扑荷的大小及全庞加莱球的纬度角和经度角得到任意全庞加莱球偏振态,得到合成的矢量全庞加莱球部分相干光束;
将合成的矢量全庞加莱球部分相干光束传输到远场,在远场进行偏振矩阵测量,得到任意全庞加莱球偏振态的部分相干阵列光束。
2.根据权利要求1所述的全庞加莱球偏振阵列光束的产生方法,其特征在于,所述根据光斑宽度及任意两个光斑之间的距离生成部分相干光束的相干矩阵包括:
完全相干光束通过预设阵列掩膜板生成多个光斑,确定各个光斑的光斑宽度
Figure 106101DEST_PATH_IMAGE001
确定完全相干光束的相干度矩阵元:
Figure 286415DEST_PATH_IMAGE002
式中,
Figure 978428DEST_PATH_IMAGE003
Figure 639741DEST_PATH_IMAGE004
为光源处的任意两个位置,
Figure 366388DEST_PATH_IMAGE005
分别为r位置处的
Figure 248762DEST_PATH_IMAGE006
Figure 83863DEST_PATH_IMAGE007
方向,
Figure 296670DEST_PATH_IMAGE008
为波长,
Figure 127092DEST_PATH_IMAGE009
为傅里叶变换透镜的焦距,
Figure 931100DEST_PATH_IMAGE010
表示空间位置矢量,
Figure 244707DEST_PATH_IMAGE011
为虚数,
Figure 635106DEST_PATH_IMAGE012
Figure 336346DEST_PATH_IMAGE013
对应的权重矩阵元;
确定具有阵列分布形式权重矩阵元为
Figure 560523DEST_PATH_IMAGE012
:
Figure 448844DEST_PATH_IMAGE014
式中,
Figure 849126DEST_PATH_IMAGE015
N个移位高斯函数的叠加,
Figure 388561DEST_PATH_IMAGE016
为第n个高斯光束的移位坐标,d为任意两个光斑之间的距离,
Figure 190164DEST_PATH_IMAGE017
为电场
Figure 614716DEST_PATH_IMAGE018
Figure 973017DEST_PATH_IMAGE019
之间的关联系数,
Figure 632537DEST_PATH_IMAGE001
为单个光斑的光斑宽度;
确定部分相干光束的相干矩阵元为:
Figure 418090DEST_PATH_IMAGE020
式中,
Figure 140059DEST_PATH_IMAGE021
为固定常数,
Figure 6777DEST_PATH_IMAGE022
为相干度函数,
Figure 458487DEST_PATH_IMAGE023
d是任意两个光斑之间的距离。
3.根据权利要求1所述的全庞加莱球偏振阵列光束的产生方法,其特征在于,所述根据部分相干光束的相干矩阵叠加全庞加莱球偏振矩阵包括:
确定部分相干光束的交叉谱密度矩阵元
Figure 867471DEST_PATH_IMAGE024
Figure 543914DEST_PATH_IMAGE025
式中,
Figure 962126DEST_PATH_IMAGE021
为固定常数,
Figure 864747DEST_PATH_IMAGE003
Figure 257683DEST_PATH_IMAGE004
为光源处的任意两个位置,
Figure 875615DEST_PATH_IMAGE005
分别为
Figure 363097DEST_PATH_IMAGE026
位置处的
Figure 448121DEST_PATH_IMAGE006
Figure 261225DEST_PATH_IMAGE007
方向,
Figure 369383DEST_PATH_IMAGE027
为电场,
Figure 332659DEST_PATH_IMAGE023
Figure 895359DEST_PATH_IMAGE008
为波长,
Figure 489151DEST_PATH_IMAGE011
为虚数,
Figure 753779DEST_PATH_IMAGE009
为傅里叶变换透镜的焦距,
Figure 458430DEST_PATH_IMAGE016
为第
Figure 406795DEST_PATH_IMAGE028
个高斯光束的移位坐标,
Figure 30543DEST_PATH_IMAGE029
为构造矢量光束的相干长度,
Figure 657833DEST_PATH_IMAGE030
表示复共轭;
利用广义柯林斯积分公式确定输出面处的交叉谱密度矩阵元:
Figure 41541DEST_PATH_IMAGE031
式中,
Figure 553732DEST_PATH_IMAGE032
Figure 161431DEST_PATH_IMAGE008
为波长,
Figure 400652DEST_PATH_IMAGE011
为虚数,
Figure 447105DEST_PATH_IMAGE033
,表示输出面的任意两位置矢量,A、B、C、D为光学系统传输矩阵元,在透镜聚焦系统下
Figure 104482DEST_PATH_IMAGE034
Figure 70033DEST_PATH_IMAGE035
Figure 937495DEST_PATH_IMAGE036
Figure 397426DEST_PATH_IMAGE037
根据部分相干光束的相干矩阵利用傅里叶变换和卷积理论及偏振矩阵和交叉谱密度矩阵之间的关系
Figure 768365DEST_PATH_IMAGE038
得出输出面处的偏振矩阵元
Figure 170396DEST_PATH_IMAGE039
Figure 400520DEST_PATH_IMAGE040
式中,
Figure 447498DEST_PATH_IMAGE041
,上标
Figure 548310DEST_PATH_IMAGE042
表示傅里叶变换,
Figure 996608DEST_PATH_IMAGE043
表示卷积运算,
Figure 697717DEST_PATH_IMAGE044
为部分相干光束的相干矩阵,
Figure 765030DEST_PATH_IMAGE030
表示复共轭。
4.根据权利要求1所述的全庞加莱球偏振阵列光束的产生方法,其特征在于,所述调控第一拓扑荷和第二拓扑荷的大小及全庞加莱球的纬度角和经度角得到任意全庞加莱球偏振态包括:
确定全庞加莱球上的北极电场
Figure 844982DEST_PATH_IMAGE045
和南极电场
Figure 854395DEST_PATH_IMAGE046
Figure 652587DEST_PATH_IMAGE047
Figure 523591DEST_PATH_IMAGE048
Figure 520365DEST_PATH_IMAGE049
式中,
Figure 310467DEST_PATH_IMAGE050
为拉盖尔高斯光束,
Figure 989097DEST_PATH_IMAGE051
是极坐标,
Figure 398213DEST_PATH_IMAGE052
是涡旋相位的拓扑荷数,
Figure 452757DEST_PATH_IMAGE053
为第一拓扑荷,
Figure 803973DEST_PATH_IMAGE054
为第二拓扑荷,
Figure 311177DEST_PATH_IMAGE011
表示虚数单位,
Figure 258405DEST_PATH_IMAGE055
Figure 823247DEST_PATH_IMAGE056
,且
Figure 689572DEST_PATH_IMAGE057
Figure 621756DEST_PATH_IMAGE058
xy方向上的单位矢量,
Figure 621942DEST_PATH_IMAGE059
为拉盖尔多项式的径向阶数,
Figure 792023DEST_PATH_IMAGE060
为拉盖尔光束光斑宽度;
确定全庞加莱球上任一点的电场
Figure 829249DEST_PATH_IMAGE061
Figure 969768DEST_PATH_IMAGE062
式中,
Figure 258798DEST_PATH_IMAGE063
Figure 408020DEST_PATH_IMAGE064
分别为庞加莱球的纬度角和经度角;
通过调整第一拓扑荷
Figure 6360DEST_PATH_IMAGE053
和第二拓扑荷
Figure 116399DEST_PATH_IMAGE054
的大小及全庞加莱球上的纬度角和经度角得到不同全庞加莱球的振幅函数,即得到不同全庞加莱球偏振态:
Figure 68174DEST_PATH_IMAGE065
Figure 399798DEST_PATH_IMAGE066
Figure 778827DEST_PATH_IMAGE067
式中,
Figure 359850DEST_PATH_IMAGE068
Figure 256262DEST_PATH_IMAGE069
为全庞加莱球上任一点在xy方向上的振幅函数,
Figure 114496DEST_PATH_IMAGE070
Figure 334867DEST_PATH_IMAGE071
为全庞加莱球上任一点在xy方向上的电场。
5.根据权利要求1所述的全庞加莱球偏振阵列光束的产生方法,其特征在于,所述将合成的矢量全庞加莱球部分相干光束传输到远场,在远场进行偏振矩阵测量,得到任意全庞加莱球偏振态的部分相干阵列光束包括:
根据全庞加莱球偏振矩阵确定远场处的光强分布
Figure 278552DEST_PATH_IMAGE072
和偏振态分布
Figure 447497DEST_PATH_IMAGE073
Figure 160238DEST_PATH_IMAGE074
Figure 536861DEST_PATH_IMAGE075
式中,
Figure 30160DEST_PATH_IMAGE076
Figure 127429DEST_PATH_IMAGE077
分别表示为矩阵行列式及矩阵迹运算,
Figure 835622DEST_PATH_IMAGE078
为全庞加莱球偏振矩阵,(x,y)为输出面上的xy方向;
或者借助全庞加莱球偏振矩阵
Figure 383146DEST_PATH_IMAGE078
采用四个斯托克斯参量
Figure 301424DEST_PATH_IMAGE079
确定部分相干阵列光束的光强分布
Figure 812171DEST_PATH_IMAGE072
和偏振态分布
Figure 499504DEST_PATH_IMAGE073
Figure 220860DEST_PATH_IMAGE080
Figure 501800DEST_PATH_IMAGE081
Figure 206450DEST_PATH_IMAGE082
式中,
Figure 810607DEST_PATH_IMAGE083
为单位矩阵,
Figure 309722DEST_PATH_IMAGE084
为三个泡利矩阵。
6.一种全庞加莱球偏振阵列光束的产生装置,其特征在于,包括:
阵列光束生成组件:用于生成具有阵列掩膜信息的部分相干光束;
矢量部分相干光束合成组件:用于生成全庞加莱球偏振光束,调控第一拓扑荷和第二拓扑荷的大小及全庞加莱球的纬度角和经度角得到任意全庞加莱球偏振态,得到合成的矢量部分相干光束;
全庞加莱球偏振阵列光束产生组件:用于将合成的矢量光束传输至远场,在远场中进行偏振矩阵测量,以生成全庞加莱球偏振阵列光束。
7.根据权利要求6所述的全庞加莱球偏振阵列光束的产生装置,其特征在于,所述阵列光束生成组件包括:
激光器:用于发射完全相干光束;
第一衰减片:用于调控完全相干光束的强度;
扩束器:用于对强度调控后的完全相干光束进行光束直径扩大,得到扩大后的完全相干光束;
阵列掩膜板:用于将扩大后的完全相干光束生成多个光斑,得到部分相干光束;
毛玻璃:用于降低部分相干光束的空间相干性;
第一薄透镜:用于将阵列掩膜信息编码到经过毛玻璃的部分相干光束的相干结构中,生成带有阵列掩膜信息的部分相干光束;
第二薄透镜:用于实现带有阵列掩膜信息的部分相干光束的聚焦;
所述激光器、第一衰减片、扩束器、阵列掩膜板、毛玻璃、第一薄透镜、第二薄透镜的光学中心位于同一水平线。
8.根据权利要求6所述的全庞加莱球偏振阵列光束的产生装置,其特征在于,所述矢量部分相干光束合成组件包括:空间光调制器:用于对聚焦后的带有阵列掩膜信息的部分相干光束进行光束等分分束,得到第一光束和第二光束,并对第一光束和第二光束通过外部输入端分别输入第一拓扑荷和第二拓扑荷,得到第一线偏振光和第二线偏振光;
第三薄透镜:用于实现第一线偏振光和第二线偏振光的聚焦;
遮光板:用于分别滤出聚焦后的第一线偏振光和第二线偏振光的正一级光,得到第一正一级光和第二正一级光;
第二衰减片和第三衰减片:用于分别调控第一正一级光和第二正一级光的强度,以实现调控庞加莱球的纬度角;
第四薄透镜:用于实现强度调控后的第一正一级光和第二正一级光的聚焦;
第一四分之一波片和第二四分之一波片:分别用于将聚焦后的第一正一级光和第二正一级光调控为右旋偏振光和左旋偏振光;
朗奇光栅:用于将右旋偏振光和左旋偏振光稳定合成为全庞加莱球偏振光;
反射镜:用于实现全庞加莱球偏振光的反射;
第一半波片和第二半波片:用于调控庞加莱球的经度角,并将反射镜反射出的全庞加莱球偏振光合成矢量部分相干光束;
所述空间光调制器、第三薄透镜的光学中心位于同一水平线;
所述遮光板生成的平行的第一正一级光和第二正一级光分别穿过第二衰减片和第三衰减片的光学中心,再分别穿过第四薄透镜的两个焦点及第一四分之一波片和第二四分之一波片的光学中心,最后汇聚在朗奇光栅的中心位置得到全庞加莱球偏振光;所述全庞加莱球偏振光经过反射镜生成的反射光依次穿过第一半波片、第二半波片的光学中心。
9.根据权利要求6所述的全庞加莱球偏振阵列光束的产生装置,其特征在于,所述全庞加莱球偏振阵列光束产生组件包括第五薄透镜和电荷耦合元件;
第五薄透镜:用于实现合成的矢量部分相干光束的聚焦;
电荷耦合元件:即远场,用于对聚焦后的矢量部分相干光束进行偏振矩阵测量,得到全庞加莱球偏振阵列光束;
所述第五薄透镜和电荷耦合元件的光学中心位于同一水平线。
10.根据权利要求8所述的全庞加莱球偏振矢量阵列光束的产生装置,其特征在于,所述第二衰减片和第三衰减片通过调控第一正一级光和第二正一级光的强度比,以实现调控庞加莱球的纬度角;
所述第一半波片和第二半波片通过调节两者之间的夹角,以实现调控庞加莱球的经度角。
CN202210674026.9A 2022-06-15 2022-06-15 一种全庞加莱球偏振阵列光束的产生方法及装置 Active CN114755837B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210674026.9A CN114755837B (zh) 2022-06-15 2022-06-15 一种全庞加莱球偏振阵列光束的产生方法及装置
PCT/CN2022/107026 WO2023240741A1 (zh) 2022-06-15 2022-07-21 一种全庞加莱球偏振阵列光束的产生方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210674026.9A CN114755837B (zh) 2022-06-15 2022-06-15 一种全庞加莱球偏振阵列光束的产生方法及装置

Publications (2)

Publication Number Publication Date
CN114755837A true CN114755837A (zh) 2022-07-15
CN114755837B CN114755837B (zh) 2022-09-02

Family

ID=82336628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210674026.9A Active CN114755837B (zh) 2022-06-15 2022-06-15 一种全庞加莱球偏振阵列光束的产生方法及装置

Country Status (2)

Country Link
CN (1) CN114755837B (zh)
WO (1) WO2023240741A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115035210A (zh) * 2022-08-10 2022-09-09 天津恒宇医疗科技有限公司 基于偏振多参量融合的ps-oct可视度提升方法及系统
CN116736532A (zh) * 2023-08-01 2023-09-12 中国科学院长春光学精密机械与物理研究所 贝塞尔双光子显微镜照明光路非共轭像差校正方法及系统
WO2023240741A1 (zh) * 2022-06-15 2023-12-21 苏州大学 一种全庞加莱球偏振阵列光束的产生方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344919B1 (en) * 2000-05-05 2002-02-05 Lucent Technologies, Inc. Methods and systems for producing linear polarization states of light at the end of a length of optical fiber
US20020181066A1 (en) * 2000-08-31 2002-12-05 Cambridge Research & Instrumentation, Inc., A Delaware Corporation High performance polarization controller and polarization sensor
JP2006039076A (ja) * 2004-07-26 2006-02-09 Nikon Corp 偏光解消素子、照明光学装置、照明光学装置の調整方法、露光装置及びマイクロデバイスの製造方法
CN111239884A (zh) * 2020-03-19 2020-06-05 中国工程物理研究院激光聚变研究中心 一种晶体阵列式全庞加莱光束产生器及光束产生方法
CN211426839U (zh) * 2020-03-19 2020-09-04 中国工程物理研究院激光聚变研究中心 一种晶体阵列式全庞加莱光束产生器
CN113960813A (zh) * 2021-12-22 2022-01-21 苏州大学 一种具有鲁棒性的高阶庞加莱球偏振态产生方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950453B (zh) * 2015-06-19 2017-08-25 苏州大学 一种产生全庞加莱光束的装置和方法
RO134585A0 (ro) * 2019-10-17 2020-11-27 Institutul Naţional De Cercetare-Dezvoltare Pentru Fizica Laserilor, Plasmei Şi Radiaţiei-Inflpr Sistem optic pentru producerea de fascicule optice elicoidale vectoriale
CN114077067B (zh) * 2021-11-29 2023-12-08 曲阜师范大学 一种偏振沿庞加莱球上任意圆形路径变化的矢量光场生成装置
CN114755837B (zh) * 2022-06-15 2022-09-02 苏州大学 一种全庞加莱球偏振阵列光束的产生方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344919B1 (en) * 2000-05-05 2002-02-05 Lucent Technologies, Inc. Methods and systems for producing linear polarization states of light at the end of a length of optical fiber
US20020181066A1 (en) * 2000-08-31 2002-12-05 Cambridge Research & Instrumentation, Inc., A Delaware Corporation High performance polarization controller and polarization sensor
JP2006039076A (ja) * 2004-07-26 2006-02-09 Nikon Corp 偏光解消素子、照明光学装置、照明光学装置の調整方法、露光装置及びマイクロデバイスの製造方法
CN111239884A (zh) * 2020-03-19 2020-06-05 中国工程物理研究院激光聚变研究中心 一种晶体阵列式全庞加莱光束产生器及光束产生方法
CN211426839U (zh) * 2020-03-19 2020-09-04 中国工程物理研究院激光聚变研究中心 一种晶体阵列式全庞加莱光束产生器
CN113960813A (zh) * 2021-12-22 2022-01-21 苏州大学 一种具有鲁棒性的高阶庞加莱球偏振态产生方法及系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240741A1 (zh) * 2022-06-15 2023-12-21 苏州大学 一种全庞加莱球偏振阵列光束的产生方法及装置
CN115035210A (zh) * 2022-08-10 2022-09-09 天津恒宇医疗科技有限公司 基于偏振多参量融合的ps-oct可视度提升方法及系统
CN115035210B (zh) * 2022-08-10 2022-11-11 天津恒宇医疗科技有限公司 基于偏振多参量融合的ps-oct可视度提升方法及系统
CN116736532A (zh) * 2023-08-01 2023-09-12 中国科学院长春光学精密机械与物理研究所 贝塞尔双光子显微镜照明光路非共轭像差校正方法及系统
CN116736532B (zh) * 2023-08-01 2023-10-20 中国科学院长春光学精密机械与物理研究所 贝塞尔双光子显微镜照明光路非共轭像差校正方法及系统

Also Published As

Publication number Publication date
CN114755837B (zh) 2022-09-02
WO2023240741A1 (zh) 2023-12-21

Similar Documents

Publication Publication Date Title
CN114755837B (zh) 一种全庞加莱球偏振阵列光束的产生方法及装置
Sung et al. Single‐layer bifacial metasurface: full‐space visible light control
CN113960813B (zh) 一种具有鲁棒性的高阶庞加莱球偏振态产生方法及系统
CN114200672B (zh) 动态光场空间相干函数和振幅函数同步调制系统及方法
CN110954213A (zh) 一种基于交叉相位的大拓扑荷数涡旋光制备与检测方法
Voskresenskii et al. Electrooptical arrays
US11625001B1 (en) Optical system for generating arbitrary-order optical vortex arrays and finite optical lattices with defects
CN114397761B (zh) 基于超颖表面对衍射级次相位分布与偏振的同时调控方法
Raeker et al. Lossless complex-valued optical-field control with compound metaoptics
Dong et al. Encoding higher-order polarization states into robust partially coherent optical beams
CN114077067A (zh) 一种偏振沿庞加莱球上任意圆形路径变化的矢量光场生成装置
CN114488548B (zh) 一种高操作性光镊的产生方法及系统
CN115774343A (zh) 新型数字化艾里类光束的产生与调控装置及方法
CN114755836A (zh) 角向偏振光束的产生及该光束抗湍流处理的方法及装置
CN115164741A (zh) 一种基于矢量光场的测距系统
JP6788622B2 (ja) 回折素子の設計方法
CN116337225B (zh) 基于涡旋光的提高光电信号探测信噪比的方法及实验装置
CN113391457B (zh) 一种高质量鲁棒部分相干成像方法及装置
CN116068782A (zh) 一种矢量高阶偏振阵列光束的产生系统和方法
CN110471187B (zh) 产生呈六角密排分布的三维阵列瓶状光束的装置与方法
KR102551106B1 (ko) 홀로그램 생성 장치 및 생성 방법
KR102590462B1 (ko) 칼라 보상된 홀로그래픽 증강 현실 디스플레이를 위한 vhoe 기반 컴퓨터 홀로그래픽 이미징 장치
JP2019086703A (ja) 回折素子および回折素子の設計方法
Hong Customizing optical patterns via feedback-based wavefront shaping
CN117170116A (zh) 基于空间光调制器屏分复用的柱矢量光束产生系统及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant