WO2023103112A1 - 一种偏振传输不变光场的产生系统及方法 - Google Patents

一种偏振传输不变光场的产生系统及方法 Download PDF

Info

Publication number
WO2023103112A1
WO2023103112A1 PCT/CN2021/141554 CN2021141554W WO2023103112A1 WO 2023103112 A1 WO2023103112 A1 WO 2023103112A1 CN 2021141554 W CN2021141554 W CN 2021141554W WO 2023103112 A1 WO2023103112 A1 WO 2023103112A1
Authority
WO
WIPO (PCT)
Prior art keywords
laguerre
polarization
gorski
mode
mode beam
Prior art date
Application number
PCT/CN2021/141554
Other languages
English (en)
French (fr)
Inventor
陈亚红
董震
孙曦
王飞
蔡阳健
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/800,206 priority Critical patent/US20230314822A1/en
Publication of WO2023103112A1 publication Critical patent/WO2023103112A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0916Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • G02B27/1093Beam splitting or combining systems operating by diffraction only for use with monochromatic radiation only, e.g. devices for splitting a single laser source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/10Processes or apparatus for producing holograms using modulated reference beam
    • G03H1/12Spatial modulation, e.g. ghost imaging

Definitions

  • the invention relates to the field of optical technology, in particular to a system and method for generating a polarization transmission invariant light field.
  • non-uniform polarized light fields With the gradual development of polarized optics, various non-uniform polarized light fields have been proposed, and their polarization states are different in different positions in space, which has higher research value and significance.
  • the non-uniform polarized light fields produced in the earliest experiments are radially polarized vector light fields and angularly polarized vector light fields, and their polarization states are linear polarization states satisfying circularly symmetrical distribution.
  • This type of non-uniformly polarized light fields is called Cylindrical symmetric vector light fields have been widely studied in this century, and have also expanded applications in optical particle manipulation and super-resolution imaging. Although the polarization of this type of light field is non-uniform, the polarization type is still only linear.
  • the field can represent elliptical polarization and circular polarization, but it should be noted that after determining the position of a certain point on the sphere, the non-uniform polarized light field represented by this point has only a single polarization type, either linear or elliptical type or round.
  • the radially polarized light can be obtained by superimposing the amplitudes of the right-handed and left-handed circularly polarized first-order vortex light fields with orthogonal polarization;
  • the high-order Poincaré spherical vector light field can be obtained by controlling the amplitude ratio and phase ratio between the two;
  • the polarization of the scalar light field is uniform, and the contained beam polarization information is less;
  • a high-order Poincaré spherical vector light field has only a single polarization type of polarization state, and the transverse section of the entire light field is either full of linear polarization states (such as radially polarized light fields and angularly polarized light fields), Either they are all elliptical and circular polarization states with the same ellipticity, and the polarization type is single, which contains little information;
  • the existing light field cannot simultaneously satisfy the two conditions of having all types of polarization and ensuring that the transmission of the polarization state remains unchanged.
  • the technical problem to be solved by the present invention is to provide a generation system of a polarization-transmission-invariant light field with simple structure, good stability, and a polarization state that remains unchanged during transmission.
  • the present invention provides a system for generating a polarization transmission invariant light field, which includes:
  • a laser light source and a spatial light modulator the laser light source is used to generate laser light and enter the spatial light modulator;
  • the computer is used to generate two kinds of holograms and superimpose the grating functions of the two kinds of holograms to obtain a composite hologram, and load the composite hologram into the spatial light modulator;
  • the spatial light modulator is used to perform laser Modulate and simultaneously produce the first Laguerre-Gauerski mode beam and the second Laguerre-Gorski mode beam; the first Laguerre-Gauerski mode beam and the second Laguerre-Gorski mode beam satisfy:
  • the first lens is used to collimate the first Laguerre-Gauerski mode beam and the second Laguerre-Gorski mode beam;
  • a shading element configured to simultaneously filter out the positive first-order diffracted beam or the negative first-order diffracted beam of the first Laguerre-Gorski mode beam and the second Laguerre-Gorski mode beam after collimation;
  • the first quarter-wave plate and the second quarter-wave plate are used to modulate the polarization states of the filtered first Laguerre-Gauerski mode beam and the second Laguerre-Gauerski mode beam by linear polarization into mutually orthogonal right-handed circular polarization and left-handed circular polarization;
  • the second lens is used to focus the first Laguerre-Gauerski mode light beam and the second Laguerre-Gorski mode light beam whose polarization state is circular polarization;
  • the beam combining element is used for combining the focused first Laguerre-Gauerski mode beam and the second Laguerre-Gauerski mode beam into one beam and generating a plurality of diffracted lights, so as to obtain a polarization transmission invariant light field.
  • the shading element is a shading plate, and the shading plate is provided with through holes, and the through holes are used to separate the first Laguerre-Gauerski mode beam and the second Laguerre
  • the positive first-order diffraction beam or the negative first-order diffraction beam of the Gaussian mode beam is filtered out.
  • the fast axis directions of the first quarter-wave plate and the second quarter-wave plate are respectively 45 degrees and 135 degrees from the polarization direction of the laser light.
  • an attenuation sheet is also included, the attenuation sheet is arranged between the laser light source and the spatial light modulator, and the laser light generated by the laser light source is incident on the spatial light modulator after passing through the attenuation sheet device.
  • a beam analyzer is also included, arranged behind the beam combining element, for observing the polarization characteristics of the polarization transmission invariant light field on the beam combining element.
  • the first lens and the second lens constitute a 4f system.
  • the polarization direction of the laser light generated by the laser light source is a vertical direction.
  • the beam combining element is a Ronchi grating.
  • the Ronchi grating is arranged at the focal point of the second lens.
  • the present invention also provides a method for generating a polarization transmission invariant light field, which includes the following steps:
  • the random phase screen is a rotating frosted glass.
  • the system and method for generating the polarization transmission invariant light field of the present invention generate two Laguerre-Gauerski mode beams satisfying the condition: 2p 1 +
  • 2p 2 +
  • the Gaorski mode beams are endowed with orthogonal uniform polarization, and then the two Laguerre-Gowski mode beams are focused on the Ronchi grating, and then synthesized stably into a polarization-invariant optical field.
  • the light field generated by the present invention has linear polarization, elliptical polarization and circular polarization simultaneously on its cross section, and the polarization distribution will not change during the transmission process of the light field in free space except normal light spot size scaling.
  • Fig. 1 is a schematic diagram of a generation system of a polarization transmission invariant light field in a preferred embodiment of the present invention
  • Figure 2 is a schematic diagram of a composite hologram in a preferred embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a light-shielding element in a preferred embodiment of the present invention.
  • Marking description 1. Laser light source; 2. Attenuation plate; 3. Spatial light modulator; 4. First lens; 5. Shading element; 6. First quarter wave plate; 7. Second quarter wave plate; 8, second lens; 9, beam combining element; 10, beam analyzer; 11, computer; 12, through hole.
  • the system includes: a laser light source 1, a spatial light modulator 3, a first lens 4, a shading element 5, a first quarter A wave plate 6, a second quarter wave plate 7, a second lens 8, a beam combining element 9 and a computer 11.
  • the laser light source 1 is used to generate laser light and is incident on the spatial light modulator 3;
  • the computer 11 is used to generate two kinds of holograms and superimpose the grating functions of the two kinds of holograms to obtain a composite hologram, and the composite hologram Loaded into the spatial light modulator 3;
  • the spatial light modulator 3 is used to modulate the laser and simultaneously generate the first Laguerre-Gauerski mode beam and the second Laguerre-Gorski mode beam.
  • the first Laguerre-Gauerski mode beam and the second Laguerre-Gorski mode beam satisfy:
  • p1 and p2 are the radial indices of the first Laguerre-Gorski mode beam and the second Laguerre-Gorski mode beam respectively; l1 and l2 are the first Laguerre-Gorsky mode beam and the second Laguerre The topological charge of a beam in an Ergowski mode.
  • b and c are two kinds of holograms generated by the computer 11 respectively.
  • the holograms are generated by interferometry, and the arrangement direction of diffraction orders can be controlled by adjusting the interference term of the holograms.
  • the first lens 4 is used to collimate the first Laguerre-Gorski mode beam and the second Laguerre-Gorski mode beam.
  • the light shielding element 5 is used to simultaneously filter out the positive first-order diffracted beam or the negative first-order diffracted beam of the first Laguerre-Gorski mode beam and the second Laguerre-Gorski mode beam after collimation.
  • the first quarter-wave plate 6 and the second quarter-wave plate 7 are used to convert the polarization states of the filtered first Laguerre-Gauerski mode beam and the second Laguerre-Gauerski mode beam into linear polarization Modulate into mutually orthogonal right-handed circular polarization and left-handed circular polarization; make the two polarization states orthogonal to each other for subsequent synthesis.
  • the fast axis directions of the first quarter-wave plate 6 and the second quarter-wave plate 7 are respectively 45 degrees and 135 degrees to the polarization direction of the laser.
  • the polarization direction of the laser light generated by the laser light source 1 is a vertical direction.
  • the second lens 8 is used to focus the first Laguerre-Gauerski mode light beam and the second Laguerre-Gauerski mode light beam whose polarization state is circular polarization; wherein, the first lens 4 and the second lens 8 constitute a 4f system .
  • the beam combining element 9 is used to combine the focused first Laguerre-Gorski mode beam and the second Laguerre-Gorski mode beam into one beam and generate a plurality of diffracted lights to obtain a polarization-invariant light field.
  • the beam combining element 9 is a Ronchi grating.
  • the Ronchi grating is arranged at the focal point of the second lens 8 . Among them, the intermediate diffraction order of multiple diffracted lights is the best transmission constant light field, and other diffraction orders will have flaws.
  • the shading element 5 is a shading plate, and the shading plate is provided with through holes 12, and the through holes 12 are respectively used to channel the first Laguerre-Gauerski mode beam and the positive first-order diffracted beam or the negative first-order diffracted beam of the second Laguerre-Gauski mode beam are filtered out.
  • the middle circle represents zero-order diffracted light
  • the four surrounding circles represent two positive first-order diffracted beams and two negative first-order diffracted beams.
  • the two circles in the through hole 12 represent two positive first-order diffracted beams or two negative first-order diffracted beams.
  • an attenuation sheet 2 is also optionally included, and the attenuation sheet 2 is arranged between the laser light source 1 and the spatial light modulator 3, and the laser light generated by the laser light source 1 After passing through the attenuating sheet 2, it is incident on the spatial light modulator 3 .
  • a beam analyzer 10 is further included, which is arranged behind the beam combining element 9 .
  • the light field of the zero-order diffracted light with the highest intermediate intensity can be observed.
  • the key point of the present invention is to use the spatial light modulator to simultaneously generate two kinds of Laguerre-Gaussian beams satisfying a certain Gouy order relationship, modulate the two beams of Laguerre-Gaussian beams into orthogonal uniform polarized light through optical devices, and utilize Odd gratings are stably synthesized into a kind of light field with constant polarization state transmission.
  • the spatial light modulator is used to simultaneously generate two kinds of Laguerre-Gaussian beams satisfying a certain Gouy order relationship. It is known that the electric field expression of the Laguerre-Gaussian beam is:
  • l represents the topological charge of the LG beam
  • p represents the radial index
  • ⁇ 0 is the initial beam waist width
  • z R is the Rayleigh length
  • k is the wave number
  • +1)arctan(z/ z R )] is called the Gouy phase
  • exp(il ⁇ ) is called the vortex phase factor.
  • the polarization mode on the cross-section of the synthesized light field is determined by the amplitude and phase ratio of the two fundamental mode components at all points on the cross-section decided. For example, if at a certain point in the cross-section of the composite light field, the amplitude of a fundamental mode component is increasing during transmission, then the polarization at this point will be towards this fundamental mode The direction change of the component.
  • the superposition of two orthogonally polarized Laguerre-Gauski modes satisfying the above conditions can generate a polarization-invariant optical field with complex polarization types.
  • the generation system and method of the polarization transmission invariant light field of the present invention satisfy the condition: 2p 1 +
  • 2p 2 +
  • the Gaorski mode beams are endowed with orthogonal uniform polarization, and then the two Laguerre-Gowski mode beams are focused on the Ronchi grating, and then synthesized stably into a polarization-invariant optical field.
  • the light field generated by the present invention has linear polarization, elliptical polarization and circular polarization simultaneously on its cross section, and the polarization distribution will not change during the transmission process of the light field in free space except normal light spot size scaling.
  • This embodiment discloses a method for generating a polarization transmission invariant light field, which includes the following steps:
  • p1 and p2 are the radial indices of the first Laguerre-Gorski mode beam and the second Laguerre-Gorski mode beam respectively; l1 and l2 are the first Laguerre-Gorsky mode beam and the second Laguerre The topological charge of the Ergowski mode beam;
  • two kinds of holograms are generated by the computer 11 and the grating functions of the two kinds of holograms are superimposed to obtain a composite hologram, and the composite hologram is loaded into the spatial light modulator 3 .
  • the element 5 simultaneously filters out the positive first-order diffracted beam or the negative first-order diffracted beam of the first Laguerre-Gauerski mode beam and the second Laguerre-Gorski mode beam.
  • the shading element 5 is a shading plate, and the shading plate is provided with through holes 12, and the through holes 12 are respectively used to channel the first Laguerre-Gauerski mode beam and the positive first-order diffracted beam or the negative first-order diffracted beam of the second Laguerre-Gauski mode beam are filtered out.
  • the middle circle represents zero-order diffracted light
  • the four surrounding circles represent two positive first-order diffracted beams and two negative first-order diffracted beams.
  • the two circles in the through hole 12 represent two positive first-order diffracted beams or two negative first-order diffracted beams.
  • the S5. Modulate the polarization states of the filtered first Laguerre-Gauerski mode beam and the second Laguerre-Gorski mode beam into mutually orthogonal right-handed circular polarization and left-handed circular polarization by linear polarization; specifically, by The first quarter-wave plate 6 and the second quarter-wave plate 7 modulate the polarization states of the filtered first Laguerre-Gauerski mode beam and the second Laguerre-Gauerski mode beam into linear polarization Right-handed circular polarization and left-handed circular polarization that are orthogonal to each other.
  • the fast axis directions of the first quarter-wave plate 6 and the second quarter-wave plate 7 are respectively 45 degrees and 135 degrees to the polarization direction of the laser.
  • the polarization direction of the laser light generated by the laser light source 1 is a vertical direction.
  • the beam combining element 9 is used to combine the focused first Laguerre-Gauerski mode beam and the second Laguerre-Gauerski mode beam into one beam and generate a plurality of diffracted lights, so as to obtain a polarization-transmission-invariant optical field .
  • the beam combining element 9 is a Ronchi grating. In order to ensure that the two Laguerre-Gorski modes can be fully synthesized, the Ronchi grating is arranged at the focal point of the second lens 8 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

本发明公开了一种偏振传输不变光场的产生系统及方法,该系统包括:激光光源、空间光调制器、计算机、第一透镜、遮光元件、第一四分之一波片和第二四分之一波片、第二透镜和光束合成元件。本发明偏振传输不变光场的产生系统及方法通过产生满足一定古依阶数关系的两束拉盖尔高斯基模光束,并将两束拉盖尔高斯基模光束赋予正交的均匀偏振,再让两个拉盖尔高斯基模光束聚焦到朗奇光栅上,稳定合成为偏振传输不变光场。本发明产生的光场在其横截面上同时具有线偏振、椭圆偏振、圆偏振,并且光场在自由空间的传输过程中除正常的光斑尺寸缩放外,偏振分布不会发生变化。

Description

一种偏振传输不变光场的产生系统及方法 技术领域
本发明涉及光学技术领域,特别涉及一种偏振传输不变光场的产生系统及方法。
背景技术
随着科技的发展和社会进步,光场的调控及应用已经渗透到军工、医疗以及生活的方方面面,而偏振作为光场研究的重要自由度,一直以来都具有极高的研究价值。19世纪初,马吕斯最早发现了光的偏振,之后很长一段时间人们对偏振光场的认识主要集中于偏振态均匀分布线的偏振光场、圆偏振光场、椭圆偏振光场等,对均匀偏振光场的研究在消除反光、液晶面板的制造、病变细胞的筛查等领域产生了众多应用。但均匀偏振光场的偏振态形式太过单一,不能蕴含和传递更多光束信息,已经无法满足如今的光通讯等需求。
随着偏振光学的逐渐发展,各种非均匀偏振光场被提出,它们的偏振态在空间不同位置各不相同,具有更高的研究价值和意义。最早实验中产生的非均匀偏振光场是径向偏振矢量光场和角向偏振矢量光场,其偏振态是满足圆对称分布的线型偏振态,这一类非均匀偏振光场被称为柱对称矢量光场,在本世纪出得到了广泛的研究,也拓展出了光学粒子操纵、超分辨成像等方面的应用。这一类光场的偏振虽然是非均匀的,但偏振类型仍只有线型。后来,美国科学家Milione根据光场偏振和轨道角动量的内在联系,提出了一类高阶庞加莱球,球上任一点表示的光场都是由携带相同拓扑荷数的右旋和左旋圆偏振涡旋光束叠加得到。高阶庞加莱球的北半球表示右旋的非均匀椭圆偏振光场,南半球表示左旋的非均匀椭圆偏振光场,相比柱对称矢量光场只有线型偏振,高阶庞加莱球矢量光场能够表示椭圆偏振和圆偏振,但需要注意的是,确定了球上某点的位置后,这一点所代表的非均匀偏振光场也只有单一的偏振类型,要么是线型,要么是椭圆型或圆型。
另外,也有一些同时包含线型偏振、椭圆型偏振和圆型偏振的复杂偏振类 型光场被科学家们提出研究。Beckley等人以偏振正交的高斯光束和拉盖尔高斯光束作为基模,合成了一类横截面上同时存在多种类型的偏振全庞加莱球矢量光场。研究发现相比于同样条件下的高斯光场和拉盖尔高斯光场,全庞加莱球矢量光场收湍流的影响较小,复杂的偏振态和抗湍流特性使得全庞加莱球矢量光场在光通信领域具有更高的研究价值。在此基础上,Yi等人以携带不同拓扑荷数的右旋、左旋涡旋光束作为基模,产生了杂化阶庞加莱球矢量光场。这些光场的偏振类型复杂,能保存更多的光束信息,但由于在传输过程中,两基模的变化规律不同,导致合成光场的偏振态在不同距离处始终不同,限制了其在光通信等领域的应用。
现有非均匀矢量偏振光场有以下几种:
1、通过偏振正交的右旋、左旋圆偏振的一阶涡旋光场等振幅叠加可以得到径向偏振光;
2、通过拓扑荷数相等、偏振正交的右旋、左旋圆偏振的涡旋光场叠加,控制二者之间的振幅比、相位比可以得到高阶庞加莱球矢量光场;
3、通过偏振正交的高斯光束和拉盖尔高斯光束作为基模叠加,可以得到偏振类型复杂的全庞加莱球光场;
4、通过拓扑荷数不同、偏振正交的右旋、左旋圆偏振涡旋光叠加,可以得到杂化阶庞加莱球光场。
上述非均匀矢量偏振光场分别存在以下问题:
1、标量光场的偏振是均匀的,所包含的光束偏振信息少;
2、一种高阶庞加莱球矢量光场只有单一偏振类型的偏振态,整个光场的横向截面上要么全是线型偏振态(如径向偏振光场、角向偏振光场),要么全是椭偏率一致的椭圆型、圆形偏振态,偏振类型单一,蕴含信息少;
3、全庞加莱矢量光场和杂化庞加莱球矢量光场虽然在横截面上同时存在线偏振、椭圆偏振、圆偏振,但由于合成这种光场的基模之间差别较大,传输时各自按照不同的方式变化,因此合成光场的偏振在传输过程中会不断发生变化,不利于光信息的传递;
4、现有的光场无法同时满足既具有所有类型的偏振又能保证偏振态传输不 变两个条件。
发明内容
本发明要解决的技术问题的是提供一种结构简单、稳定性好、在传输过程中偏振态保持不变的偏振传输不变光场的产生系统。
为了解决上述问题,本发明提供了一种偏振传输不变光场的产生系统,其包括:
激光光源和空间光调制器,所述激光光源用于产生激光并入射至所述空间光调制器;
计算机,用于产生两种全息图并将两种全息图的光栅函数叠加,得到复合全息图,并将复合全息图加载到所述空间光调制器中;所述空间光调制器用于对激光进行调制并同时产生第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束;所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束满足:
2p 1+|l 1|=2p 2+|l 2|
其中,p 1和p 2分别为第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的径向指数;l1和l2分别为第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的拓扑荷数;
第一透镜,用于将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束准直;
遮光元件,用于在准直后同时将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的正一级衍射光束或者负一级衍射光束滤出;
第一四分之一波片和第二四分之一波片,用于将滤出的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的偏振状态由线偏振调制成相互正交的右旋圆偏振和左旋圆偏振;
第二透镜,用于将偏振状态为圆偏振的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束聚焦;
光束合成元件,用于将聚焦的第一拉盖尔高斯基模光束和第二拉盖尔高斯 基模光束合成一束并产生多个衍射光,以得到偏振传输不变光场。
作为本发明的进一步改进,所述遮光元件为遮光板,所述遮光板上设有通孔,所述通孔分别用于将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的正一级衍射光束或者负一级衍射光束滤出。
作为本发明的进一步改进,所述第一四分之一波片和第二四分之一波片的快轴方向分别与激光的偏振方向呈45度和135度。
作为本发明的进一步改进,还包括衰减片,所述衰减片设置于所述激光光源和空间光调制器之间,所述激光光源产生的激光经过所述衰减片后入射至所述空间光调制器。
作为本发明的进一步改进,还包括光束分析仪,设置于所述光束合成元件后方,用于观察所述光束合成元件上偏振传输不变光场的偏振特性。
作为本发明的进一步改进,所述第一透镜和第二透镜构成4f系统。
作为本发明的进一步改进,所述激光光源产生的激光的偏振方向为竖直方向。
作为本发明的进一步改进,所述光束合成元件为朗奇光栅。
作为本发明的进一步改进,所述朗奇光栅设置于所述第二透镜的焦点处。
为了解决上述问题,本发明还提供了一种偏振传输不变光场的产生方法,其包括以下步骤:
S1、产生激光并入射至空间光调制器;
S2、产生两种全息图并将两种全息图的光栅函数叠加,得到复合全息图,并将复合全息图加载到所述空间光调制器中;所述空间光调制器对激光进行调制并同时产生第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束;所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束满足:
2p 1+|l 1|=2p 2+|l 2|
其中,p 1和p 2分别为第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的径向指数;l1和l2分别为第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的拓扑荷数;
S3、将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束准直;
S4、在准直后同时将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的正一级衍射光束或者负一级衍射光束滤出;
S5、将滤出的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的偏振状态由线偏振调制成相互正交的右旋圆偏振和左旋圆偏振;
S6、将偏振状态为圆偏振的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束聚焦;
S7、将聚焦的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束合成一束并产生多个衍射光,以得到偏振传输不变光场。
作为本发明的进一步改进,所述随机相位屏为旋转毛玻璃。
本发明的有益效果:
本发明偏振传输不变光场的产生系统及方法通过产生满足条件:2p 1+|l 1|=2p 2+|l 2|的两束拉盖尔高斯基模光束,并将两束拉盖尔高斯基模光束赋予正交的均匀偏振,再让两个拉盖尔高斯基模光束聚焦到朗奇光栅上,稳定合成为偏振传输不变光场。本发明产生的光场在其横截面上同时具有线偏振、椭圆偏振、圆偏振,并且光场在自由空间的传输过程中除正常的光斑尺寸缩放外,偏振分布不会发生变化。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1是本发明优选实施例中偏振传输不变光场的产生系统的示意图;
图2是本发明优选实施例中复合全息图的示意图;
图3是本发明优选实施例中遮光元件的示意图。
标记说明:1、激光光源;2、衰减片;3、空间光调制器;4、第一透镜;5、遮光元件;6、第一四分之一波片;7、第二四分之一波片;8、第二透镜;9、 光束合成元件;10、光束分析仪;11、计算机;12、通孔。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例一
如图1所示,为本实施例中的偏振传输不变光场的产生系统,该系统包括:激光光源1、空间光调制器3、第一透镜4、遮光元件5、第一四分之一波片6、第二四分之一波片7、第二透镜8、光束合成元件9和计算机11。
所述激光光源1用于产生激光并入射至所述空间光调制器3;计算机11用于产生两种全息图并将两种全息图的光栅函数叠加,得到复合全息图,并将复合全息图加载到所述空间光调制器3中;所述空间光调制器3用于对激光进行调制并同时产生第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束。所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束满足:
2p 1+|l 1|=2p 2+|l 2|
其中,p1和p2分别为第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的径向指数;l1和l2分别为第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的拓扑荷数。
如图2所示,其中,b和c分别为计算机11产生的两种全息图,可选地,全息图采用干涉法产生,调整全息图的干涉项可以控制衍射级次的排列方向。
可选的,全息图b的光栅函数为T b=1/2(1+R b),R b即为干涉项,可以调整为R b=cos(k b·x+k b·y+A b),x和y为空间坐标,k b为周期参量,在x和y方向进行同样的干涉会让透出的光束级次按照45度方向排列,A b=l 1·θ+π·(-Lg 1)是拉盖尔高斯光产生的涡旋相位,其中l 1是第一束拉盖尔高斯基模的拓扑荷数,θ是极坐标中的角度,Lg 1是第一束拉盖尔高斯基模的拉盖尔多项式,其中包含了p 1和l 1两个系数,并且令p 1=1,l 1=3。全息图c的产生方法类似,光栅函数表示为T c=1/2(1+R c),这里需要注意的是,干涉项 R c=cos(-k c·x+k c·y+A c),我们在x的反方向进行干涉,可以使产生的光束级次按照135度方向排列,A c=l 2·θ+π·(-Lg 2)是拉盖尔高斯光产生的涡旋相位,其中l 2是第二束拉盖尔高斯基模的拓扑荷数,θ是极坐标中的角度,Lg 2是第二束拉盖尔高斯基模的拉盖尔多项式,其中包含了p 2和l 2两个系数,并且令p 1=2,l 1=1。由于2p 1+|l 1|=2p 2+|l 2|满足条件,所以我们就可以分别产生衍射级次按照45度和135度排列的两种古依阶数相同的拉盖尔高斯基模光束。其中,全息图b和c光栅函数叠加:T=T b+T c,即得到的复合全息图a。
第一透镜4用于将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束准直。
遮光元件5用于在准直后同时将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的正一级衍射光束或者负一级衍射光束滤出。
第一四分之一波片6和第二四分之一波片7用于将滤出的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的偏振状态由线偏振调制成相互正交的右旋圆偏振和左旋圆偏振;使得两种偏振状态相互正交,用于后续合成。可选地,所述第一四分之一波片6和第二四分之一波片7的快轴方向分别与激光的偏振方向呈45度和135度。可选地,所述激光光源1产生的激光的偏振方向为竖直方向。
第二透镜8用于将偏振状态为圆偏振的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束聚焦;其中,所述第一透镜4和第二透镜8构成4f系统。
光束合成元件9用于将聚焦的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束合成一束并产生多个衍射光,以得到偏振传输不变光场。可选地,所述光束合成元件9为朗奇光栅。为了保证两束拉盖尔高斯基模能充分合成,所述朗奇光栅设置于所述第二透镜8的焦点处。其中,多个衍射光的中间衍射级是最好的传输不变光场,其他衍射级会存在瑕疵。
如图3所示,可选地,所述遮光元件5为遮光板,所述遮光板上设有通孔12,所述通孔12分别用于将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的正一级衍射光束或者负一级衍射光束滤出。在图3中,中间的圆圈表示零级衍射光,周围的四个圆圈表示两个正一级衍射光束和两个负一级衍射光 束。通孔12中的两个圆圈表示两个正一级衍射光束或两个负一级衍射光束。
为了防止光强过大损坏后面的器件,可选地,还包括衰减片2,所述衰减片2设置于所述激光光源1和空间光调制器3之间,所述激光光源1产生的激光经过所述衰减片2后入射至所述空间光调制器3。
为了观察所述光束合成元件9上偏振传输不变光场的偏振特性,进一步地,还包括光束分析仪10,设置于所述光束合成元件9后方。可选地,只观察中间强度最大的零级衍射光的光场即可。
本发明的技术原理如下:
本发明重点在于利用空间光调制器同时产生两种满足一定古依阶数关系的拉盖尔高斯光束,通过光学器件将两束拉盖尔高斯光调制为正交的均匀偏振光,并利用朗奇光栅稳定合成为一类偏振态传输不变的光场。
首先要利用空间光调制器同时产生两种满足一定古依阶数关系的拉盖尔高斯光束,已知拉盖尔高斯光束的电场表达式为:
Figure PCTCN2021141554-appb-000001
其中,l表示LG光束的拓扑荷数,p表示径向指数,
Figure PCTCN2021141554-appb-000002
为传输到z处时光束的束腰宽度,ω 0是初始束腰宽度,z R为瑞利长度,
Figure PCTCN2021141554-appb-000003
表示广义拉盖尔多项式,k是波数,R z=z[1+(z R/z) 2]是波阵面的曲率半径,exp[-i(2p+|l|+1)arctan(z/z R)]被称为古依相位,exp(ilφ)被称为涡旋相位因子。观察公式(1)可以发现,单一模式的拉盖尔高斯光束在自由空间中传输,除去必要的光束缩放外,在任意传输距离处其光斑横截面的形状是不发生变化的。
另一方面,在产生非均匀偏振光场时,常用两种偏振正交的均匀偏振光束 进行叠加,因此我们可以利用左旋和右旋的拉盖尔高斯光束来合成一种偏振类型同时包括线偏振、椭圆偏振和圆偏振的复杂非均匀偏振光场。为了方便起见,我们把两个待合成的拉盖尔高斯光束的电场分别表示为
Figure PCTCN2021141554-appb-000004
那么右旋的
Figure PCTCN2021141554-appb-000005
和左旋的
Figure PCTCN2021141554-appb-000006
叠加形成的电场可以表示为:
Figure PCTCN2021141554-appb-000007
其中
Figure PCTCN2021141554-appb-000008
表示合成后光场的电场,|R>和|L>分别表示右旋方向和左旋方向,这两个方向都可以用笛卡尔坐标系中的x和y方向表示。将公式(1)代入公式(2)中,则合成非均匀偏振光场的光强可以表示为:
Figure PCTCN2021141554-appb-000009
事实上,在使用两偏振正交的拉盖尔高斯基模合成非均匀偏振光场时,合成光场横截面上的偏振模式是由两基模分量在横截面上所有点的振幅和相位比决定的。举例来说,如果在合成光场横截面的某点处,某一基模分量在传输过程中的振幅占比一直在增大,那么这点处的偏振就会朝着倾向于这一基模分量的方向变化。因此如果要产生一种偏振传输不变的光场,就需要保证在合成光束的任意点处,两基模分量的振幅比和相位比保持恒定,也就必须要使两基模的古依相位按照相同的方式变化。
我们提出一个新的物理量:拉盖尔高斯光束的古依相位阶数:
N=2p+|l|
若使两个待合成的拉盖尔高斯基模的古依相位项在传输过程中按照同样的方式和速度变化,则二者的古依相位阶数需要满足:
2p 1+|l 1|=2p 2+|l 2|    (4)
满足上述条件的两个正交偏振的拉盖尔高斯基模叠加,则可以产生具有复杂偏振类型的偏振传输不变光场。
本发明偏振传输不变光场的产生系统及方法通过产生满足条件: 2p 1+|l 1|=2p 2+|l 2|的两束拉盖尔高斯基模光束,并将两束拉盖尔高斯基模光束赋予正交的均匀偏振,再让两个拉盖尔高斯基模光束聚焦到朗奇光栅上,稳定合成为偏振传输不变光场。本发明产生的光场在其横截面上同时具有线偏振、椭圆偏振、圆偏振,并且光场在自由空间的传输过程中除正常的光斑尺寸缩放外,偏振分布不会发生变化。
实施例二
本实施例公开了一种偏振传输不变光场的产生方法,其包括以下步骤:
S1、产生激光并入射至空间光调制器3;具体地,通过激光光源1产生激光。
S2、产生两种全息图并将两种全息图的光栅函数叠加,得到复合全息图,并将复合全息图加载到所述空间光调制器3中;所述空间光调制器3对激光进行调制并同时产生第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束;所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束满足:
2p 1+|l 1|=2p 2+|l 2|
其中,p1和p2分别为第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的径向指数;l1和l2分别为第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的拓扑荷数;
具体地,通过计算机11产生两种全息图并将两种全息图的光栅函数叠加,得到复合全息图,并将复合全息图加载到所述空间光调制器3中。
S3、将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束准直;可选的,通过第一透镜4将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束准直。
S4、在准直后同时将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的正一级衍射光束或者负一级衍射光束滤出;可选的,通过遮光元件5在准直后同时将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的正一级衍射光束或者负一级衍射光束滤出。
如图3所示,可选地,所述遮光元件5为遮光板,所述遮光板上设有通孔 12,所述通孔12分别用于将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的正一级衍射光束或者负一级衍射光束滤出。在图3中,中间的圆圈表示零级衍射光,周围的四个圆圈表示两个正一级衍射光束和两个负一级衍射光束。通孔12中的两个圆圈表示两个正一级衍射光束或两个负一级衍射光束。
S5、将滤出的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的偏振状态由线偏振调制成相互正交的右旋圆偏振和左旋圆偏振;具体地,通过第一四分之一波片6和第二四分之一波片7将滤出的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的偏振状态由线偏振调制成相互正交的右旋圆偏振和左旋圆偏振。可选地,所述第一四分之一波片6和第二四分之一波片7的快轴方向分别与激光的偏振方向呈45度和135度。可选地,所述激光光源1产生的激光的偏振方向为竖直方向。
S6、将偏振状态为圆偏振的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束聚焦;具体地,通过第二透镜8将偏振状态为圆偏振的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束聚焦。其中,所述第一透镜4和第二透镜8构成4f系统。
S7、将聚焦的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束合成一束并产生多个衍射光,以得到偏振传输不变光场。具体地,通过光束合成元件9用于将聚焦的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束合成一束并产生多个衍射光,以得到偏振传输不变光场。可选地,所述光束合成元件9为朗奇光栅。为了保证两束拉盖尔高斯基模能充分合成,所述朗奇光栅设置于所述第二透镜8的焦点处。
本实施例一种偏振传输不变光场的产生方法涉及的技术原理与上述实施例一中相同,在此不多赘述。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种偏振传输不变光场的产生系统,其特征在于,包括:
    激光光源和空间光调制器,所述激光光源用于产生激光并入射至所述空间光调制器;
    计算机,用于产生两种全息图并将两种全息图的光栅函数叠加,得到复合全息图,并将复合全息图加载到所述空间光调制器中;所述空间光调制器用于对激光进行调制并同时产生第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束;所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束满足:
    2p 1+|l 1|=2p 2+|l 2|
    其中,p 1和p 2分别为第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的径向指数;l1和l2分别为第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的拓扑荷数;
    第一透镜,用于将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束准直;
    遮光元件,用于在准直后同时将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的正一级衍射光束或者负一级衍射光束滤出;
    第一四分之一波片和第二四分之一波片,用于将滤出的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的偏振状态由线偏振调制成相互正交的右旋圆偏振和左旋圆偏振;
    第二透镜,用于将偏振状态为圆偏振的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束聚焦;
    光束合成元件,用于将聚焦的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束合成一束并产生多个衍射光,以得到偏振传输不变光场。
  2. 如权利要求1所述的偏振传输不变光场的产生系统,其特征在于,所述遮光元件为遮光板,所述遮光板上设有通孔,所述通孔用于将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的正一级衍射光束或者负一级衍射光束滤出。
  3. 如权利要求1所述的偏振传输不变光场的产生系统,其特征在于,所述第一四分之一波片和第二四分之一波片的快轴方向分别与激光的偏振方向呈45度和135度。
  4. 如权利要求1所述的偏振传输不变光场的产生系统,其特征在于,还包括衰减片,所述衰减片设置于所述激光光源和空间光调制器之间,所述激光光源产生的激光经过所述衰减片后入射至所述空间光调制器。
  5. 如权利要求1所述的偏振传输不变光场的产生系统,其特征在于,还包括光束分析仪,设置于所述光束合成元件后方,用于观察所述光束合成元件上偏振传输不变光场的偏振特性。
  6. 如权利要求1所述的偏振传输不变光场的产生系统,其特征在于,所述第一透镜和第二透镜构成4f系统。
  7. 如权利要求1所述的偏振传输不变光场的产生系统,其特征在于,所述激光光源产生的激光的偏振方向为竖直方向。
  8. 如权利要求1所述的偏振传输不变光场的产生系统,其特征在于,所述光束合成元件为朗奇光栅。
  9. 如权利要求8所述的偏振传输不变光场的产生系统,其特征在于,所述朗奇光栅设置于所述第二透镜的焦点处。
  10. 一种偏振传输不变光场的产生方法,其特征在于,包括以下步骤:
    S1、产生激光并入射至空间光调制器;
    S2、产生两种全息图并将两种全息图的光栅函数叠加,得到复合全息图,并将复合全息图加载到所述空间光调制器中;所述空间光调制器对激光进行调制并同时产生第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束;所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束满足:
    2p 1+|l 1|=2p 2+|l 2|
    其中,p 1和p 2分别为第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的径向指数;l 1和l 2分别为第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的拓扑荷数;
    S3、将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束准直;
    S4、在准直后同时将所述第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的正一级衍射光束或者负一级衍射光束滤出;
    S5、将滤出的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束的偏振状态由线偏振调制成相互正交的右旋圆偏振和左旋圆偏振;
    S6、将偏振状态为圆偏振的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束聚焦;
    S7、将聚焦的第一拉盖尔高斯基模光束和第二拉盖尔高斯基模光束合成一束并产生多个衍射光,以得到偏振传输不变光场。
PCT/CN2021/141554 2021-12-07 2021-12-27 一种偏振传输不变光场的产生系统及方法 WO2023103112A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/800,206 US20230314822A1 (en) 2021-12-07 2021-12-27 Method and system for generating polarized propagation-invariant light field

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111481793.XA CN113885219B (zh) 2021-12-07 2021-12-07 一种偏振传输不变光场的产生系统及方法
CN202111481793.X 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023103112A1 true WO2023103112A1 (zh) 2023-06-15

Family

ID=79015804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141554 WO2023103112A1 (zh) 2021-12-07 2021-12-27 一种偏振传输不变光场的产生系统及方法

Country Status (3)

Country Link
US (1) US20230314822A1 (zh)
CN (1) CN113885219B (zh)
WO (1) WO2023103112A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115061282B (zh) * 2022-05-27 2023-11-10 浙江理工大学 一种基于扭曲相位调制的矢量光场尺寸与角度可控系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183847A (zh) * 2011-05-12 2011-09-14 北京理工大学 一种生成矢量光束的方法和装置
CN103676184A (zh) * 2014-01-03 2014-03-26 山东师范大学 双通道矢量空间光调制器
CN104950453A (zh) * 2015-06-19 2015-09-30 苏州大学 一种产生全庞加莱光束的装置和方法
CN110133856A (zh) * 2019-05-27 2019-08-16 暨南大学 一种产生无衍射矢量贝塞尔光场的系统和方法
CN112146760A (zh) * 2020-09-28 2020-12-29 浙江大学 一种完全非均匀偏振光的偏振均匀度度量方法、应用、装置、电子设备及存储介质
EP3809188A1 (en) * 2019-10-17 2021-04-21 National Institute for Laser, Plasma and Radiation Physics - INFLPR Optical system for generation of vector beams
CN112904580A (zh) * 2021-02-05 2021-06-04 苏州大学 一种产生矢量非均匀关联光束的系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614398B2 (en) * 2019-09-17 2023-03-28 Robert Alfano Method for imaging biological tissue using polarized majorana vector and complex vortex photons from laser and supercontinuum light sources
CN110954213A (zh) * 2019-11-11 2020-04-03 中国人民解放军战略支援部队航天工程大学 一种基于交叉相位的大拓扑荷数涡旋光制备与检测方法
CN111525379B (zh) * 2020-04-01 2021-03-19 南京大学 一种宽带拓扑荷可调谐的拉盖尔高斯光参量振荡器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183847A (zh) * 2011-05-12 2011-09-14 北京理工大学 一种生成矢量光束的方法和装置
CN103676184A (zh) * 2014-01-03 2014-03-26 山东师范大学 双通道矢量空间光调制器
CN104950453A (zh) * 2015-06-19 2015-09-30 苏州大学 一种产生全庞加莱光束的装置和方法
CN110133856A (zh) * 2019-05-27 2019-08-16 暨南大学 一种产生无衍射矢量贝塞尔光场的系统和方法
EP3809188A1 (en) * 2019-10-17 2021-04-21 National Institute for Laser, Plasma and Radiation Physics - INFLPR Optical system for generation of vector beams
CN112146760A (zh) * 2020-09-28 2020-12-29 浙江大学 一种完全非均匀偏振光的偏振均匀度度量方法、应用、装置、电子设备及存储介质
CN112904580A (zh) * 2021-02-05 2021-06-04 苏州大学 一种产生矢量非均匀关联光束的系统及方法

Also Published As

Publication number Publication date
CN113885219A (zh) 2022-01-04
US20230314822A1 (en) 2023-10-05
CN113885219B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
Xu et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control
Zhan Vectorial optical fields: Fundamentals and applications
Ruchi et al. Phase singularities to polarization singularities
WO2023115629A1 (zh) 一种具有鲁棒性的高阶庞加莱球偏振态产生方法及系统
CN106560738A (zh) 一种完美ig涡旋光束的产生装置及产生方法
CN109709682B (zh) 一种产生复合涡旋光束的装置
CN109917546A (zh) 一种可自由调控的中心对称涡旋光束掩模板的设计方法
CN111130637B (zh) 光子自旋-轨道角动量联合模式的测量方法及测量系统
CN110954213A (zh) 一种基于交叉相位的大拓扑荷数涡旋光制备与检测方法
WO2023103112A1 (zh) 一种偏振传输不变光场的产生系统及方法
WO2024077896A1 (zh) 一种实现同一光焦斑任意指向直线阵列的方法
CN112130231B (zh) 产生偏振阶数可调的柱矢量光束的超表面系统及构造方法
Zhang et al. Statistical properties of a partially coherent vector beam with controllable spatial coherence, vortex phase, and polarization
CN108333789B (zh) 一种基于矩阵螺旋相位板多通的涡旋光制备装置
Yang et al. A review of liquid crystal spatial light modulators: devices and applications
Wang et al. Multi-channel beam splitters based on gradient metasurfaces
Deng et al. Structured light generation using angle‐multiplexed metasurfaces
CN102967928B (zh) 一种柱偏振矢量光束紧聚焦光斑的产生方法及装置
Liu et al. Chiro-optical fields with asymmetric orbital angular momentum and polarization
CN211426839U (zh) 一种晶体阵列式全庞加莱光束产生器
CN207457617U (zh) 产生双指数贝塞尔高斯光束的系统
WO2024050973A1 (zh) 一种反射式弯曲叉形面光栅的制备装置和方法
CN113504642B (zh) 一种具有多中空的紧聚焦光场分布构造方法
CN110673350A (zh) 一种产生椭圆形径向偏振光束的涡旋半波片及系统
Liu et al. All-optical demonstration of a scalable super-resolved magnetic vortex core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967024

Country of ref document: EP

Kind code of ref document: A1