CN209894978U - 具有建筑工地室内定位智能装置的机器人 - Google Patents

具有建筑工地室内定位智能装置的机器人 Download PDF

Info

Publication number
CN209894978U
CN209894978U CN201920179546.6U CN201920179546U CN209894978U CN 209894978 U CN209894978 U CN 209894978U CN 201920179546 U CN201920179546 U CN 201920179546U CN 209894978 U CN209894978 U CN 209894978U
Authority
CN
China
Prior art keywords
laser
robot
positioning
intelligent
rotating mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201920179546.6U
Other languages
English (en)
Inventor
郭秉义
王立新
黄坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Bozhilin Robot Co Ltd
Original Assignee
Guangdong Bozhilin Robot Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Bozhilin Robot Co Ltd filed Critical Guangdong Bozhilin Robot Co Ltd
Priority to CN201920179546.6U priority Critical patent/CN209894978U/zh
Application granted granted Critical
Publication of CN209894978U publication Critical patent/CN209894978U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

具有建筑工地室内定位智能装置的机器人及其控制方法,所述的机器人包括:机器人本体和设置在机器人本体上的定位智能装置,机器人本体与定位智能装置之间可拆卸的连接,定位智能装置包括:一与机器人本体相连的连接部分;一设置在连接部分下端的用于设置激光收发装置的激光定位测距部分;连接部分与激光定位测距部分之间通过一水平旋转机构相连;连接部分内设置有控制中心;在激光定位测距部分上设有指向装置。安装有室内定位智能装置的机器人相比普通的作业机器人在定位工作中,自动化智能化水平高,能提供更精确的建筑工地室内定位。

Description

具有建筑工地室内定位智能装置的机器人
技术领域
本发明涉及机械建筑的技术领域,具体涉及具有建筑工地室内定位智能装置的机器人。
背景技术
近年来,我国建筑工地工人老龄化愈演愈烈,工人老龄化制约着建筑行业发展,并且老龄化的建筑工人从业时最大的问题就是安全问题。随着科技的进步及建筑行业的发展,建造自动化、智能化是必然趋势,因此建筑机器人进驻施工场地,进行精密精确和高效的施工,是建造智能化的重要方向。与此同时,建筑机器人的施工自动化需要高精度定位的支持,在建造过程中,如何高精度测量和高精度定位是智能建造的关键问题。基于GPS和地图的位置服务虽然在室外成为各种移动设备的主流应用,但是在室内定位中,其精度较差,不适合室内精确定位,尤其是在建筑工地等复杂环境中。
目前常见的室内定位技术包括红外线定位、超声波定位、射频识别定位、蓝牙室内定位、WiFi室内定位、ZigBee定位以及超宽带定位等,具体缺陷如下:红外室内定位技术:这种方法在空旷的室内容易实现较高精度,可实现对红外辐射源的被动定位,但红外很容易被障碍物遮挡,传输距离也不长,因此需要大量密集部署传感器,造成较高的硬件和施工成本。此外,红外易受热源、灯光等干扰,造成定位精度和准确度下降。WiFi室内定位技术:WiFi室内定位的精度只能达到2米左右,接入点通常都只能覆盖半径90米左右的区域,并且需要部署至少3个接入点,部署复杂。同时,容易受到其他信号的干扰,从而影响其精度,定位器的能耗较高;超声波室内定位技术:由于声波的速率比较低,传送相同的内容需要的时间比较长,只有通过类似TDoA的方式才能获得较大的系统容量,且容易受多径效应和非视距传播的影响,降低定位精度;同时,仍需要大量的底层硬件设施投资,总体成本较高;蓝牙室内定位技术:蓝牙定位主要应用于小范围定位,例如:单层大厅或仓库。对于复杂的空间环境,蓝牙定位系统的稳定性稍差,受噪声信号干扰大。并且需要部署至少3个接入点,部署复杂:ZigBee室内定位技术:ZigBee的工作效率非常高。但ZigBee的信号传输受多径效应和移动的影响都很大,而且定位精度取决于信道物理品质、信号源密度、环境和算法的准确性,造成定位软件的成本较高;UWB室内定位技术:超宽带定位技术具有穿透力强、抗多径效果好、安全性高、系统复杂度低、能提供精确定位精度等优点,前景相当广阔。但由于新加入的盲节点也需要主动通信使得功耗较高,且事先也需要布局,使得成本无法降低。RFID技术:几毫秒内得到厘米级定位精度的信息,且传输范围大、成本较低,但RFID不便于整合到移动设备之中。航位推算法:主要利用终端惯性传感器采集的运动数据,如加速度传感器、陀螺仪等测量物体的速度、方向、加速度等信息,基于航位推测法,经过各种运算得到物体的位置信息。但随着行走时间增加,惯性导航定位的误差也在不断累积。需要外界更高精度的数据源对其进行校准。
另一种实现室内定位的方式是通过同步定位与地图构建(SLAM)技术。但是,由于采用SLAM算法,首先需要先扫描和采集环境数据,再结合SLAM算法进行精细定位,操作复杂,同时与室内整体环境数据进行匹配需要进行大量的迭代运算,算法的时间复杂度较高,进而不利于机器人实时定位。同时,SLAM算法自身在数据匹配过程中存在累计误差,使定位精度和导航的准确性均降低。
综上可见,现阶段常用的定位方法由于复杂性、精确度等原因,不能满足建筑自动化和智能化的要求。在建筑工地中较多情况下只需要对封闭空间或者半封闭空间进行精确的定位即可,可以结合建筑几何信息和指向装置的特点,研发出一款适合建筑工地使用的安装有室内定位智能装置的机器人。
发明内容
为克服上述现有技术的缺陷,本发明的目的在于提供一种使用方便、结构简单、控制精准的具有建筑工地室内定位智能装置的机器人。
为实现上述目的,本发明采用的技术方案如下:
具有建筑工地室内定位智能装置的机器人,所述的机器人包括:机器人本体A和设置在机器人本体A上的定位智能装置B,所述的机器人本体A与定位智能装置B之间可拆卸的连接,所述的定位智能装置B包括:
一与机器人本体A相连的连接部分1;
一设置在连接部分1一端的用于设置激光收发装置的激光定位测距部分2;
所述的连接部分1与激光定位测距部分2之间通过一水平旋转机构3相连;
所述的连接部分1内设置有用于控制激光定位测距部分2和水平旋转机构3工作的控制中心4;
在所述的激光定位测距部分2上设有一用于指示定位智能装置水平朝向的指向装置。
所述的具有建筑工地室内定位智能装置的机器人,所述的激光定位测距部分2包括:激光测距收发装置外壳21,在所述的激光测距收发装置外壳21内设置激光测距装置,所述的激光测距装置包括:可按照竖直方向上下旋转90度的竖直旋转机构5和通过激光收发来测量与墙面的距离的激光测距收发装置6;所述的激光测距收发装置6包括激光的发射源和接收端,发射源发射激光,接收端接收反射的激光,通过激光的发射与接收计算智能装置到墙面之间的距离。
所述的具有建筑工地室内定位智能装置的机器人,所述的激光测距收发装置6设置在所述的竖直旋转机构5上,随竖直旋转机构5竖直方向上下旋转90度。
所述的具有建筑工地室内定位智能装置的机器人,所述的竖直旋转机构5可转动的、可拆卸的设置在激光测距收发装置外壳21内部,在竖直旋转机构5的两端设有转轴51,所述的转轴51插接或卡接在激光测距收发装置外壳21内部。
所述的具有建筑工地室内定位智能装置的机器人,所述的水平旋转机构3改变定位智能装置的朝向,可以按照水平方向进行顺时针或逆时针旋转360度。
所述的具有建筑工地室内定位智能装置的机器人,所述的指南针装置7为电子指南针,电子指南针为基于单片机的数字指南针,也可以是霍尼韦尔三轴磁场传感器,或者,电子罗盘;所述的控制中心4包括内置控制器、运算器以及存放房间几何图形信息的存储模块的PLC或者工控机。
所述的具有建筑工地室内定位智能装置的机器人,所述的控制中心4通过串口通信分别与水平旋转机构3、竖直旋转机构5和激光测距收发装置6、数字指南针7信号连接,所述的串口通信可采用串口232或者485接口的方式,控制中心将最终得出的机器人。
所述的具有建筑工地室内定位智能装置的机器人,所述的连接部分1将智能装置与机器人本体之间可采用可拆卸的方式连接,如卡槽、套接或者通过螺母方式连接。
具有建筑工地室内定位智能装置的机器人的控制方法,所述的控制中心4的主要控制方法如下:
S1.控制中心4加载所处房间的几何信息,获取面向墙面的方向,标记为C0
S2.控制中心4通过串口获取指向装置指向数据,即当前朝向,标记为C1
S3.判断朝向是否为面向墙面方向即C0=C1?如果是,执行步骤S4,如果不是,执行步骤S5;
S4.调整初始位姿,开始数据测量,调整第二位姿,开始数据测量,继续调整多次位姿,并进行多次数据测量后,进行计算,获得定位智能装置与墙面距离;
S5.控制中心4调整水平旋转机构3,使当前朝向接近C0,再返回步骤S2;
S6.由当前位置距离墙面的精确位置,可得定位智能装置在当前房间的精确定位。
所述的具有建筑工地室内定位智能装置的机器人的控制方法,在步骤S4中,其详细步骤如下:
S40.控制中心调整竖直旋转机构,根据数字指南针调整初始位姿,使定位智能装置面向墙面方向,建立以所在位置为中心的平面坐标系,定义该垂直面为平面坐标的Y轴;
S41.初始位姿测量:控制中心调整水平旋转机构,使定位智能装置与垂直墙面成一定的夹角,标记为θ1(由于数字指南针存在一定误差,该夹角为机器人的估计夹角,并非真实夹角),测量与墙面的距离,记为c;
S42.第二位姿数据测量:控制中心调整水平旋转机构,朝垂直墙面方向旋转θ度,使定位智能装置与垂直墙面夹角为θ2度,再次测量与墙面的距离,记为b,
S43.控制中心根据测量数据,获得定位智能装置与墙面的距离,记为d;
获得两次测量在墙面的距离,记为a,根据余弦定理,(θ=θ12)
Figure BDA0001965983900000051
定位智能装置当前位置与墙面的距离,记为d,计算可得:
Figure BDA0001965983900000052
S44.误差消除,得到当前位置距离墙面的精确位置,即为准确的Y轴方向垂直距离:
为了消除偶然误差,采用N种不同的θ度进行测量,一般采用三次测量,按照步骤S40到步骤S43的方式计算出三个d1,d2,d3值,取平均值y=(d1+d2+d3)/3;
S45.控制中心调整水平旋转机构,旋转90度并避开门窗,当前方向记为X轴;
S46.初始位姿测量:控制中心调整水平旋转机构,使定位智能装置与垂直墙面成一定的夹角,标记为θ1(由于数字指南针存在一定误差,该夹角为机器人的估计夹角,并非真实夹角),测量与墙面的距离,记为c;
S47.第二位姿测量:控制中心调整水平旋转机构,朝垂直墙面方向旋转θ度,使定位智能装置与垂直墙面夹角为θ2度,再次测量与墙面的距离,记为b;
S48.控制中心根据测量数据,获得定位智能装置与墙面的距离,记为h;
获得两次测量在墙面的距离,记为a,根据余弦定理,(θ=θ12)
Figure BDA0001965983900000053
定位智能装置当前位置与墙面的距离,记为h,
Figure BDA0001965983900000054
S49.误差消除,得到当前位置距离墙面的精确位置,即为准确的X轴方向垂直距离:
为了消除偶然误差,采用N种不同的θ度进行测量,一般采用三次测量,按照步骤S45到步骤S48的方式计算出三个h1,h2,h3值,取平均值x=(h1+h2+h3)/3。
使用本发明的有益效果在于:
安装有室内定位智能装置的机器人相比普通的作业机器人在定位工作中,自动化智能化水平高,能提供更精确的建筑工地室内定位;本发明通过激光测距装置进行定位,无需部署额外的站点,部署简单方便。
附图说明
图1为本发明具有室内定位智能装置的机器人一实施例的结构示意图;
图2为本发明具有室内定位智能装置的机器人另一实施例的结构示意图;
图3为本发明建筑工地室内高精度定位智能装置立体结构示意图;
图3a为图3的主视结构示意图;
图3b为图3的俯视结构示意图;
图4为本发明建筑工地室内高精度定位智能装置控制逻辑示意图;
图5为发明定位智能装置的整体控制流程图;
图6为本发明定位智能装置的精准测距详细流程图;
图7为本发明定位智能装置在待测房间的几何形态示意图;
图8为本发明定位智能装置精确定位示意图;
图9为本发明具体实施例测量时精确定位示意图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。“前”、“后”、“左”、“右”不代表任何的序列关系,仅是为了方便描述进行的区分。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。“进而”在执行某动作之时的时刻,文中出现多个进而,均为随时间流逝中实时记录。
下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1、图2所示,具有建筑工地室内定位智能装置的机器人实施例的结构示意图,如图1中,在施工机器人本体A的上部面板上通过卡槽的方式固定设置有定位智能装置B,定位智能装置B卡接固定在施工机器人本体A的面板上;如图2中,在施工机器人本体A的下部面板上通过螺母连接的方式固定设置有定位智能装置B,定位智能装置B通过螺接的方式固定在施工机器人本体A的下面板上;此间说明书的是,施工机器人可以是地砖铺贴机器人、木地板铺贴机器人、内墙喷涂机器人等室内装修机器人中的任意一种,通过可拆卸方式安装在其上的定位智能装置B能帮助施工机器人获取在室内的精确定位,可拆卸的安装方式还可以是套接的方式等。
如图3至如4所示,为一种建筑工地室内定位的智能装置的结构示意图,所述的定位智能装置B包括:一将定位智能装置安装在施工机器人本体上的连接部分1;一设置在连接部分1下端的用于设置激光收发装置的激光定位测距部分2;所述的连接部分1与激光定位测距部分2之间通过一水平旋转机构3相连;所述的连接部分1内设置有用于控制激光定位测距部分2和水平旋转机构3工作的控制中心4;在所述的激光定位测距部分2上设有一用于指示定位智能装置水平朝向的指向装置;机器人本体上还可以设置有用于显示智能装置位置的显示装置,也可能是显示在操控机器人的控制器上的,图示结构省略。
所述的激光定位测距部分2包括:激光测距收发装置外壳21,在所述的激光测距收发装置外壳21内设置激光测距装置,所述的激光测距装置包括:可按照竖直方向上下旋转90度的竖直旋转机构5和通过激光收发来测量与墙面的距离的激光测距收发装置6;所述的激光测距收发装置6包括激光的发射源和接收端,发射源发射激光,接收端接收反射的激光,激光发射接收用于计算装置到墙面之间的距离;所述的激光测距收发装置6设置在所述的竖直旋转机构5上,随竖直旋转机构5竖直方向上下旋转90度;所述的竖直旋转机构5可转动的、可拆卸的设置在激光测距收发装置外壳21内部,在竖直旋转机构5的两端设有转轴51,所述的转轴51插接或卡接在激光测距收发装置外壳21内部;所述的激光测距收发装置外壳21主要是提供保护作用,保护设置在其内部的激光测距收发装置6,其可以是塑料壳子、铝合金壳子等;所述的水平旋转机构3改变定位智能装置的朝向,可以按照水平方向进行顺时针或逆时针旋转360度;所述的指向装置采用数字指南针7或者电子罗盘;如图3、图3a所示,所述的指南针装置7为电子指南针,电子指南针为基于单片机的数字指南针,也可以是霍尼韦尔三轴磁场传感器,或者,电子罗盘。数字指南针的产品型号为:WS64-CP2产品编号:46664,也可以选用德国百瑞高BARIGO数字指南针,本实施例中最佳使用数字指南针;所述的控制中心4包括内置控制器、运算器以及存放房间几何图形信息的存储模块的PLC或者工控机;控制中心还通过控制水平旋转机构和竖直旋转机构来控制定位智能装置的朝向;同时,控制中心还控制激光的收发,并读取数字指南针的信息;如可以采用研华工控机YW-EMBI67U,该工控机基本参数:3.5寸主板,板载INTEL i56200U处理器,主频双核2.3G,6×COM,6×USB,2×LAN,DC9-24V,含4G内存,128GMSATA;如图2所示,所述的控制中心4通过串口通信分别与水平旋转机构3、竖直旋转机构5和激光测距收发装置6、数字指南针7信号连接,所述的串口通信可采用串口232或者485接口的方式;通过串口通信,控制中心控制水平旋转机构和竖直旋转机构的旋转动作,控制激光收发装置的激光操作并读取测量数据,读取数字指南针的指向信息。
如图7、图8所示,图7为待测房间的几何形态,可以看到该房间呈长方形,有两个出入口。当装配定位智能装置的施工机器人至图中测量点时,需要精确定位智能装置在该房间的位置。如图7所示,当机器人处于A点时,其具体的精确定位步骤如下:
如图5所示,一种建筑工地室内定位的智能装置的控制方法,所述的控制中心4的主要控制方法如下:
S1.控制中心4加载所处房间的几何信息,获取面向墙面的方向,标记为C0
S2.控制中心4通过串口获取指向装置指向数据,即当前朝向,标记为C1
S3.判断朝向是否为面向墙面方向即C0=C1?如果是,执行步骤S4,如果不是,执行步骤S5;
S4.调整初始位姿,开始数据测量,调整第二位姿,开始数据测量,继续调整多次位姿,并进行多次数据测量后,进行计算,获得定位智能装置与墙面距离;
S5.控制中心4调整水平旋转机构3,使当前朝向接近C0,再返回步骤S2;
S6.由当前位置距离墙面的精确位置,可得定位智能装置在当前房间的精确定位。
如图6所示,所述的建筑工地室内定位的智能装置的控制方法,在步骤S4中,其详细步骤如下:
S40.控制中心调整竖直旋转机构,根据数字指南针调整初始位姿,使定位智能装置面向墙面方向,建立以所在位置为中心的平面坐标系,定义该垂直面为平面坐标的Y轴;
S41.初始位姿测量:控制中心调整水平旋转机构,使定位智能装置与垂直墙面成一定的夹角,标记为θ1(由于数字指南针存在一定误差,该夹角为机器人的估计夹角,并非真实夹角),测量与墙面的距离,记为c;
S42.第二位姿数据测量:控制中心调整水平旋转机构,朝垂直墙面方向旋转θ度,使定位智能装置与垂直墙面夹角为θ2度,再次测量与墙面的距离,记为b,
S43.控制中心根据测量数据,获得定位智能装置与墙面的距离,记为d;
获得两次测量在墙面的距离,记为a,根据余弦定理,(θ=θ12)
Figure BDA0001965983900000091
定位智能装置当前位置与墙面的距离,记为d,计算可得:
Figure BDA0001965983900000092
S44.误差消除,得到当前位置距离墙面的精确位置,即为准确的Y轴方向垂直距离:
为了消除偶然误差,采用N种不同的θ度进行测量,一般采用三次测量,按照步骤S40到步骤S43的方式计算出三个d1,d2,d3值,取平均值y=(d1+d2+d3)/3;
S45.控制中心调整水平旋转机构,旋转90度并避开门窗,当前方向记为X轴;
S46.初始位姿测量:控制中心调整水平旋转机构,使定位智能装置与垂直墙面成一定的夹角,标记为θ1(由于数字指南针存在一定误差,该夹角为机器人的估计夹角,并非真实夹角),测量与墙面的距离,记为c;
S47.第二位姿测量:控制中心调整水平旋转机构,朝垂直墙面方向旋转θ度,使定位智能装置与垂直墙面夹角为θ2度,再次测量与墙面的距离,记为b;
S48.控制中心根据测量数据,获得定位智能装置与墙面的距离,记为h;
获得两次测量在墙面的距离,记为a,根据余弦定理,
Figure BDA0001965983900000101
定位智能装置当前位置与墙面的距离,记为h,计算可得:
S49.误差消除,得到当前位置距离墙面的精确位置,即为准确的X轴方向垂直距离:
为了消除偶然误差,采用N种不同的θ度进行测量,一般采用三次测量,按照步骤S45到步骤S48的方式计算出三个h1,h2,h3值,取平均值x=(h1+h2+h3)/3。
实施例1:
设一个南北长4米,东西宽3米的房间,定位智能装置所在位置在如图9所示的测量点。第一位姿朝向东方(E),测量与墙面的距离b=2,朝墙面方向旋转60度,测量与墙面的距离c=2。获得两次测量在墙面的距离,记为a。根据余弦定理,
Figure BDA0001965983900000103
安装有定位智能装置的计算机器人当前位置与墙面的距离,记为d。计算可得:
Figure BDA0001965983900000111
因此,当前定位智能装置距离东面墙面的距离为
Figure BDA0001965983900000112
米。
当定位智能装置发出指令给机器人向南方向旋转,然后测量与墙面的距离m=2米,朝墙面方向旋转60度,测量与墙面的距离n=2。采用同样的方法计算可得因此当前定位智能装置距离南面墙面的距离为
Figure BDA0001965983900000114
米。
由此可得,当前定位智能装置的位置在距离东面墙面
Figure BDA0001965983900000115
米,距离西面墙面
Figure BDA0001965983900000116
米,距离南面墙面
Figure BDA0001965983900000117
米,距离北面墙面
Figure BDA0001965983900000118
米。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
以上所述,仅为本发明的较佳实施例,并非对本发明做任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述所述技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术对以上实施例所做的任何改动修改、等同变化及修饰,均属于本技术方案的保护范围。

Claims (8)

1.具有建筑工地室内定位智能装置的机器人,其特征在于,所述的机器人包括:机器人本体(A)和设置在机器人本体(A)上的定位智能装置(B),所述的机器人本体(A)与定位智能装置(B)之间可拆卸的连接,所述的定位智能装置(B)包括:
一与机器人本体(A)相连的连接部分;
一设置在连接部分(1)一端的用于设置激光收发装置的激光定位测距部分(2);
所述的连接部分(1)与激光定位测距部分(2)之间通过一水平旋转机构(3)相连;
所述的连接部分(1)内设置有用于控制激光定位测距部分(2)和水平旋转机构(3)工作的控制中心(4);
在所述的激光定位测距部分(2)上设有一用于指示定位智能装置水平朝向的指南针装置(7)。
2.根据权利要求1所述的具有建筑工地室内定位智能装置的机器人,其特征在于,所述的连接部分(1)将定位智能装置(B)与机器人本体(A)之间可采用可拆卸的方式连接如卡槽、套接或者通过螺母方式连接。
3.根据权利要求1所述的具有建筑工地室内定位智能装置的机器人,其特征在于,所述的激光定位测距部分(2)包括:激光测距收发装置外壳(21),在所述的激光测距收发装置外壳(21)内设置激光测距装置,所述的激光测距装置包括:可按照竖直方向上下旋转90度的竖直旋转机构(5)和通过激光收发来测量与墙面的距离的激光测距收发装置(6);所述的激光测距收发装置(6)包括激光的发射源和接收端,发射源发射激光,接收端接收反射的激光,通过激光的发射与接收计算智能装置到墙面之间的距离。
4.根据权利要求3所述的具有建筑工地室内定位智能装置的机器人,其特征在于,所述的激光测距收发装置(6)设置在所述的竖直旋转机构(5)上,随竖直旋转机构(5)竖直方向上下旋转90度。
5.根据权利要求4所述的具有建筑工地室内定位智能装置的机器人,其特征在于,所述的竖直旋转机构(5)可转动的、可拆卸的设置在激光测距收发装置外壳(21)内部,在竖直旋转机构(5)的两端设有转轴(51),所述的转轴(51)插接或卡接在激光测距收发装置外壳(21)内部。
6.根据权利要求1所述的具有建筑工地室内定位智能装置的机器人,其特征在于,所述的水平旋转机构(3)改变定位智能装置的朝向,可以按照水平方向进行顺时针或逆时针旋转360度。
7.根据权利要求1所述的具有建筑工地室内定位智能装置的机器人,其特征在于,所述的指南针装置(7)为电子指南针,电子指南针为基于单片机的数字指南针,也可以是霍尼韦尔三轴磁场传感器,或者,电子罗盘;所述的控制中心(4)包括内置控制器、运算器以及存放房间几何图形信息的存储模块的PLC或者工控机。
8.根据权利要求7所述的具有建筑工地室内定位智能装置的机器人,其特征在于,所述的控制中心(4)通过串口通信分别与水平旋转机构(3)、竖直旋转机构(5)和激光测距收发装置(6)、指南针装置(7)信号连接,所述的串口通信可采用串口232或者485接口的方式。
CN201920179546.6U 2019-02-01 2019-02-01 具有建筑工地室内定位智能装置的机器人 Expired - Fee Related CN209894978U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920179546.6U CN209894978U (zh) 2019-02-01 2019-02-01 具有建筑工地室内定位智能装置的机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920179546.6U CN209894978U (zh) 2019-02-01 2019-02-01 具有建筑工地室内定位智能装置的机器人

Publications (1)

Publication Number Publication Date
CN209894978U true CN209894978U (zh) 2020-01-03

Family

ID=69016270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920179546.6U Expired - Fee Related CN209894978U (zh) 2019-02-01 2019-02-01 具有建筑工地室内定位智能装置的机器人

Country Status (1)

Country Link
CN (1) CN209894978U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782296A (zh) * 2019-02-01 2019-05-21 广东博智林机器人有限公司 具有建筑工地室内定位智能装置的机器人及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782296A (zh) * 2019-02-01 2019-05-21 广东博智林机器人有限公司 具有建筑工地室内定位智能装置的机器人及其控制方法

Similar Documents

Publication Publication Date Title
Yao et al. An integrated IMU and UWB sensor based indoor positioning system
CN106352869B (zh) 移动机器人室内定位系统及其计算方法
CN105547305B (zh) 一种基于无线定位和激光地图匹配的位姿解算方法
Prorok et al. Indoor navigation research with the Khepera III mobile robot: An experimental baseline with a case-study on ultra-wideband positioning
CN106123895B (zh) 一种基于uwb测距的惯导原点定位方法及系统
CN110081882B (zh) 四旋翼无人机航向测量器及控制方法
CN104808174B (zh) 基于卡尔曼滤波器和航位推测法的核电站无线定位系统
CN110430534A (zh) 一种定位选择方法、装置、电子设备及存储介质
JP2003523505A (ja) 体積の二次元または三次元地図作製用の距離測定装置
JP6095369B2 (ja) Cad情報生成システム、cad情報生成プログラムおよびcad情報生成方法
CN109782296A (zh) 具有建筑工地室内定位智能装置的机器人及其控制方法
CN109564726A (zh) 一种定位方法及移动设备
CN111024059A (zh) 用于厂区内三维空间的高精度人员定位系统及方法
CN209894978U (zh) 具有建筑工地室内定位智能装置的机器人
CN114739400A (zh) 一种基于uwb和imu信息融合的室内定位方法
CN210109331U (zh) 一种建筑工地室内定位的智能装置
Jiménez et al. Precise localisation of archaeological findings with a new ultrasonic 3D positioning sensor
CN210109330U (zh) 一种带有指南针的建筑工地室内定位的智能装置
CN107888289B (zh) 基于可见光通信与惯性传感器融合的室内定位方法及平台
CN109828513A (zh) 一种化工生产巡控系统
CN108680898A (zh) 室内定位方法、装置、介质及电子设备
CN113701754B (zh) 一种井下三维精确定位系统
KR102169512B1 (ko) Uav 및 rfid를 이용한 위치정보 추정 시스템 및 방법
CN111694006A (zh) 一种用于室内无人系统的导航传感系统
JP2020085800A (ja) 位置情報取得システム、位置情報取得方法及びプログラム

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200103

CF01 Termination of patent right due to non-payment of annual fee