CN209072515U - 时钟设备检测系统 - Google Patents

时钟设备检测系统 Download PDF

Info

Publication number
CN209072515U
CN209072515U CN201822176528.0U CN201822176528U CN209072515U CN 209072515 U CN209072515 U CN 209072515U CN 201822176528 U CN201822176528 U CN 201822176528U CN 209072515 U CN209072515 U CN 209072515U
Authority
CN
China
Prior art keywords
frequency
signal
interface
time
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201822176528.0U
Other languages
English (en)
Inventor
张丽萍
李尧
贺星
李晨航
王晓晨
刘欢
苏洋
文超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongdian Northwest Group Co Ltd
Original Assignee
Zhongdian Northwest Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongdian Northwest Group Co Ltd filed Critical Zhongdian Northwest Group Co Ltd
Priority to CN201822176528.0U priority Critical patent/CN209072515U/zh
Application granted granted Critical
Publication of CN209072515U publication Critical patent/CN209072515U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Clocks (AREA)

Abstract

本实用新型属于时钟检测技术领域,具体涉及一种时钟设备检测系统,主控板;频率综合板,其与所述主控板电连接,所述频率综合板根据时频基准,输出所需的最终时频信号;转接板,其所述主控板电连接,用于实现USB和网口的转接。时频测量板,其与所述主控板、所述频率综合板电连接,所述时频测量板用于测量多种时频信号;电源模块,其与所述主控板、所述频率综合板电连接。本实用新型提供一种时钟设备检测系统,其实现了多种时间信号的时间准确度的测量。

Description

时钟设备检测系统
技术领域
本实用新型属于时钟检测技术领域,具体的涉及一种时钟设备检测系统。
背景技术
铁路高精度,是一种便携式高精度时间频率信号综合测试设备。目前市场上各种时频测量设备功能比较单一,而且价格昂贵。像测E1信号的是专用的 E1信号测试设备;测B码信号的是专用的B码测试设备;测NTP和PTP信号的也是专用的测试设备;即使有集成的设备,也只能兼顾两到三种功能,价格较高,而且,能测试的信号种类有限,集成度不高,其他的时频类集成设备多用来授时,测量类的大都是功能单一的设备或者板卡。
所以当遇到测试多种信号的场合时,就需要使用多个设备,尤其是在户外,携带多个测试设备,给使用者带来极大的不便。
为了解决上述问题,本实用新型提供了一种时钟设备检测系统,其为智能变电站、高速铁路、轨道交通、电信运营商传输网等现场的检测、校验、验收提供了有效而便捷的操作。
实用新型内容
本实用新型提供一种时钟设备检测系统,其解决了时频测量设备功能单一,价格昂贵的问题。
本实用新型提供一种时钟设备检测系统,其能够测试多种时间信号的时间准确度。
本实用新型提供一种时钟设备检测系统,包括:
主控板;
频率综合板,其与所述主控板电连接,所述频率综合板根据时频基准,输出所需的最终时频信号;
转接板,其所述主控板电连接,用于实现USB和网口的转接。
时频测量板,其与所述主控板、所述频率综合板电连接,所述时频测量板用于测量多种时频信号;
电源模块,其与所述主控板、所述频率综合板电连接。
本实用新型使得多种时频信号可以用一台设备测量,同时也可以产生多种频率信号,使用者不需要更换设备,节省了时间,降低了成本。
优选的是,所述频率综合板包括时频基准模块、输出模块及FPGA,所述时频基准模块包括铷钟、GNSS接收机、直流B码调理模块、1PPS+TOD调理模块,所述时频基准模块根据GNSS接收机、直流B码调理模块和1PPS+TOD调理模块调理恢复出的时频作为时频基准;所述输出模块利用所述铷钟提供的 10MHz标准频率源,输出四种频率信号。
优选的是,还包括电平转换器SN74LV1T34和422电平转换芯片,所述电平转换器SN74LV1T34、422电平转换芯片、FPGA集成在所述频率综合板上,所述直流B码调理模块将直流B码通过所述电平转换器转,后直接输入FPGA 解析;所述1PPS+TOD调理模块将1PPS信号通过所述电平转换器后,输入所述 FPGA进行解析,将TOD信号通过所述422电平转换器后,输入所述FPGA进行解析,所述时频基准模块根据GNSS接收机、直流B码调理模块和1PPS+TOD调理模块调理恢复出的时频作为时频基准。
优选的是,所述输出模块包括DDS、STM32F103ZE、电平比较芯片LT1719 及E1芯片,所述输出模块利用所述铷钟提供的10MHz标准频率源,通过 STM32F103ZE、DDS、电平比较芯片LT1719、FPGA及E1芯片处理后,输出四种频率信号,所述四种频率信号分别为同步时钟信号、内部时钟信号、正弦信号及E1发生信号,所述同步时钟信号为1KHz~50MHz的方波信号,所述内部时钟信号为10MHz的正弦信号,所述正弦信号为2.048MHz的正弦信号,所述 E1发生信号为2.048Mbps标准方波信号。
优选的是,所述铷钟电连接第一BNC接口,所述GNSS接收机通过TNC接口连接GNSS天线,所述直流B码调理模块电连接第二BNC接口,所述1PPS+TOD 调理模块电连接DB9接口,所述同步时钟信号和所述内部时钟信号分别通过第三BNC接口和第四BNC接口输出,所述正弦信号通过第五BNC接口输出,所述E1发生信号通过第六BNC接口输出。
优选的是,所述输出模块由所述FPGA通过第一SPI接口将所述DDS输出频率配置为10MHz的所述内部时钟信号,所述输出模块由所述STM32F103ZE 通过第二SPI接口将所述DDS输出频率配置为2.048MHz方波信号和2.048MHz 的所述正弦信号,所述2.048MHz方波信号通过所述FPGA分频得到2.048MHz 标准方波信号,所述E1芯片处理所述2.048MHz标准方波信号生成所述E1发生信号,所述输出模块由所述STM32F103ZE通过第三SPI接口将所述DDS 输出频率配置为所述同步时钟信号。
优选的是,所述时频测量板包括ADC、DP83640及STM32F107,所述ADC 电连接所述FPGA,所述FPGA通过第四SPI串口与所述STM32F107电连接,所述DP83640与所述STM32F107电连接,所述STM32F107与所述主控板电连接;
其中,所述时频测量板测量直流B码、交流B码、频率、所述E1产生信号、1PPS+TOD信号及NTP/PTP信号。
优选的是,所述时频测量板电连接DCLS测量接口、交流B码测量接口、频率测量接口、E1信号测量接口均为BNC接口,1PPS+TOD测量接口,NTP/PTP 测量接口;
其中,所述DCLS测量接口为第七BNC接口、所述交流B码测量接口为第八BNC接口、所述频率测量接口为第九BNC接口、所述E1信号测量接口为第十BNC接口,所述1PPS+TOD测量接口为DB9接口,所述NTP/PTP测量接口为 RJ45接口。
优选的是,所述转接板连接调试端口和USB接口,所述调试端口为网络测试端口。
优选的是,还包括电源适配器和电池,所述电源适配器与所述电池连接,所述电池与所述电源板电连接,所述电源适配器输出的电压为21V,误差范围为±5%,所述电源适配器输出的电流为3A。
本实用新型有益效果
1、本实用新型提供的时钟设备检测系统,其实现了各种时频信号测量及多种频率信号输出作为一体的综合测量系统,节约了成本。
2、本实用新型提供的时钟设备检测系统,其使得操作变得简单,节省了工作人员的时间成本。
3、本实用新型提供的时钟设备检测系统,其使操作者不用更换设备,就能检测各种信号,具有推广前景。
4、本实用新型提供的时钟设备检测系统,其采用GPS/北斗卫星信号、B 码信号或其他时间信号作为UTC时间基准,内部采用高性能时钟源进行计时和测量,提高了测量的准确度。
5、本实用新型提供的时钟设备检测系统,其可采用多种时统信号作为时间基准源,通过界面切换测量同一种信号,得出不同时统信号间的时间差。由于采用同一设备,测量同一信号,免去了测量过程中引入的固有误差,结果更准确。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型提供的时钟设备检测系统的结构示意图;
图2为本实用新型提供的第一面板的结构示意图;
图3为本实用新型提供的第二面板的结构示意图;
图4为本实用新型提供的时钟设备检测系统的内部结构示意图;
图5为时间基准模块信号处理原理图;
图6本实用新型提供的直流B码调理模块和交流B码调理模块的信号处理原理示意图;
图7为直流B码调理模块的信号处理的电路原理图;
图8为交流B码的信号处理的电路原理图;
图9为所述1PPS+TOD调理模块的信号处理示意图;
图10为B码帧头提取示意图;
图11为B码数据解析示意图;
图12为B码在FPGA上的设计流程图;
图13为所述正弦信号配置的原理图;
图14为所述2.048MHz方波信号及正弦信号配置的原理图;
图15为1KHz-50MHz方波信号配置的原理图;
图16为1KHz-50MHz方波信号配置的电路图;
图17为E1信号产生和接收原理图;
图18为E1信号产生和接收的软件设计流程图;
图19为PTP/NTP信号处理原理图;
图20为时频测量板测量各种波形信号的原理图;
图21为时频测量板测量各种波形信号的电路原理图;
图22为所述锁相环测量法的原理图;
图23为时间准确度测量原理图;
图24频率准确度的测量和对时间准确度测量的FPGA的流程;
其中,1-主控板,2-频率综合板,3-转接板,4-时频测量板,5-电源模块, 6-液晶板,7-电源板,8-电池,9-第一面板,10-第二面板,11-第一BNC接口, 12-TNC接口,13-第二BNC接口,14-DB9接口,15-第三BNC接口,16-第四BNC 接口,17-第五BNC接口,18-第六BNC接口,19-DCLS测量接口,20-交流B码测量接口,21-频率测量接口,22-E1信号测量接口,23-1PPS+TOD测量接口, 24-NTP/PTP测量接口,25-调试端口,26-USB接口。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
本实用新型提供一种时钟设备检测系统,包括:
主控板1,其为ARM处理器;频率综合板2,其与所述主控板1电连接,所述频率综合板包括时频基准模块、输出模块及FPGA,所述时频基准模块包括铷钟、GNSS接收机、直流B码调理模块、1PPS+TOD调理模块,所述时频基准模块根据GNSS接收机、直流B码调理模块和1PPS+TOD调理模块调理恢复出的时频作为时频基准,其中,所述铷钟电连接第一BNC接口11,所述GNSS 接收机通过TNC接口12连接GNSS天线,所述直流B码调理模块电连接第二 BNC接口13,所述1PPS+TOD调理模块电连接DB9接口14;所述输出模块包括DDS、STM32F103ZE、电平比较芯片LT1719及E1芯片,所述输出模块利用所述铷钟提供的10MHz标准频率源,通过STM32F103ZE、DDS、电平比较芯片 LT1719、FPGA及E1芯片处理后,输出四种频率信号,所述四种频率信号分别为同步时钟信号、内部时钟信号、正弦信号及E1发生信号,所述同步时钟信号为1KHz~50MHz的方波信号,所述内部时钟信号为10MHz的正弦信号,所述正弦信号为2.048MHz的正弦信号,所述E1发生信号为2.048Mbps标准方波信号,其中,所述同步时钟信号和所述内部时钟信号分别通过第三BNC接口 15和第四BNC接口16输出,所述正弦信号通过第五BNC接口17输出,所述 E1发生信号通过第六BNC接口18输出。
转接板3,其所述主控板1电连接,用于实现USB和网口的转接,其中,所述转接板连接调试端口25和USB接口26;
时频测量板4,其与所述主控板1、所述频率综合板2电连接,所述时频测量板4用于测量多种时频信号;所述时频测量板包括ADC、DP83640及 STM32F107,所述ADC电连接所述FPGA,所述FPGA通过第四SPI串口与所述 STM32F107电连接,所述DP83640与所述STM32F107电连接,所述STM32F107 与所述主控板电连接;所述时频测量板电连接DCLS测量接口19、交流B码测量接口20、频率测量接口21、E1信号测量接口22,1PPS+TOD测量接口23, NTP/PTP测量接口24,即所述时频测量板测量直流B码、交流B码、频率、所述E1产生信号、1PPS+TOD信号及NTP/PTP信号,更具体的是,所述DCLS测量接口为第七BNC接口、所述交流B码测量接口为第八BNC接口、所述频率测量接口为第九BNC接口、所述E1信号测量接口为第十BNC接口,所述 1PPS+TOD测量接口为DB9接口,所述NTP/PTP测量接口为RJ45接口。
电源模块5,其与所述主控板1、所述频率综合板2电连接;所述电源模块包括电源适配器、电源板7和电池8,所述电源适配器与所述电池8连接,所述电池8与所述电源板7电连接,所述电源适配器输出的电压为21V,误差范围为±5%,所述电源适配器输出的电流为3A。采用专业电源适配器供电,内置大容量电池,断电情况下保持时间大于2小时,方便异地外场使用。
液晶模块,其为液晶板6,所述液晶板6与所述主控板1电连接;
其中,本实用新型采用的硬件FPGA选择Cyclone IV E系列中的EP4CE115F23I7。它总共有11万逻辑单元,且内置锁相环PLL,方便软件进行编码。且封装较小,方便布版。供电电压3.3V和1.2V;电平转换器SN74LV1T34 是一款具有较宽电压范围的门逻辑电路,输出电平以电源电压为基准,能够支 3.3V/1.8V/2.5V/5V电平;DDS芯片选用的是ADI公司的AD9912,内部时钟速度可高达1GSPS,并集成了14位数模转换器。AD9912采用48位频率控制字,输出频率分辨率小于4uHz。AD9912具有两个突出的特点,一方面,AD9912 工作在数字域,一旦更新频率控制字,输出的频率就相应改变,其调频速率高;另一方面,由于频率控制字的范围宽,频率分辨率比较高;电平比较芯片LT1719 选用凌力特公司的高速电压比较器LT1719,传输时延4.5ns,该芯片用于将正弦、三角波、方波和脉冲信号转化为LVTTL电平的方波信号,用LT1719作过零检测(过零电平可调整):VCC接5V,VEE接-5V,可输入原始信号的最大幅度为10Vpp;-IN接比较电平(可调,初始0V),+IN输入原始信号,OUT输出方波信号。若原始信号电平大于比较电平,输出高电平1(+VS-0.4),若原始信号电平小于比较电平,输出低电平0(0.4V);E1芯片选择DS26502,专用时钟恢复器件。它的接收端可以从T1、E1、64kHz复合时钟和6312kHz同步定时接口恢复出时钟,在T1和E1模式下,还能恢复同步状态消息(SSM)。发送部分可以直接连接到T1、E1或64kHz复合时钟同步接口。在T1和E1模式下也能够提供SSM。在物理特性方面,DS26502可以通过软件设置,同时支持长距和短距,无须更改硬件就可以匹配75/100/110/120等不同线路接口;芯片内部的抖动衰减器既可以放在发送侧也可以放在接收侧,并且具有旁路模式;当线路出现LOS、AIS和LOF等状态时,有硬件管脚输出指示;控制方式多样,可以通过并行、串行或者硬件控制器端口进行读写,采用8位并行控制端口时可以选择Intel或Motorola两种总线模式,串行方式时采用通用的SPI接口,DS26502芯片共有100个引脚,其中常用的为线路接口单元的网络接口引脚,时钟引脚,接收端和发送端的同步信号引脚和串行数据引脚,以及其它的一些配置引脚和并行控制口的控制引脚;交流B码的ADC芯片采用凌力特公司的 LTC1412。具有采样速率快(3M)、并行数据输出、位数较高(12位),封装较小,周边电路配置简单等优点;直流B码电平转换使用德州仪器公司的逻辑电平转换器SN74LV1T34。SN74LV1T34是一款具有较宽电压范围的门逻辑电路,输出电平以电源电压为基准,能够支3.3V/1.8V/2.5V/5V电平;422电平转换芯片(MAX3077E)是3.3V、±1.5KV ESD保护的RS-485/RS-422收发器,具备一个驱动器和一个接收器,这些器件包含失效保护电路。适用于全双工通讯, SOIC-8pin封装;PTP/NTP信号处理模块主要是利用可支持IEEE1588标准的专用芯片实现时钟同步功能。由单片机配置专用芯片(DP83640)寄存器,对通过网口获得的标准PTP/NTP信号解包并输出1PPS,DP83640是一款具有1588功能的Ethernet PHY芯片,DP83640可以实现1588精密时间协议(PTP)和NTP 的时钟关键部分,具有以下功能:支持IEEE1588V1和V2两个版本;提供 UDP/IPv4,UDP/IPv6的以太网包功能;可以设置输出PTP或NTP时间戳,时间戳的分辨率可以达到8ns;提供12个符合IEEE1588协议的GPIO,可以利用触发信号实现1PPS的输出;支持自适应10/100M以太网;GNSS天线主要完成 GPS和BDS卫星信号采集和低噪声放大功能,为了提高授时精度,要求GNSS 天线相位中心误差越小越好,同时必须具有足够的灵敏度和增益,通过比对以及集合GNSS OEM板实际测试对比,我们选用高精度的GGB017IA测量型天线,所述GNSS接收机主要完成GNSS卫星信号的接收和处理,其性能指标直接决定了基于北斗的综合授时定位供给系统能够提供的定位与授时精度,同时亦要提供给铷钟作为铷钟模块的校频依据。本系统选用了LEA-M8T作为GNSS OEM 板的核心模块,其为UBLOX公司开发的新一代专用GNSS授时模块,其能够为需要较高定位需求的应用场合提供精确GNSS授时服务,具有时间模式功能,可通过手动输入或初始化时自动测量为GNSS接收机设置静态3D位置。在静态运行期间,可在只有一颗卫星可见的情况下进行GNSS授时;并且消除授时误差,以避免引起定位错误。通过使用量化误差补偿时间脉冲的颗粒度误差,精度可高达15ns。这意味着即使在信号条件不利或天空可见性不佳的环境下也能获得时间输出。该模块令用户能够使用配置频率输出和时间脉冲。内置的时标和计数器装置能够对外部事件输入进行精确的时间测量;铷钟作为整个设备的时钟基准,其相位噪声和频率稳定对设备性能显得至关重要,经过比对和测试本方案选用了Microsemi公司的QuantunTM SA.45s CSAC芯片级原子钟,该铷钟具有低相噪、低漂移、稳定度高等特点。
关于频率综合板中的时频基准模块的工作原理如下:
时间基准选择模块主要是利用GNSS接收机、直流B码信号或者1PPS+TOD 恢复出的高精度时频信息作为本设备所有信号源的时频基准,实现如图5所示,其中,如图6所示,直流B码主要是通过比较器,对直流B码信号直接进行电平转换,即将TTL电平转化为LVTTL电平后送给FPGA进行解码,再进入时频测量板进行测量;交流B码利用ADC进行采样,将采样后的数据送入FPGA进行电文解析和1PPS信号生成,再送入时频测量板进行时间测量;
如图9所示,1PPS+TOD通过电平转换成LVTTL电平后,分别进入FPGA和 STM32F107解码和测量;图7为直流B码调理模块的信号处理的电路原理图;图8为交流B码的信号处理的电路原理图。
B码调理的具体的软件设计流程为:
1)B码帧头提取,B码帧头由连续2个8ms宽的脉冲组成,如图10所示, FPGA中采用每个B码上升沿到来时对一个计数器进行清零,其他时刻进行计数的方式首先统计出每个码元的宽度。由于每个码元宽度为10ms,则根据计数器将其分成10个1ms,但是由于实际中码元脉宽会有摆动,所以每个1ms 脉宽较原始脉宽提前10us,产生1ms中断,再根据1ms中断到来时B码是否为1来进行采样。最终在所有采样点中采用滑动相关方式找到数据头111111110011111111。
2)B码数据解析,当找到帧头后,根据B码的帧结构即可找到所有码元的位置。由于B码的特殊性,即1为5ms脉宽,0为2ms脉宽,则在第4ms 处进行判断是否为1即可。如下图11所示:最终根据解调后的数据,拼接成时间信息对外发送即可。
对于交流B码,首先利用A/D进行采样,采样率为3MHz。采样后将数据输入FPGA,FPGA采用过0检测,找到所有过0点后,延迟1/4的1ms周期后找到最大值与最小值点。从而恢复为直流B码波形,只是延迟原始波形约1/4 的周期。再将其按照直流B码进行解析即可。
由于使用此方法进行解析实际上将时间推后了250us,所以在最终输出的秒脉冲上需要恢复的1PPS推后250us的时间即可,如图12为FPGA设计的流程图。
关于频率综合板中的输出模块的工作过程原理如下:
由铷钟提供的10MHz的时钟源(本实用新型采用铷钟作为设备的标准频率源(10MHz)输出,具备相位噪声小、稳定度高等特点,同时能够实时输出铷钟模块工作状态信息)产生1路10MHz,7dBm±1dBm的正弦信号;10MHz 正弦信号产生的原理如图13所示,由FPGA通过SPI口将AD9912输出频率配置为10MHz正弦信号。
由铷钟提供的10MHz的时钟源产生1路2.048MHz方波信号和1路 2.048MHz的正弦信号;2.048MHz方波信号配置的原理如图14所示,由 STM32F103ZE通过SPI口将AD9912输出频率配置为2.048MHz方波信号(分别 CMOS输出和DAC输出),通过FPGA分频得到2.048MHz方波。
由铷钟提供的10MHz的时钟源产生1KHz-50MHz,步进1KHz的方波信号; 1KHz-50MHz方波信号的原理如图15和图16所示;
1KHz-50MHz方波信号分成三个频段单独产生,三个频段分别为 1KHz-45KHz、45KHz-400KHz、400KHz-50MHz。三个频段的信号通过FPGA选通输出,三个频段的信号信息见表1:
f<sub>set</sub> f<sub>DDS</sub>倍频数 FPGA分频数 倍频后f范围
1K-45K *1000 1000 1M-45M
45K-400K *100 100 4.5M-40M
400K-50M *1 1 400K-50M
STM32F103ZE根据所需输出频率完成DDS1(AD9912)芯片的配置,输出1KHz-50MHz正弦信号(该部分为D/A差分输出)。差分正弦信号经过合路器后合成一路正弦信号,经过通带为50MHz低通滤波器滤波后进入高速电平比较芯片LT1719,通过设置合适的比较电平产生1KHz-50MHz的方波信号,由FPGA 选通输出。
E1信号发生是依据频综产生的2.048MHz标准方波生成标准的E1信号,经过电路保护、隔离、阻抗匹配后,由75欧姆的BNC插座输出;E1信号接收是通过75欧姆阻抗匹配的BNC插座输入标准的E1信号,对该信号解码并恢复出2.048MHz的时钟信号,并送给时频测量板进行频率测量。
其中EP4CE115F23I7主要完成APB总线与x86总线协议的转换。其原理如图17所示,软件设计流程如图18。
其中,所述时频测量板中的硬件FPGA也选择Cyclone IV E系列中的EP4CE115F23I7。
其中,所述时频测量板的工作原理如下解释:
交流B码利用ADC进行采样,将采样后的数据送入FPGA进行电文解析和1PPS信号生成,再送入时频测量板进行时间测量。
PTP/NTP模块主要是利用单片机对PTP专用芯片的控制,实现PTP信号的接收并解码,由单片机配置专用芯片(DP83640)寄存器,对通过网口获得的标准PTP/NTP信号解包并输出1PPS,同时输出1PPS送入时频测量板实现PTP 准确度测量,如图19所示。
所述时频测量板测量下列信号:
对各种波形信号频率进行测量,通过比较器将被测信号转换为方波,送入 FPGA实现频率及精度测量。FPGA将计算的频率送给STM32107,STM32107根据相应公式计算出TIE、MTIE和TDEV信息,如图20所示,电路设计原理如图 21所示;
对E1信号进行测量,将E1接收模块恢复出的2.048MHz时钟信号送给 FPGA,按(1)方式实现信号测量,并计算出TIE、MTIE和TDEV信息;
对各种时标信号(1PPS+TOD、DCLS、IRIG-B、NTP、PTP)的时间准确度测量。其中,1PPS+TOD测量分辨率10ns;DCLS测量分辨率10ns;IRIG-B分辨率 1us;NTP分辨率1us;PTP分辨率10ns;
各种时间信号处理电路在其他模块中已经详细介绍。以参考源的1pps为标准,对被测信号时间系统的1pps中断进行测量,测出二者上升沿之间的间距,则为时间的准确度。
其中,对于频率准确度的测量,采用锁相环测量法,基本原理如图22所示,使用FPGA内部的锁相环分别在基准倍频信号的基础上分别对相位延迟 1.04ns、2.08ns、2.91ns、3.95ns产生新的4组200M信号。然后在T10时刻同时锁存包括基准倍频信号在内的5组200M信号。若某路信号首先被锁存上,则取该路的延迟量进行误差修正。同理可得T01-T11段误差修正。则被测信号的周期(ns)=(计数器3值*5ns+T00-T10段误差修正+T01-T11段误差修正)/ 计数器2值。再将周期转换为频率即可。测量过程由FPGA完成,测量数据由FPGA提供给MCU,主控板由MCU计算出测频结果,发送给主控板显示。每次提取完数据后,MCU对FPGA进行复位,启动下一次测量。
其中,对于时间准确度测量,如图23所示,以参考信号的1PPS为标准,当1PPS的上升沿到来时,对FPGA内部的计数器进行清零,其他时刻进行累加。则将参考源的1PPS周期以FPGA内部时钟为单位进行分割。当被测信号上升沿到来时锁存该计数器值,则该值乘以FPGA内部时钟周期即为二者的时间准确度偏差。对频率准确度的测量和对时间准确度测量的FPGA的流程如图24所示。
由于卫星导航系统的原子钟依靠地面钟进行实时监测和修正,具备良好的长期稳定性能,因此,使得利用卫星导航系统设计高精度时频设备成为可能。
本项目利用GNSS接收机对设备内置铷钟进行实时驯服和校正,采用接收机、直流B码信号或者1PPS+TOD恢复出的高精度时频信息,作为本设备所有信号源的时频基准,然后通过DDS技术产生各模块所需的时频源,再分别经过信号调制和调理输出所需的最终信号(同步时钟信号和E1信号),而且本系统通过对正弦波、方波和三角波波形调理后,采用多周期多相位同步法实现各种频率信号的测量;通过FPGA实现多种时频信号的时间准确度测试(包括:交/直流B码信号、PTP信号、NTP信号和1PPS+TOD信号)。
尽管已描述了本实用新型的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本实用新型范围的所有变更和修改。
显然,本领域的技术人员可以对本实用新型进行各种改动和变型而不脱离本实用新型的精神和范围。这样,倘若本实用新型的这些修改和变型属于本实用新型权利要求及其等同技术的范围之内,则本实用新型也意图包含这些改动和变型在内。

Claims (10)

1.一种时钟设备检测系统,其特征在于,包括:
主控板;
频率综合板,其与所述主控板电连接,所述频率综合板根据时频基准,输出所需的最终时频信号;
转接板,其所述主控板电连接;
时频测量板,其与所述主控板、所述频率综合板电连接,所述时频测量板用于测量多种时频信号;
电源板,其与所述主控板、所述频率综合板电连接。
2.如权利要求1所述的时钟设备检测系统,其特征在于,所述频率综合板包括时频基准模块、输出模块及FPGA,所述时频基准模块包括铷钟、GNSS接收机、直流B码调理模块、1PPS+TOD调理模块,所述时频基准模块根据GNSS接收机、直流B码调理模块和1PPS+TOD调理模块调理恢复出的时频作为时频基准;所述输出模块利用所述铷钟提供的10MHz标准频率源,输出四种频率信号。
3.如权利要求2所述的时钟设备检测系统,其特征在于,还包括电平转换器SN74LV1T34和422电平转换芯片,所述电平转换器SN74LV1T34、422电平转换芯片、FPGA集成在所述频率综合板上,所述直流B码调理模块将直流B码通过所述电平转换器转,后直接输入FPGA解析;所述1PPS+TOD调理模块将1PPS信号通过所述电平转换器后,输入所述FPGA进行解析,将TOD信号通过所述422电平转换器后,输入所述FPGA进行解析,所述时频基准模块根据GNSS接收机、直流B码调理模块和1PPS+TOD调理模块调理恢复出的时频作为时频基准。
4.如权利要求2所述的时钟设备检测系统,其特征在于,所述输出模块包括DDS、STM32F103ZE、电平比较芯片LT1719及E1芯片,所述输出模块利用所述铷钟提供的10MHz标准频率源,通过STM32F103ZE、DDS、电平比较芯片LT1719、FPGA及E1芯片处理后,输出四种频率信号,所述四种频率信号分别为同步时钟信号、内部时钟信号、正弦信号及E1发生信号,所述同步时钟信号为1KHz~50MHz的方波信号,所述内部时钟信号为10MHz的正弦信号,所述正弦信号为2.048MHz的正弦信号,所述E1发生信号为2.048Mbps标准方波信号。
5.如权利要求4所述的时钟设备检测系统,其特征在于,所述铷钟电连接第一BNC接口,所述GNSS接收机通过TNC接口连接GNSS天线,所述直流B码调理模块电连接第二BNC接口,所述1PPS+TOD调理模块电连接DB9接口,所述同步时钟信号和所述内部时钟信号分别通过第三BNC接口和第四BNC接口输出,所述正弦信号通过第五BNC接口输出,所述E1发生信号通过第六BNC接口输出。
6.如权利要求4所述的时钟设备检测系统,其特征在于,所述输出模块由所述FPGA通过第一SPI接口将所述DDS输出频率配置为10MHz的所述内部时钟信号,所述输出模块由所述STM32F103ZE通过第二SPI接口将所述DDS输出频率配置为2.048MHz方波信号和2.048MHz的所述正弦信号,所述2.048MHz方波信号通过所述FPGA分频得到2.048MHz标准方波信号,所述E1芯片处理所述2.048MHz标准方波信号生成所述E1发生信号,所述输出模块由所述STM32F103ZE通过第三SPI接口将所述DDS输出频率配置为所述同步时钟信号。
7.如权利要求4所述的时钟设备检测系统,其特征在于,所述时频测量板包括ADC、DP83640及STM32F107,所述ADC电连接所述FPGA,所述FPGA通过第四SPI串口与所述STM32F107电连接,所述DP83640与所述STM32F107电连接,所述STM32F107与所述主控板电连接;
其中,所述时频测量板测量直流B码、交流B码、频率、所述E1产生信号、1PPS+TOD信号及NTP/PTP信号。
8.如权利要求7所述的时钟设备检测系统,其特征在于,所述时频测量板电连接DCLS测量接口、交流B码测量接口、频率测量接口、E1信号测量接口均为BNC接口,1PPS+TOD测量接口,NTP/PTP测量接口;
其中,所述DCLS测量接口为第七BNC接口、所述交流B码测量接口为第八BNC接口、所述频率测量接口为第九BNC接口、所述E1信号测量接口为第十BNC接口,所述1PPS+TOD测量接口为DB9接口,所述NTP/PTP测量接口为RJ45接口。
9.如权利要求8所述的时钟设备检测系统,其特征在于,所述转接板连接调试端口和USB接口。
10.如权利要求2所述的时钟设备检测系统,其特征在于,还包括电源适配器和电池,所述电源适配器与所述电池连接,所述电池与所述电源板电连接,所述电源适配器输出的电压为21V,误差范围为±5%,所述电源适配器输出的电流为3A。
CN201822176528.0U 2018-12-24 2018-12-24 时钟设备检测系统 Active CN209072515U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201822176528.0U CN209072515U (zh) 2018-12-24 2018-12-24 时钟设备检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201822176528.0U CN209072515U (zh) 2018-12-24 2018-12-24 时钟设备检测系统

Publications (1)

Publication Number Publication Date
CN209072515U true CN209072515U (zh) 2019-07-05

Family

ID=67101949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201822176528.0U Active CN209072515U (zh) 2018-12-24 2018-12-24 时钟设备检测系统

Country Status (1)

Country Link
CN (1) CN209072515U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462525A (zh) * 2018-12-24 2019-03-12 中电科西北集团有限公司 时钟设备检测系统
CN110554262A (zh) * 2019-08-19 2019-12-10 西安空间无线电技术研究所 一种被动型原子钟物理部分快速测试评估系统与方法
CN112149439A (zh) * 2020-11-17 2020-12-29 四川科道芯国智能技术股份有限公司 Swp物理层s2解码自对准方法、装置及设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462525A (zh) * 2018-12-24 2019-03-12 中电科西北集团有限公司 时钟设备检测系统
CN110554262A (zh) * 2019-08-19 2019-12-10 西安空间无线电技术研究所 一种被动型原子钟物理部分快速测试评估系统与方法
CN110554262B (zh) * 2019-08-19 2021-10-01 西安空间无线电技术研究所 一种被动型原子钟物理部分快速测试评估系统与方法
CN112149439A (zh) * 2020-11-17 2020-12-29 四川科道芯国智能技术股份有限公司 Swp物理层s2解码自对准方法、装置及设备
CN112149439B (zh) * 2020-11-17 2021-04-09 四川科道芯国智能技术股份有限公司 Swp物理层s2解码自对准方法、装置及设备

Similar Documents

Publication Publication Date Title
CN209072515U (zh) 时钟设备检测系统
CN202443082U (zh) 具有通用性的模拟量输入合并单元测试系统
CN103792419B (zh) 实现模拟量与数字量混合接入的同步采样方法
CN105549379B (zh) 一种基于高精度时间基准触发的同步测量装置及方法
CN202421768U (zh) 多功能电力系统时间同步校验仪
CN201285444Y (zh) 电能表校验装置
CN102520609A (zh) 多功能电力系统时间同步校验仪
CN110928176B (zh) 一种支持多种授时技术的多功能授时设备
CN202008583U (zh) 一种同步相量测量装置时钟源
CN102331979A (zh) 应用于usb设备的动态时钟频率校准方法
CN105391509B (zh) 基于fpga的网口高精度时间标定方法
CN207939521U (zh) 一种面向数字化变电站调试的时钟同步装置
CN205880528U (zh) 一种基于fpga的高精度同步采样装置
CN108471303A (zh) 一种基于fpga的可编程纳秒级定时精度脉冲发生器
CN202217149U (zh) 高精度电力时间同步装置
CN109596949A (zh) 一种智能变电站数字化采样同步转换方法及装置
CN104297593B (zh) 一种用于智能变电站合并单元的守时误差检测方法
CN111064536A (zh) 基于时钟同步的配电网监测装置及方法
CN201828585U (zh) 便携式变电站同步对时及soe信号发生仪
CN207835469U (zh) 时钟同步系统
CN109462525A (zh) 时钟设备检测系统
CN201185428Y (zh) 时间综合测量仪
CN202285085U (zh) 一种远程双向时间比对中频装置
CN106125033B (zh) 一种电压电流同步性分级误差测试系统
CN103199865A (zh) 一种光串口自适应解码电路

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant