CN208385528U - 一种用于锂离子电池的复合微结构集流体 - Google Patents

一种用于锂离子电池的复合微结构集流体 Download PDF

Info

Publication number
CN208385528U
CN208385528U CN201820523318.1U CN201820523318U CN208385528U CN 208385528 U CN208385528 U CN 208385528U CN 201820523318 U CN201820523318 U CN 201820523318U CN 208385528 U CN208385528 U CN 208385528U
Authority
CN
China
Prior art keywords
collector
battery
lithium ion
composite microstructure
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201820523318.1U
Other languages
English (en)
Inventor
袁伟
邱志强
潘保有
罗健
黄诗敏
汤勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201820523318.1U priority Critical patent/CN208385528U/zh
Application granted granted Critical
Publication of CN208385528U publication Critical patent/CN208385528U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本实用新型公开了一种用于锂离子电池的复合微结构集流体,该复合微结构集流体包括光滑底面和具有复合微结构的顶面;顶面包括微凸台和沟槽,微凸台被沟槽所环绕;微凸台上设有内凹孔、鳞状毛刺和沉陷结构。本实用新型可有效增大集流体的表面积,从而增强活性物质与集流体的接触性,提高活性物质的利用率和电极的导电性,进而增大电池的容量,降低电池的阻抗和改善电池的倍率性能。此处,沟槽、内凹孔、鳞状毛刺和沉陷等复合微结构可限制活性物质在电池充放电过程中剧烈的体积变化,从而延长电池寿命,提高电池的可逆容量、循环稳定性、库伦效率等电化学性能。

Description

一种用于锂离子电池的复合微结构集流体
技术领域
本实用新型涉及锂离子电池技术领域,具体涉及一种用于锂离子电池的复合微结构集流体。
背景技术
锂离子电池问世仅仅不到三十年,相比于阀控铅酸蓄电池、可充电镍镉电池或镍氢电池来说,锂离子电池以其单位能量密度高、可适用范围广泛以及优异的大电流放电性能等优势成为这些二次电池中的佼佼者。新世纪初,随着新能源动力汽车的研制与发展,以降低能源消费带来的环境污染、替代基于化石燃料的陈旧能源结构为目的能源改革正在推进,以锂离子电池为核心的能源构架正获得广泛的认同与接受。
锂离子电池的集流体应具有重量轻、机械强度高、表面积大、在电解液中电化学稳定性好、与活性物质接触性好等优点。目前商业化的铜箔集流体为双面光、单面毛和双面毛的电解铜箔,其表面结构过于单一。活性物质直接涂覆在缺乏特殊表面结构的集流体上,两者只是简单的机械结合,存在结合强度不高,结合有效面积低等缺点,导致活性物质与集流体的接触电阻过大,并进一步造成电池可逆容量低、倍率性能差和容量稳定性差等问题,从而影响电池的综合性能。
一些学者为了改善锂离子电池性能,利用模板法制造三维多孔铜箔集流体或者用柔性碳纸和高效导电纸代替铜箔集流体。这些制备集流体的材料和方法还需进一步研究。为了提高活性物质与集流体的结合强度和电极导电性能,研究具有特殊表面功能结构的集流体及其关键制造技术方法,使集流体与活性物质颗粒之间形成相互紧密啮合的界面,从而减小活性物质与集流体之间的接触电阻、降低活性物质体积变化带来的容量衰减问题具有重要的意义。
实用新型内容
为了提高集流体与活性物质的结合强度,减小两者之间的接触电阻,提高电极导电性能,从而提高锂离子电池的充放电容量及其稳定性,本实用新型的目的是提供一种用于锂离子电池的复合微结构集流体。所述的复合微结构铜集流体具有沟槽,内凹孔,鳞状毛刺,沉陷等复合微结构。所述的内凹孔、鳞状毛刺和沉陷结构位于集流体顶面的微凸台上;所述的微凸台被沟槽所环绕。
本实用新型的目的通过以下技术方案实现。
一种用于锂离子电池的复合微结构集流体,该复合微结构集流体包括光滑底面9和具有复合微结构的顶面;所述顶面包括微凸台10 和沟槽11,所述微凸台10被沟槽11所环绕;所述微凸台10上设有内凹孔、鳞状毛刺和沉陷结构。
优选的,所述复合微结构集流体的材料是金属铜。
以上所述的一种用于锂离子电池的复合微结构集流体的制备方法,包括如下步骤:(1)犁切刀具的设计和铜片的预处理;(2)犁切加工铜集流体表面微结构。
优选的,所述犁切刀具的设计和铜片的预处理,包括以下步骤:
(1)犁切刀具的设计:犁切刀具前角α=40°~50°,后角κ=20°~30°, 挤压刃倾角β=15°~30°,成型角θ=10°~20°,犁切刀具宽度 B0=10~20mm和厚度Lt=2~4mm;
(2)铜片的预处理:用砂纸对铜片进行打磨,使铜片两表面平整,随后将铜片置于覆铜板表面清洗剂中浸泡并不断搅拌,使铜片两表面光滑。
进一步优选的,所述犁切刀具的材料为W18Cr4V。
进一步优选的,所述铜片是圆形的。
进一步优选的,所述铜片的厚度为0.5~1mm。
进一步优选的,所述浸泡并不断搅拌的时间为3~5min。
优选的,所述犁切加工铜集流体表面微结构,包括以下步骤:
(1)刀具装夹及工件固定:在刨床上装夹犁切刀具,用金属502 胶水将铜片粘附在不锈钢的正方台上,然后把正方台固定在刨床的虎钳上,接着用百分表对刀具的垂直方向以及铜片的表面进行校正;
(2)调整刨床的工作参数:设置刨床的工作行程,使刀具工作行程覆盖铜片的轮廓,然后进行对刀;
(3)一次犁切-挤压:调节切削深度为100~150μm,工件进给量为250~400μm,在铜片边缘开始一次犁切,在铜片表面形成阵列沟槽结构;
(4)二次犁切-挤压:将正方台旋转,再次用百分表对铜片平面进行校正,对刀后使用步骤(3)所述的切削深度和进给量进行二次犁切-挤压;二次犁切-挤压不但会在铜片基体上切削,而且也会对一次犁切一挤压形成的沟槽,进行垂直二次犁切-挤压,最终得到沟槽、内凹孔、鳞状毛刺、沉陷等复合微结构;
(5)犁切后工件处理:将犁切后的工件拆卸出正方台,将正方台放进鼓风干燥箱中加热,然后降至室温后,胶水失效,再取出加工后的铜片,用酒精进行清洗,得到复合微结构集流体。
进一步优选的,步骤(4)所述旋转的角度为90°。
进一步优选的,步骤(5)所述加热的温度为100~120℃,加热的时间为10~15min,更优选为加热温度为100℃,加热时间为10min。
相对于现有技术,本实用新型具有如下优点:
(1)本实用新型复合微结构集流体表面的沟槽,内凹孔,鳞状毛刺,沉陷等复合微结构可以为活性物质提供体积变化缓冲空间,增强活性物质与集流体的结合力,从而提高电池的可逆容量和容量稳定性。
(2)本实用新型复合微结构集流体的结构可以增大集流体与活性物质的接触表面积,提高活性物质的承载量,改善电极导电性,降低电池阻抗,进而达到增大容量和提高倍率性能的目的。
附图说明
图1是复合微结构集流体的宏观结构示意图;
图2是复合微结构集流体的实物图;
图3是复合微结构集流体的扫描电子显微镜图;
图4a、图4b、图4c是复合微结构加工刀具参数示意图;
图5是复合微结构加工过程示意图;
图6是装有复合微结构集流体的锂离子半电池装配示意图;
图7是装有复合微结构集流体和无结构集流体的锂离子半电池的循环充放电测试曲线图;
图8是装有复合微结构集流体和无结构集流体的锂离子半电池的倍率充放电测试曲线图;
图9是装有复合微结构集流体和无结构集流体的锂离子半电池的交流阻抗测试曲线图。
具体实施方式
为进一步理解本实用新型,下面结合附图和实施例对本实用新型做进一步说明,但是需要说明的是,本实用新型要求保护的范围并不局限于实施例表述的范围。
实施例1
一种用于锂离子电池的复合微结构集流体及其制备方法,包括如下步骤:
(1)刀具的设计:刀具的材料为W18Cr4V。主要刀具角度包括:前角α=40°,后角κ=20°,挤压刃倾角β=30°和成型角θ=20°。其他刀具参数包括刀具宽度B0=20mm和厚度Lt=4mm(见图4a、图4b、图 4c)。
(2)圆形铜片的表面预处理:用砂纸对0.5mm厚的铜片进行打磨,使其两表面平整。随后将铜片置于覆铜板表面清洗剂中浸泡并不断搅拌5min,使铜片两表面光滑。
(3)刀具装夹及工件固定:在刨床上装夹犁切刀具,用金属502 胶水将圆形铜片粘附在不锈钢正方台上,然后把正方台固定在刨床的虎钳上,接着用百分表对刀具的垂直方向以及圆形铜片的表面进行校正。
(4)调整刨床的工作参数:设置刨床的工作行程,使刀具工作行程覆盖铜片的轮廓,然后进行对刀。
(5)一次犁切-挤压:调节切削深度为150μm,工件进给量为 250μm,在铜片边缘开始一次犁切,在铜片表面形成阵列沟槽结构。
(6)二次犁切-挤压:将正方台旋转90°,再次用百分表对铝板平面进行校正,对刀后使用同样的切削深度和进给量进行二次犁切- 挤压。二次犁切-挤压不但会在铜片基体上切削,而且也会对一次犁切一挤压形成的沟槽,进行垂直二次犁切-挤压,最终得到沟槽,内凹孔,鳞状毛刺,沉陷等复合微结构,制备过程如图5所示。
(7)犁切后工件处理:拆卸出正方台,将正方台放进鼓风干燥箱加热,加热温度为100℃,加热时间为10min,降至室温后,胶水失效,然后取出加工后的圆形铜片,用酒精进行清洗,得到复合微结构集流体。
本实施例所得的复合微结构铜集流体包括光滑底面9和具有复合微结构的顶面;所述顶面包括微凸台10和沟槽11,所述微凸台10 被沟槽11所环绕;所述微凸台10上设有内凹孔、鳞状毛刺和沉陷结构。宏观结构示意图如图1所示,实物图如图2所示,其中复合微结构的扫描电子显微镜图如图3所示。
如图6所示,将本实施例所得的复合微结构集流体做成电极片8 后置于下电池壳7上,电解液6直接浸润所述的电极片8上的活性物质,所述的电解液6充满由电极片8、下电池壳7和隔膜5所组成的整个腔体。锂片4紧贴在所述的隔膜5上,所述的锂片4的上表面由下至上依次放置着垫片3和弹片2,所述的垫片3和弹片2起着调整压力的作用。所述的弹片2与上电池壳1紧密接触以减小接触电阻,保证电池内部的良好导电性。电极片8装配成如图2所示的锂离子半电池后,所述的锂离子半电池放电时,锂片4开始脱锂,锂离子经过隔膜5进入到电解液6中,随后与电极片8上面的活性物质接触,发生嵌锂反应。与此同时,电子先后经过垫片3、弹片2和上电池壳1 进入到下电池壳7,由于下电池壳7与电极片8紧密接触,因而电子随后便进入到电极片8上的活性物质里与锂离子进行电荷中和,完成锂离子半电池的放电过程。所示的锂离子半电池充电时,锂离子首先从电极8上的活性物质里面脱嵌,进入到电解液6中,随后通过隔膜 5与锂片4接触。电子从电极片8上面的活性物质转移出来,先后经过下电池壳7、上电池壳1、弹片2和垫片3与锂片4上的锂离子进行电荷平衡,完成充电过程。所述的锂离子半电池在充放电过程中,由于所述的铜集流体表面的沟槽,内凹孔,鳞状毛刺,沉陷等复合微结构可以为活性物质提供体积变化缓冲空间,增强活性物质与集流体的结合力,从而提高电池的可逆容量和容量稳定性。同时所述的复合微结构增大了铜集流体与活性物质的接触表面积,提高活性物质的承载量,改善电极导电性,降低电池阻抗,进而达到增大容量和提高倍率性能的目的。
将本实施例提供的一种用于锂离子电池的铜集流体组成锂离子半电池,并使用LAND电池测试系统CT2001A对所述的锂离子半电池进行循环充放电测试,得到的测试曲线如图7所示。由图可以看出,有复合微结构铜集流体的锂离子电池初始放电容量为345.0mAhg-1,稳定容量高达364.9mAh g-1,而集流体无结构的锂离子电池初始放电容量为294.6mAhg-1,稳定容量为304.7mAh g-1。倍率测试性能如图 8所示,由图可以看出,有复合微结构集流体的锂离子电池在0.1C, 0.2C,0.5C,0.1C倍率下,稳定容量依次为372,374.3,276.9,379.8mAh g-1,而无结构集流体的锂离子电池在0.1C,0.2C,0.5C,0.1C倍率下,稳定容量依次为287.2,284,116.6,292.8mAh g-1,可见有复合微结构集流体的锂离子电池在0.2C和0.5C下相对于没有倍率充放前的容量保持率为100.61%和74.43%,而无结构集流体的锂离子电池在0.2C和0.5C下相对于没有倍率充放前的容量保持率为98.89%和 40.60%。交流阻抗测试如图9所示,明显可见,有复合微结构集流体的锂离子电池的阻抗较小。
本实用新型的上述实施例仅仅是为清楚地说明本实用新型所作的举例,而并非是对本实用新型的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型权利要求的保护范围之内。

Claims (2)

1.一种用于锂离子电池的复合微结构集流体,其特征在于,该复合微结构集流体包括光滑底面(9)和具有复合微结构的顶面;所述顶面包括微凸台(10)和沟槽(11),所述微凸台(10)被沟槽(11)所环绕;所述微凸台(10)上设有内凹孔、鳞状毛刺和沉陷结构。
2.根据权利要求1所述的一种用于锂离子电池的复合微结构集流体,其特征在于,所述复合微结构集流体的材料是金属铜。
CN201820523318.1U 2018-04-13 2018-04-13 一种用于锂离子电池的复合微结构集流体 Expired - Fee Related CN208385528U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820523318.1U CN208385528U (zh) 2018-04-13 2018-04-13 一种用于锂离子电池的复合微结构集流体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820523318.1U CN208385528U (zh) 2018-04-13 2018-04-13 一种用于锂离子电池的复合微结构集流体

Publications (1)

Publication Number Publication Date
CN208385528U true CN208385528U (zh) 2019-01-15

Family

ID=64975501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820523318.1U Expired - Fee Related CN208385528U (zh) 2018-04-13 2018-04-13 一种用于锂离子电池的复合微结构集流体

Country Status (1)

Country Link
CN (1) CN208385528U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284504A (zh) * 2021-12-22 2022-04-05 上海恩捷新材料科技有限公司 复合集流体及其制备方法、其极片和电池
CN117477049A (zh) * 2023-12-28 2024-01-30 北京希倍动力科技有限公司 一种吸收和疏导气体的电池和包含其的电芯

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284504A (zh) * 2021-12-22 2022-04-05 上海恩捷新材料科技有限公司 复合集流体及其制备方法、其极片和电池
CN114284504B (zh) * 2021-12-22 2023-11-28 上海恩捷新材料科技有限公司 复合集流体及其制备方法、其极片和电池
CN117477049A (zh) * 2023-12-28 2024-01-30 北京希倍动力科技有限公司 一种吸收和疏导气体的电池和包含其的电芯

Similar Documents

Publication Publication Date Title
CN108428901B (zh) 一种用于锂离子电池的复合微结构集流体及其制备方法
CN203932198U (zh) 一种锂离子电池电极片及锂离子电池
CN109980180B (zh) 负极极片及其制备方法、软包锂离子电池及其制备方法
CN101237038A (zh) 一种锂离子电池锡镍合金负极材料及其制备方法
CN208385528U (zh) 一种用于锂离子电池的复合微结构集流体
CN212907803U (zh) 一种高倍率充放电的锂离子电池
CN106340622A (zh) 一种高功率高能量化学电源及其制备方法
CN111403739A (zh) 镍钴锰酸锂电芯正极活性材料、铝壳电芯及其制作方法
CN111129425A (zh) 一种锂离子电池厚极片及其制备方法
CN113851604A (zh) 一种多极耳电芯的制备方法、多极耳电芯及其多极耳电池
CN201773894U (zh) Sc型镍氢电池专用氢氧化镍正极极片
CN106129461B (zh) 一种钠镁二次电池及其制备方法
CN206148514U (zh) 一种高电压快充锂离子电池
CN110854441B (zh) 一种三维多孔集流体及模板刻蚀方法与应用
CN206059547U (zh) 一种可快速充电的锂离子电池结构
CN204441383U (zh) 一种高容量纽扣式磷酸铁锂可充电锂电池
CN207368085U (zh) 多孔锂金属箔片
CN212182476U (zh) 一种高能量密度高功率密度铝离子电池
CN109817883B (zh) 一种锂电池极片及其制备方法及锂电池
CN111799500A (zh) 一种高倍率充放电的锂离子电池
CN109585936A (zh) 一种单面叠片软包电池的模板化制作方法
CN112164767B (zh) 一种氧化硅-锂复合材料及其制备方法和应用
CN220065767U (zh) 纽扣式锂离子电池
CN218448270U (zh) 一种便于连接的三元锂电池
CN210325984U (zh) 一种耐用型锂离子电芯

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190115

Termination date: 20210413