CN207529955U - 一种室温拓扑绝缘体太赫兹探测器 - Google Patents

一种室温拓扑绝缘体太赫兹探测器 Download PDF

Info

Publication number
CN207529955U
CN207529955U CN201721728253.6U CN201721728253U CN207529955U CN 207529955 U CN207529955 U CN 207529955U CN 201721728253 U CN201721728253 U CN 201721728253U CN 207529955 U CN207529955 U CN 207529955U
Authority
CN
China
Prior art keywords
terahertz
topological insulator
room temperature
thickness
nanometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721728253.6U
Other languages
English (en)
Inventor
王林
唐伟伟
刘昌龙
郭万龙
陈效双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Application granted granted Critical
Publication of CN207529955U publication Critical patent/CN207529955U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/119Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation characterised by field-effect operation, e.g. MIS type detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本专利公开了一种室温拓扑绝缘体太赫兹探测器。器件结构自下而上依次为是衬底、氧化物层、硒化铋薄膜、对数天线和金属源漏电极。器件制备步骤是将机械剥离的具有丰富表面态硒化铋薄膜转移到衬底上,运用紫外光刻或电子束光刻的方法结合传统剥离工艺制备对数天线和金属电极作为源极和漏极,形成硒化铋薄膜场效应晶体管结构。器件在太赫兹光的照射下硒化铋薄膜表面态电子与晶格发生不对称性散射,进而实现室温快速的太赫兹的探测。该太赫兹探测器具有高速、宽频、高响应、高集成度等特点并属于光伏型探测器件,为实现室温太赫兹探测器大规模应用奠定基础。

Description

一种室温拓扑绝缘体太赫兹探测器
技术领域
本专利涉及一种拓扑绝缘体光电探测器件,具体指一种室温拓扑绝缘体太赫兹探测器。
背景技术
太赫兹波(Terahertz,THz)辐射是指频率在0.1~10THz(波长30微米~3毫米)之间的电磁波,其长波段方向与毫米波(亚毫米波)相重合,短波段方向与红外线相重合,属于远红外波段。由于其位于远红外和微波相互交叉的波段,长期以来缺乏相应的方法对其进行产生和探测,从而形成THz空白(terahertz gap)。
太赫兹光子特点与应用:(a)量子能量和黑体温度很低;由于太赫兹波的光子能量很低,它穿透物质时,不易发生电离,因而可用来进行安全的无损检测。
(b)许多物质的大分子,如生物大分子的振动和旋转频率都在太赫兹波段,所以太赫兹波段表现出很强的吸收和谐振,许多爆炸物有太赫兹指纹特性,这使得它们能够从衣服中及与其他材料混在一起时被鉴别出来,如毒品的检测。(c)太赫兹波的时域频谱信噪比比较高,这使得太赫兹非常适用于成像应用。其辐射强度测量的信噪比可以大于1010,远高于傅立叶变换红外光谱技术,而且其稳定性更好。(d)太赫兹波对于许多物质都具有高透性,所以它在皮肤癌的诊断和治疗、DNA探测、太赫兹成像以及药物的分析和检测等方面都显示了其强大的功能和成效。
实现太赫兹技术应用与突破,其中一个关键技术就是太赫兹波探测,需要发展具备可控半导体材料与入射光场相互作用以增强太赫兹波光电响应能力的探测器件。但是,传统的依靠量子阱子带间跃迁的方法很难实现辐射探测目的,因为太赫兹的光子能量小于热扰动的能量,很容易达到饱和。目前,应用较多的商用太赫兹波探测器包括热辐射计,但是它需要在低温条件下进行工作,肖特基二极管的工作频率小于1太赫兹,热释电探测器的响应速度很慢,因此,需要探索新的半导体材料和新功能性的器件实现太赫兹探测。而拓扑绝缘体具有丰富的表面态物理,为新型的太赫兹光电功能转换器件的研究提供了良好的平台。
发明内容
本专利提出一种室温拓扑绝缘体太赫兹探测器,实现了拓扑绝缘体场效应结构在室温太赫兹探测领域的应用。
上述专利将拓扑绝缘体引入太赫兹探测结构,该探测器结构基于场效应晶体管,在室温下利用拓扑绝缘体表面态的电子在太赫兹场的作用下与表面晶格发声不对称性散射,从而产生光伏信号,实现对太赫兹辐射的探测。
本专利指一种室温拓扑绝缘体太赫兹探测器及制备方法,其特征在于,器件结构自下而上依次为:衬底1、氧化物层2、拓扑绝缘体3、在拓扑绝缘体上层是对数周期天线4、金属源极5、金属漏极6。
其中衬底1为低掺杂的Si衬底;厚度为0.3-0.5毫米;
其中氧化物层2为SiO2层,厚度300±10纳米;
其中拓扑绝缘体3为硒化铋薄膜层。沟道长度从2微米到6微米,厚度从10纳米到60纳米;
其中对数周期天线4外径4毫米,角度为50°,下层Cr的厚度为5-15纳米,上层Au的厚度为60-80纳米。
其中金属源极5和金属漏极6为Cr和Au电极,下层Cr的厚度为5-15纳米,上层Au的厚度为60-80纳米。
本专利指一种室温拓扑绝缘体太赫兹探测器及制备方法,其特征在于器件制备包括以下步骤:
1)通过热氧化法在衬底1上制备氧化物层2;
2)通过机械剥离方法将硒化铋薄膜3转移至氧化物层2的表面;
3)采用紫外光刻技术或者电子束曝光技术,结合热蒸发及传统剥离工艺在制备对数周期天线4金属源极5和金属漏极6,形成硒化铋薄膜半导体场效应结构器件,电极为铬、金,厚度分别为5-15纳米,60-80纳米。
用太赫兹辐射照射到器件上,由于拓扑绝缘体表面晶格对称性破缺,使得表面态的电子与晶格发声不对称性的散射,从而产生光伏信号,实现对太赫兹辐射快速,高响应的探测,在源极和漏极之间加上偏压,可实现对太赫兹辐射幅度的动态调控。
本专利专利的优点在于:
1)、使用低掺杂的硅作为衬底,大大地减少高掺杂的硅表面覆盖二氧化硅衬底对太赫兹的反射,提高了硒化铋薄膜吸收率,提高器件的太赫兹响应,更便于其光电响应的的测试。
2)、采用硒化铋薄膜作为导电沟道,利用硒化铋的表面态晶格的不对称性破缺对太赫兹的散射作用,实现高频、高速、高灵敏度的太赫兹探测。
3)、集成了对数周期天线结构和引线电极欧姆接触,实现强的光场耦合能力,提高器件的集成度和小型化,为实现太赫兹探测器大规模应用奠定基础。
附图说明
图1为本专利拓扑绝缘体太赫兹探测器件结构单元的侧视示意图;
图中:1衬底、2氧化物层、3拓扑绝缘体、4对数周期天线、5金属源极、6 金属漏极。
图2为拓扑绝缘体太赫兹探测器件的结构图,其中图(a)为拓扑绝缘体太赫兹探测器件的结构俯视示意图;图(b)为图(a)的局部放大图;
图3为拓扑绝缘体太赫兹探测器件测试的实验装置示意图;
图4为拓扑绝缘体太赫兹探测器在室温下斩波频率1kHz,40G的工作频率下响应波形图;
图5为拓扑绝缘体太赫兹探测器在室温下斩波频率1kHz,140G的工作频率下响应波形图;
图6为拓扑绝缘体太赫兹探测器在室温下斩波频率1kHz,300G的工作频率下响应波形图;
具体实施方式:
以下结合附图对本专利的具体实施方式作详细说明:
本专利研制了拓扑绝缘体太赫兹探测器。通过基于场效应结构,在太赫兹辐射的照射下,拓扑绝缘体表面的电子与对称性破缺的晶格发声不对称性散射,从而产生光伏信号,实现对太赫兹辐射的探测。另外,在源极和漏极之间施加电压可实现对太赫兹辐射的动态调控。
具体步骤如下:
1.衬底选择
选用厚度为0.5毫米的低掺杂硅作为衬底。
2.氧化物介质层制备
通过热氧化法在硅衬底的表面,氧化300纳米厚度二氧化硅。
3.拓扑绝缘体转移制备
用机械剥离的方法将硒化铋薄膜转移到SiO2/Si衬底上,硒化铋薄膜长度10微米,厚度从10纳米;
4.拓扑绝缘体源漏电极的制备
采用紫外光刻技术或者电子束曝光技术,结合热蒸发技术制备对数周期结构和金属电极,铬10纳米,金60纳米;结合传统剥离工艺剥离金属膜,获得源极、漏极电极,沟道宽度为2微米。
5.将制备好的拓扑绝缘体太赫兹探测器进行光电响应测试。如图3所示,用40GHz、140GHz、300GHz的太赫兹辐射到探测器件上,探测器件产生的光电流信号通过前置放大器(SR560)放大信号,分别输入示波器,锁相放大器(SR830),除此之外,还需要斩波器(SR430)斩波频率的参考信号分别输入示波器,锁相放大器,才能保证太赫兹响应波形保留和响应度记录。对于不同的沟道长度(2微米到6微米)以及不同的拓扑绝缘体厚度(10纳米到60纳米)的太赫兹探测器,测试过程中均显示超高响应率,具有快速探测的能力。
a)当对数周期天线结构外直径4mm、弧度40°,沟道长度为5微米的拓扑绝缘体。在太赫兹波(功率为10毫瓦,源距离探测器的距离为10厘米)的照射下,可实现8纳安的电流。
b)当对数周期天线结构外直径4mm、弧度50°,沟道长度为5微米的拓扑绝缘体。在太赫兹波(功率为10毫瓦,源距离探测器的距离为10厘米)的照射下,可实现10纳安的电流。
c)当对数周期天线结构外直径2mm、弧度50°,沟道长度为5微米的拓扑绝缘体。在太赫兹波(功率为10毫瓦,源距离探测器的距离为10厘米)的照射下,可实现6纳安的电流。
探测器结构的参数在一定范围里变化,本专利中拓扑绝缘体室温太赫兹波探测器都有很好的探测太赫兹波,测试结果表明器件信噪比超过103,并初步实现了偏置电压下响应幅度的变化,可有效的对太赫兹波进行室温探测。
结果说明本专利拓扑绝缘体室温太赫兹探测器及其制备方法,该结构器件具有高速、宽频、高响应、高集成度等特点并属于光伏型探测器件,为实现室温太赫兹探测器大规模应用奠定基础。

Claims (1)

1.一种室温拓扑绝缘体太赫兹探测器,包括衬底(1),氧化物层(2)、拓扑绝缘体(3)、对数周期天线(4)、金属源极(5)和金属漏极(6),其特征在于,
所述探测器的结构自下而上依次为:衬底(1)、氧化物层(2)、拓扑绝缘体(3)、在拓扑绝缘体上层是对数周期天线(4)、金属源极(5)、金属漏极(6);其中:
所述的衬底(1)为低掺杂的Si衬底;厚度为0.3-0.5毫米;
所述的氧化物层(2)为SiO2层,厚度300±10纳米;
所述的拓扑绝缘体(3)为硒化铋薄膜层,沟道长度从2微米到6微米,厚度从10纳米到60纳米;
所述的对数周期天线(4)外径4毫米,角度为500,下层Cr的厚度为5-15纳米,上层Au的厚度为60-80纳米;
所述的金属源极(5)和金属漏极(6)为Cr和Au电极,下层Cr的厚度为5-15纳米,上层Au的厚度为60-80纳米。
CN201721728253.6U 2017-08-30 2017-12-13 一种室温拓扑绝缘体太赫兹探测器 Active CN207529955U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721095140 2017-08-30
CN2017210951407 2017-08-30

Publications (1)

Publication Number Publication Date
CN207529955U true CN207529955U (zh) 2018-06-22

Family

ID=61943925

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201721728253.6U Active CN207529955U (zh) 2017-08-30 2017-12-13 一种室温拓扑绝缘体太赫兹探测器
CN201711324336.3A Pending CN107946401A (zh) 2017-08-30 2017-12-13 一种室温拓扑绝缘体太赫兹探测器及制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201711324336.3A Pending CN107946401A (zh) 2017-08-30 2017-12-13 一种室温拓扑绝缘体太赫兹探测器及制备方法

Country Status (1)

Country Link
CN (2) CN207529955U (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946401A (zh) * 2017-08-30 2018-04-20 中国科学院上海技术物理研究所 一种室温拓扑绝缘体太赫兹探测器及制备方法
CN110400855A (zh) * 2019-07-10 2019-11-01 中国科学院上海技术物理研究所 一种室温黑磷太赫兹探测器及其制备方法
CN111239175A (zh) * 2020-03-12 2020-06-05 福州大学 三维拓扑绝缘体Bi2Te3上下表面态光致反常霍尔电流区分方法
CN111811701A (zh) * 2020-07-20 2020-10-23 中国科学院重庆绿色智能技术研究院 一种多级微结构栅薄膜晶体管柔性压力传感器及其制备方法
CN114784128A (zh) * 2022-03-25 2022-07-22 国科大杭州高等研究院 一种基于蝶形天线结构的拓扑增强型碲化锑太赫兹光电探测器及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913945B (zh) * 2019-03-14 2021-04-02 电子科技大学 一种在硅(211)衬底上生长硒化铋高指数面单晶薄膜的方法
CN110246914A (zh) * 2019-05-17 2019-09-17 中国科学院上海技术物理研究所 一种基于锑化铟的刻蚀增强型太赫兹探测器及制备方法
CN110416349B (zh) * 2019-07-10 2024-05-07 中国科学院上海技术物理研究所 一种可调控的室温石墨烯太赫兹探测器及其制备方法
CN110828604A (zh) * 2019-11-18 2020-02-21 中国科学院上海技术物理研究所 一种可调控的室温黑砷磷太赫兹探测器及制备方法
CN110797432A (zh) * 2019-11-18 2020-02-14 中国科学院上海技术物理研究所 一种室温超短沟道硒化铂太赫兹探测器及制备方法
CN111883641B (zh) * 2020-07-22 2022-01-28 北京大学 一种室温热激发自旋极化电流源及其实现方法
CN113049096A (zh) * 2021-03-11 2021-06-29 中国科学院上海技术物理研究所 室温周期对数天线集成的碲化镍太赫兹探测器及制备方法
CN113140650B (zh) * 2021-04-06 2023-05-16 天津大学 一种基于表面态吸收原理的垂直耦合透明光电探测器
CN114778641B (zh) * 2022-03-16 2023-09-19 北京理工大学 一种核酸适配体电化学生物传感器探测头、制备及其应用
CN115632076A (zh) * 2022-10-25 2023-01-20 国科大杭州高等研究院 一种具有宽频光电响应的探测器件及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420225B1 (en) * 2005-11-30 2008-09-02 Sandia Corporation Direct detector for terahertz radiation
CN102575961A (zh) * 2009-10-23 2012-07-11 国际商业机器公司 包括电容耦合天线的太赫兹检测器
US9024415B2 (en) * 2010-12-07 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University Electrical and optical devices incorporating topological materials including topological insulators
CN106374006B (zh) * 2016-10-13 2018-06-29 中国科学院上海技术物理研究所 一种室温可调控的亚太赫兹波探测器及制备方法
CN207529955U (zh) * 2017-08-30 2018-06-22 中国科学院上海技术物理研究所 一种室温拓扑绝缘体太赫兹探测器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946401A (zh) * 2017-08-30 2018-04-20 中国科学院上海技术物理研究所 一种室温拓扑绝缘体太赫兹探测器及制备方法
CN110400855A (zh) * 2019-07-10 2019-11-01 中国科学院上海技术物理研究所 一种室温黑磷太赫兹探测器及其制备方法
CN110400855B (zh) * 2019-07-10 2024-03-22 中国科学院上海技术物理研究所 一种室温黑磷太赫兹探测器及其制备方法
CN111239175A (zh) * 2020-03-12 2020-06-05 福州大学 三维拓扑绝缘体Bi2Te3上下表面态光致反常霍尔电流区分方法
CN111811701A (zh) * 2020-07-20 2020-10-23 中国科学院重庆绿色智能技术研究院 一种多级微结构栅薄膜晶体管柔性压力传感器及其制备方法
CN114784128A (zh) * 2022-03-25 2022-07-22 国科大杭州高等研究院 一种基于蝶形天线结构的拓扑增强型碲化锑太赫兹光电探测器及其制备方法
CN114784128B (zh) * 2022-03-25 2024-04-02 国科大杭州高等研究院 一种基于蝶形天线结构的拓扑增强型碲化锑太赫兹光电探测器及其制备方法

Also Published As

Publication number Publication date
CN107946401A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
CN207529955U (zh) 一种室温拓扑绝缘体太赫兹探测器
Ikamas et al. Broadband terahertz power detectors based on 90-nm silicon CMOS transistors with flat responsivity up to 2.2 THz
CN106374006B (zh) 一种室温可调控的亚太赫兹波探测器及制备方法
CN102445711B (zh) 一种太赫兹波探测器
CN110416349B (zh) 一种可调控的室温石墨烯太赫兹探测器及其制备方法
Otsuji et al. Emission of terahertz radiation from dual grating gate plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems
CN110400855B (zh) 一种室温黑磷太赫兹探测器及其制备方法
Kostakis et al. Terahertz Generation and Detection Using Low Temperature Grown InGaAs-InAlAs Photoconductive Antennas at 1.55$\mu {\hbox {m}} $ Pulse Excitation
US10121926B2 (en) Graphene-based detector for W-band and terahertz radiations
Tong et al. Plasmonic semiconductor nanogroove array enhanced broad spectral band millimetre and terahertz wave detection
Pogna et al. Unveiling the detection dynamics of semiconductor nanowire photodetectors by terahertz near-field nanoscopy
US5914497A (en) Tunable antenna-coupled intersubband terahertz (TACIT) detector
Liu et al. Top-gated black phosphorus phototransistor for sensitive broadband detection
Gayduchenko et al. Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices
CN110797432A (zh) 一种室温超短沟道硒化铂太赫兹探测器及制备方法
CN210092112U (zh) 一种可调控的室温石墨烯太赫兹探测器
CN215418202U (zh) 一种室温双通道可调控的太赫兹探测器
Titova et al. Ultralow-noise Terahertz Detection by p–n Junctions in Gapped Bilayer Graphene
CN110828604A (zh) 一种可调控的室温黑砷磷太赫兹探测器及制备方法
Kawano Terahertz sensing and imaging based on nanostructured semiconductors and carbon materials
CN210272401U (zh) 一种室温黑磷太赫兹探测器
CN210866220U (zh) 一种室温超短沟道硒化铂太赫兹探测器
CN210866219U (zh) 一种可调控的室温黑砷磷太赫兹探测器
CN113484352A (zh) 基于第二类外尔半金属材料的太赫兹探测器
Ludwig et al. Photothermoelectric and resistive self-mixing response contributions in graphene field-effect transistor THz detectors

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant