CN106374006B - 一种室温可调控的亚太赫兹波探测器及制备方法 - Google Patents

一种室温可调控的亚太赫兹波探测器及制备方法 Download PDF

Info

Publication number
CN106374006B
CN106374006B CN201610894003.3A CN201610894003A CN106374006B CN 106374006 B CN106374006 B CN 106374006B CN 201610894003 A CN201610894003 A CN 201610894003A CN 106374006 B CN106374006 B CN 106374006B
Authority
CN
China
Prior art keywords
graphene
log
raceway groove
lead electrode
gate dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610894003.3A
Other languages
English (en)
Other versions
CN106374006A (zh
Inventor
王林
刘昌龙
唐伟伟
郭万龙
陈效双
陆卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Rongcheng Electronic Technology Co.,Ltd.
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201610894003.3A priority Critical patent/CN106374006B/zh
Publication of CN106374006A publication Critical patent/CN106374006A/zh
Application granted granted Critical
Publication of CN106374006B publication Critical patent/CN106374006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种室温可调控的亚太赫兹波探测器及制备方法,以具有高迁移率且载流子浓度可调的石墨烯场效应晶体管为基本结构单元,场效应晶体管具有一组亚太赫兹波耦合天线的源漏电极和劈裂栅极。所述探测器在蓝宝石衬底上集成对数周期天线以及相应的引线电极;在天线间距中转移的石墨烯导电沟道;在石墨烯导电沟道上有氧化铝栅介质层,最后,在石墨烯导电沟道的氧化铝栅介质层上集成劈裂栅极以及相应的引线电极,实现可调控的亚太赫兹波探测。本发明的优点在于:高速、宽频、响应高且可调控的类光导与类光伏探测器;器件的集成度、工艺成熟及可重复性,为实现太赫兹探测器大规模应用奠定基础。

Description

一种室温可调控的亚太赫兹波探测器及制备方法
技术领域
本发明涉及一种太赫兹波探测器,特别涉及一种在室温条件下劈裂栅极/氧化铝栅介质层/石墨烯/对数周期天线/蓝宝石衬底结构的场效应管对0.02~0.4THz亚太赫兹波,实现高速、宽频、响应高且可调控的类光导与类光伏探测。
背景技术
太赫兹波是频率0.1~10THz(1THz=1012Hz)范围内的电磁波,波长范围为3mm~30μm,位于毫米波(亚毫米波)与红外波之间。太赫兹光子对应能量范围为0.414~41.4meV,与分子和材料的低频振动和转动能量范围相匹配。这些决定了太赫兹波在电磁频谱中的特殊位置以及在传播、散射、反射、吸收、穿透等方面与毫米波、红外线显著不同的特点和应用,也将为人们对物质的表征和操控提供很大的自由空间。
太赫兹波具有很多独特的性质如宽频性、透视性、安全性等,它在物理、化学、生物医学等基础领域,以及反恐、有无损成像、光谱分析和雷达通讯方面有着重要的应用前景:(1)太赫兹波在生物医学上的应用具有很大的吸引力。在皮肤癌的诊断和治疗、太赫兹波断层成像以及药物的分析和检测等方面都显示了其强大的功能和成效。由于生物大分子的振动和转动频率均在太赫兹波段,而且太赫兹波辐射技术又可提取DNA的重要信息,因此,太赫兹波在植物,特别是粮食选种,优良菌种的选择等方面可以起重要的作用。(2)太赫兹波辐射可以穿透烟雾,又可检测出有毒或有害分子,所以在环境监测和保护方面可以发挥重要作用。太赫兹波对很多非金属和非极性电介质材料具有很强的穿透力,包括衣物、包裹、陶制品甚至墙壁等材料,可以实现对这些材料中携带的隐藏爆炸物进行非接触式检测。太赫兹实时检测手段,相比于其他技术,在太赫兹波段不同炸药种类所具有的特征吸收和色散各有不同,具有指纹谱性。利用太赫兹技术对它们进行探测和识别,进而分析物质内部结构信息。(3)太赫兹波的能量比较低,仅有几毫电子伏特,对人体不会造成电离伤害,也不会危害人体健康,由此可以方便地对隐藏在这些包装材料中的爆炸物进行探测,也极大地保障了检测人员和设备的安全。同时,太赫兹波在雷达和通信,航天飞机可能故障的探测以及天文等方面的应用也有很大的潜力
在太赫兹波段的开发和应用中,检测太赫兹波信号具有举足轻重的意义。因为,一方面,与较短波长的光学波段电磁波相比,太赫兹波光子能量低,背景噪声通常占据显著地位;另一方面,随着太赫兹技术在各领域特别是军事领域中的应用的深入开展,不断提高接收灵敏度成为必然的要求。现有的商用太赫兹波探测器包括辐射热机(需要低温工作)、肖特基二极管(需要低温工作且响应频率低于1Hz以下)、热释电探测器(响应速度慢)。Dyakonov和Shur于1993年阐述了场效应管中等离子体波在沟道中被激发实现太赫兹波探测,在石墨烯、硅及砷化镓等材料上得到了实验的验证。但是这类器件普遍工作在低温下、灵敏度较低及噪声比较大。室温下等离子体波在沟道中被激发,材料的高迁移率是关键因素,而且,分布式电阻也限制了器件的带宽和速度。因此,需要探索新的物理机制和材料体系实现太赫兹波探测。由于石墨烯材料具有独特的物理结构、特殊的电学特性及光学特性为太赫兹探测研究提供一个好的平台。
发明内容
基于现有技术的问题和理论,本发明的目的是提出以具有高迁移率且载流子浓度可调的石墨烯场效应晶体管为基本结构单元,集成一组亚太赫兹波耦合天线的源漏电极和劈裂栅极,一种在室温条件下劈裂栅极/氧化铝栅氧化层/石墨烯/对数周期/蓝宝石衬底的亚太赫兹波探测器,实现高速、宽频、响应高且可调控的类光导与类光伏亚太赫兹探测。
本发明的上述目的,将通过以下技术方案得以实现:
所述探测器在蓝宝石衬底1上集成对数周期天线3以及引线电极2,且对数周期天线3两臂分别与对应的引线电极2相连;在对数周期天线3间距中转移具有高迁移率且载流子浓度可调的石墨烯导电沟道4,石墨烯导电沟道4与对数周期天线3两臂互连,形成良好的欧姆接触;在石墨烯导电沟道4上有氧化铝栅介质层5;最后,在石墨烯导电沟道的氧化铝栅介质层5上集成劈裂栅极6以及相应的引线电极2,实现可调控的亚太赫兹波探测。
所述的蓝宝石衬底1的厚度0.5~1mm;
所述的对数周期天线3为金膜尺寸为:外半径1~2mm,厚度100~200nm;
所述的引线电极2为金电极,厚度200~400nm;
所述的石墨烯导电沟道4长度为5~10μm,迁移率1000~10000cm2V-1s-1,载流子浓度1011~1014cm-2
所述的氧化铝栅介质层5厚度为30~50nm;
所述的劈裂顶栅6为金膜,线宽1~2.2μm,线间距500~600nm,厚度20~60nm。
本发明的上述目的,是通过以下技术方案制作完成的。
1)首先将蓝宝石衬底进行表面清洗,并通过切割技术将衬底和铜片上生长的石墨烯切成尺寸1.5cm×1.5cm样品;
2)使用紫外光刻、电子束蒸发法及剥离工艺制备对数周期天线和引线电极,包括沟道、紫外光刻的对准标记以及电子束光刻对准标记;
3)将铜片上生长的石墨烯,通过FeCl3溶液刻蚀法,刻蚀铜片衬底约24h,然后在体积比约1/10的稀释盐酸和去离子水混合溶液中清洗覆盖PMMA的石墨烯薄膜,清洗完,将覆盖PMMA的石墨烯薄膜转移到具有天线结构的蓝宝石衬底上,阴干约4h,在丙酮中静置20~25min去除PMMA,最后,在60~80℃的温度条件下烘干20~25min;
4)利用紫外光刻和氧离子刻蚀法,刻蚀长度约5~10μm石墨烯导电沟道,并在体积比约1/5氢气和氮气混合气体下进行约300℃高温退火处理,去除石墨烯残留的光刻胶和水,形成良好的欧姆接触;
5)利用原子层沉积技术,在整个样品上300℃高温沉积氧化铝栅介质层;
6)通过紫外光刻和溶液腐蚀法,将氧化铝栅介质层覆盖的与天线相连的引线电极暴露出来,以便引线测试;
7)利用步骤3)中的方法再在样品上转移一层石墨烯,充当导电层,保证电子束曝光的精准性,避免蓝宝石衬底导电性差影响电子束嚗光;
8)通过电子束嚗光和电子束蒸发法及剥离工艺制备劈裂栅极及其引线电极;
9)通过紫外光刻、电子束蒸发及剥离工艺制备300~400nm加厚电极;
10)最后,采用标准的半导体封装技术,对器件进行封装与测试。
实现本发明的技术方案,其创新优点体现在:
1、采用载流子迁移率高且可调的石墨烯材料作为导电沟道,利用石墨烯太赫兹等离子体波整流或热电效应,实现高速、可调控的太赫兹探测。
2、集成对数周期天线和劈裂栅极,实现强的光场耦合和分布,提高器件的集成度和小型化,实现类光导与类光伏的亚太赫兹探测。
3、蓝宝石作为衬底,避免对太赫兹的强反射;而且器件的集成度、工艺成熟及可重复性为实现太赫兹波探测器的阵列化和大规模应用奠定基础
附图说明
图1为本发明亚太赫兹探测器结构一实施例探测结构单元的正视示意图及沟道放大示意图;
图2为图1所示亚太赫兹波探测器的结构侧视示意图;
图3为本发明亚太赫兹波探测器室温下的转移特性曲线IDS-VGS
图4为本发明亚太赫兹波探测器室温下栅极调控的电流响应波形图;
图5为本发明亚太赫兹探测器在室温、零偏置及不同栅压下的亚太赫兹响应图;
图6为本发明亚太赫兹探测器在室温、固定栅压及不同偏置电压的亚太赫兹响应图;
附图中:
1~蓝宝石,2~引线电极,3~对数周期天线,4~石墨烯,5~氧化铝栅介质层,6~劈裂栅极。
具体实施方式:
以下结合附图及实施例,对本发明的具体实施方式进行详述,以便发明技术方案易于理解、掌握。
参见图1和图2,它是一种室温可调控的亚太赫兹波探测器结构图,所述探测器在蓝宝石衬底1上集成对数周期天线3以及引线电极2,且对数周期天线3两臂分别与对应的引线电极2相连;在对数周期天线3间距中转移具有高迁移率且载流子浓度可调的石墨烯导电沟道4,石墨烯导电沟道4与对数周期天线3两臂互连,形成良好的欧姆接触;在石墨烯导电沟道4上有氧化铝栅介质层5;最后,在石墨烯导电沟道的氧化铝栅介质层5上集成劈裂栅极6以及相应的引线电极2。采用载流子迁移率高且可调的石墨烯材料作为导电沟道;集成对数周期天线和劈裂栅极,实现强的光场耦合和分布,利用石墨烯太赫兹等离子体波整流或热电效应,实现高速、宽频、响应高且可调控的类光导与类光伏亚太赫兹探测,具体制备和测试流程如下:
步骤1 首先将0.5~1mm蓝宝石衬底进行表面清洗,并通过切割技术将衬底和铜片上生长的石墨烯切成1.5cm×1.5cm样品;
步骤2 使用紫外光刻(AZ5214光刻胶)、电子束蒸发法及剥离工艺制备对数周期天线和引线电极(Cr/Au),包括沟道、紫外光刻的对准标记以及电子束光刻对准标记;
步骤3 将铜片上生长的石墨烯,通过FeCl3溶液刻蚀法,刻蚀铜片衬底约24h,然后在体积比约1/10的稀释盐酸和去离子水混合溶液中清洗覆盖PMMA的石墨烯薄膜,清洗完,将覆盖PMMA的石墨烯薄膜转移到具有对数周期天线结构的蓝宝石衬底上,阴干约4h,在丙酮中静置20~25min去除PMMA,最后,在60~80℃的温度条件下烘干20~25min;
步骤4 利用紫外光刻和氧离子刻蚀法,刻蚀长度约5~10μm石墨烯导电沟道,并在体积比约1/5氢气和氮气混合气体下进行约300℃高温退火处理,去除石墨烯残留的光刻胶和水,形成良好的欧姆接触;
步骤5 利用原子层沉积技术,在整个样品上300℃高温沉积厚度30nm~50nm氧化铝栅介质层;
步骤6 通过紫外光刻和溶液腐蚀法,将氧化铝栅介质层覆盖的与天线相连的引线电极暴露出来,以便引线测试;
步骤7 利用步骤3中的方法再在样品上转移一层石墨烯,充当导电层,保证电子束曝光的精准性,避免蓝宝石衬底导电差影响电子束嚗光;
步骤8 通过电子束嚗光和电子束蒸发法及剥离工艺制备劈裂栅极及其引线电极;
步骤9 通过紫外光刻、电子束蒸发及剥离工艺制备300~400nm加厚电极;
步骤10 最后,采用标准的半导体封装技术,对器件进行封装和测试。
步骤11 用0.020~0.04THz微波振荡器以及耿氏振荡器结合倍频器产生0.1~0.4THz连续波辐射,光源经过离轴抛面镜聚焦到探测器上,探测器产生的光电流信号通过前置放大器(SR560)放大信号,分别输入示波器,锁相放大器(SR560),除此之外,还需要斩波器(SR430)斩波频率的参考信号分别输入示波器,锁相放大器,才能保证太赫兹响应波形保留和响应度记录。
实施例1
蓝宝石衬底的厚度为1mm,当对数周期天线外半径1mm、弧度50°,劈裂栅极线宽1μm、线间距500nm,氧化铝栅介质层厚度30nm以及5μm长的导电沟道CVD石墨烯(浓度约1013cm-2,迁移率约1000~5000cm2V-1s-1)。如图3所示,石墨烯场效管的电学性能良好,栅极调控实现石墨烯P和N型的掺杂,Dirac点的电压在1.8~2V附近;从图3插图可以看出石墨烯和对数周期天线形成良好的欧姆接触,为亚太赫兹波探测奠基了器件的基础。
实施例2
蓝宝石衬底的厚度为1mm,当对数周期天线外半径2mm、弧度50°,劈裂栅极线宽2μm、线间距600nm,氧化铝栅介质层厚度50nm以及6μm长的导电沟道CVD石墨烯(浓度约1013cm-2,迁移率约1000~5000cm2V-1s-1),如图4所示,通过半导体分析仪,在亚太赫兹波0.02~0.4THz照射下,实时观察光电流的变化。同样可以看出栅压调控实现石墨烯的不同掺杂类型,相比于暗电流,P型掺杂石墨烯的电阻变大、光电流变小,N型掺杂石墨烯的电阻小、电流变大;而且两种类型掺杂的石墨烯光电流幅值变化趋势与图5中表达的趋势一致。石墨烯掺杂类型从P型到N型转变过程中,光响应的幅值增强了120倍以上,在Dirac电压附近光响应幅值明显趋向于零,总而言之,通过栅极电压可以调控亚太赫兹波的探测。
实施例3
蓝宝石衬底的厚度为0.5mm,当对数周期天线外半径1mm、弧度50°,劈裂栅极线宽2.2μm、线间距600nm,氧化铝栅介质层厚度30nm以及10μm长的导电沟道CVD石墨烯(浓度约1013cm-2,迁移率约1000~5000cm2V-1s-1),在偏置电压为零与亚太赫兹照射下,器件产生光电流,类似于光伏型器件,信噪比高;随着偏置电压增加,类似于光导型器件,光响应也随之增加,跟之前的石墨烯天线两端探测器的光导型结果一致。
探测器结构中各种参数在一定范围里变化,本发明中一种室温可调控的亚太赫兹波探测器都有很好的性能,测试结果表明初步实现石墨烯不同掺杂类型下,光电流变化趋势相反;室温响应幅值调控增强120倍以上;同时实现器件类光导与类光伏相互转换;利用石墨烯太赫兹等离子体波整流或热电效应,为太赫兹探测器件设计的提供了方向。

Claims (2)

1.一种室温可调控的亚太赫兹波探测器,其特征在于:
所述亚太赫兹波探测器在蓝宝石衬底(1)上集成对数周期天线(3)以及引线电极(2),对数周期天线(3)的两臂分别与对应的引线电极(2)相连;在对数周期天线(3)的两臂中间有高迁移率且载流子浓度可调的石墨烯导电沟道(4),石墨烯导电沟道(4)与对数周期天线(3)两臂互连,形成良好的欧姆接触;在石墨烯导电沟道(4)上有氧化铝栅介质层(5);在石墨烯导电沟道的氧化铝栅介质层(5)上集成劈裂栅极(6)以及相应的引线电极(2);
所述的蓝宝石衬底(1)的厚度0.5~1mm;
所述的对数周期天线(3)为金膜,尺寸为:外半径1~2mm,厚度100~200nm;
所述的引线电极(2)为金电极,厚度200~400nm;
所述的石墨烯导电沟道(4)长度为5~10μm,迁移率1000~10000cm2V-1s-1,载流子浓度1011~1014cm-2
所述的氧化铝栅介质层(5)厚度为30~50nm;
所述的劈裂栅极(6)为金膜,其线宽1~2.2μm,线间距500~600nm,厚度20~60nm。
2.一种制备如权利要求1所述一种室温可调控的0.02THz~0.4THz亚太赫兹波探测器制备的方法,其特征在于包括以下步骤:
1)首先将蓝宝石衬底进行表面清洗,并通过切割技术将衬底和铜片上生长的石墨烯切成尺寸为1.5cm×1.5cm的样品;
2)使用紫外光刻、电子束蒸发法及剥离工艺制备对数周期天线和引线电极,包括沟道、紫外光刻的对准标记以及电子束光刻对准标记;
3)将铜片上生长的石墨烯,通过FeCl3溶液刻蚀法,刻蚀铜片衬底约24h,然后在体积比约1/10的稀释盐酸和去离子水混合溶液中清洗覆盖PMMA的石墨烯薄膜,清洗完,将覆盖PMMA的石墨烯薄膜转移到具有对数周期天线结构的蓝宝石衬底上,阴干约4h,在丙酮中静置20~25min去除PMMA,最后,在60~80℃的温度条件下烘干20~25min;
4)利用紫外光刻和氧离子刻蚀法,刻蚀长度约5~10μm石墨烯导电沟道,并在体积比约1/5氢气和氮气混合气体下进行约300℃高温退火处理,去除石墨烯残留的光刻胶和水,形成良好的欧姆接触;
5)利用原子层沉积技术,在整个样品上300℃高温沉积氧化铝栅介质层;
6)通过紫外光刻和溶液腐蚀法,将氧化铝栅介质层覆盖的与天线相连的引线电极暴露出来,以便引线测试;
7)利用步骤3)中的方法再在样品上转移一层石墨烯,充当导电层,保证电子束曝光的精准性,避免蓝宝石衬底导电性差影响电子束嚗光;
8)通过电子束嚗光、电子束蒸发法及剥离工艺制备劈裂栅极及其引线电极;
9)通过紫外光刻、电子束蒸发及剥离工艺制备300~400nm加厚电极;
10)最后,采用标准的半导体封装技术,对器件进行封装与测试。
CN201610894003.3A 2016-10-13 2016-10-13 一种室温可调控的亚太赫兹波探测器及制备方法 Active CN106374006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610894003.3A CN106374006B (zh) 2016-10-13 2016-10-13 一种室温可调控的亚太赫兹波探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610894003.3A CN106374006B (zh) 2016-10-13 2016-10-13 一种室温可调控的亚太赫兹波探测器及制备方法

Publications (2)

Publication Number Publication Date
CN106374006A CN106374006A (zh) 2017-02-01
CN106374006B true CN106374006B (zh) 2018-06-29

Family

ID=57895100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610894003.3A Active CN106374006B (zh) 2016-10-13 2016-10-13 一种室温可调控的亚太赫兹波探测器及制备方法

Country Status (1)

Country Link
CN (1) CN106374006B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960892B (zh) * 2017-04-26 2018-11-06 烟台小米机械技术有限公司 石墨烯带太赫兹传感器
CN207529955U (zh) * 2017-08-30 2018-06-22 中国科学院上海技术物理研究所 一种室温拓扑绝缘体太赫兹探测器
ES2866950T3 (es) 2017-12-22 2021-10-20 Fundacio Inst De Ciencies Fotòniques Un dispositivo para operar con radiación de THz y/o de infrarrojos y/o de microondas
CN109742174B (zh) * 2019-01-10 2020-11-10 吕志超 一种导电特性可调的亚太赫兹波探测器
CN109738063B (zh) * 2019-01-10 2021-02-19 南京工业职业技术大学 一种增强热量吸收的亚太赫兹波探测器
CN109742162B (zh) * 2019-01-10 2020-07-03 中检科(南京)太赫兹科技有限公司 一种具有温度调控特性的亚太赫兹波探测器
CN109632093B (zh) * 2019-01-10 2020-10-23 徐州天骋智能科技有限公司 一种增强灵敏性的亚太赫兹波探测器
CN109830547B (zh) * 2019-03-05 2020-10-27 温州益蓉机械有限公司 一种具有聚光功能的亚太赫兹波探测器
CN109830546B (zh) * 2019-03-05 2020-11-24 金华伏安光电科技有限公司 一种增强热效应的亚太赫兹波探测器
CN111627990B (zh) * 2020-05-07 2023-08-08 中国人民解放军国防科技大学 一种利用热蒸发铝种子层制备顶栅型场效应管的方法
CN112216760A (zh) * 2020-10-21 2021-01-12 合肥工业大学 一种在红外及太赫兹宽频带的探测器及其制备方法
US11563190B2 (en) 2020-12-09 2023-01-24 Huawei Technologies Co., Ltd. Graphene-based photodetector
CN113484352A (zh) * 2021-06-23 2021-10-08 北京大学 基于第二类外尔半金属材料的太赫兹探测器
CN114784125B (zh) * 2022-03-25 2024-04-02 国科大杭州高等研究院 一种非对称性诱导室温高灵敏光电探测器件及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206282870U (zh) * 2016-10-13 2017-06-27 中国科学院上海技术物理研究所 一种室温可调控的亚太赫兹波探测器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445711B (zh) * 2010-09-30 2013-10-30 中国科学院苏州纳米技术与纳米仿生研究所 一种太赫兹波探测器
KR101423925B1 (ko) * 2012-12-21 2014-07-28 광주과학기술원 그래핀 다치 로직 소자, 이의 동작방법 및 이의 제조방법
CN104916732A (zh) * 2014-03-12 2015-09-16 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯太赫兹波探测器及其制作方法
CN104795411B (zh) * 2015-04-15 2018-01-30 重庆大学 栅控石墨烯纳米带阵列THz探测器及调谐方法
CN105514128B (zh) * 2015-12-01 2017-10-13 中国科学院上海技术物理研究所 一种石墨烯室温太赫兹波探测器及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206282870U (zh) * 2016-10-13 2017-06-27 中国科学院上海技术物理研究所 一种室温可调控的亚太赫兹波探测器件

Also Published As

Publication number Publication date
CN106374006A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
CN106374006B (zh) 一种室温可调控的亚太赫兹波探测器及制备方法
CN207529955U (zh) 一种室温拓扑绝缘体太赫兹探测器
US7420225B1 (en) Direct detector for terahertz radiation
CN102445711B (zh) 一种太赫兹波探测器
US9574945B2 (en) THz radiation detection in standard CMOS technologies based on thermionic emission
CN105514128B (zh) 一种石墨烯室温太赫兹波探测器及制备方法
US5914497A (en) Tunable antenna-coupled intersubband terahertz (TACIT) detector
CN110416349B (zh) 一种可调控的室温石墨烯太赫兹探测器及其制备方法
Sizov et al. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector
Liu et al. Top-gated black phosphorus phototransistor for sensitive broadband detection
CN206282870U (zh) 一种室温可调控的亚太赫兹波探测器件
Zagrajek et al. Time resolution and dynamic range of field-effect transistor–based terahertz detectors
Titova et al. Ultralow-noise Terahertz Detection by p–n Junctions in Gapped Bilayer Graphene
Liu et al. Terahertz detector for imaging in 180-nm standard CMOS process
CN210092112U (zh) 一种可调控的室温石墨烯太赫兹探测器
Mansha et al. A 220–300 GHz twin-FET detector for rotational spectroscopy of gas mixtures
CN110864805B (zh) 超宽带光谱探测装置和方法
Gasparyan et al. Double-gated Si NW FET sensors: Low-frequency noise and photoelectric properties
Shin et al. Highly reliable THz hermetic detector based on InGaAs/InP Schottky barrier diode
Benfante et al. Employing microwave graphene field effect transistors for infrared radiation detection
CN110828604A (zh) 一种可调控的室温黑砷磷太赫兹探测器及制备方法
Marem’yanin et al. Wide-aperture detector of terahertz radiation based on GaAs/InGaAs transistor structure with large-area slit grating gate
CN210866219U (zh) 一种可调控的室温黑砷磷太赫兹探测器
Ker Development of high speed low noise InAs electron avalanche photodiodes
Chen et al. Study on the noise characteristics of GaAs-based blocked-impurity-band (BIB) detectors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210719

Address after: 238300 Room 202, building 9, Jinpeng community, Jinta Road, Wuwei City, Wuhu City, Anhui Province

Patentee after: Cheng Laifeng

Address before: 200083 No. 500, Yutian Road, Shanghai, Hongkou District

Patentee before: Shanghai Institute of Technical Physics, Chinese Academy of Sciences

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210913

Address after: 241000 No. 8, fudongbei Road, Wuwei Economic Development Zone, Wuhu City, Anhui Province

Patentee after: Anhui Rongcheng Electronic Technology Co.,Ltd.

Address before: 238300 Room 202, building 9, Jinpeng community, Jinta Road, Wuwei City, Wuhu City, Anhui Province

Patentee before: Cheng Laifeng

TR01 Transfer of patent right