CN206878802U - 高压差电平转换电路 - Google Patents

高压差电平转换电路 Download PDF

Info

Publication number
CN206878802U
CN206878802U CN201720673042.0U CN201720673042U CN206878802U CN 206878802 U CN206878802 U CN 206878802U CN 201720673042 U CN201720673042 U CN 201720673042U CN 206878802 U CN206878802 U CN 206878802U
Authority
CN
China
Prior art keywords
fet
high pressure
power supply
low
logic signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201720673042.0U
Other languages
English (en)
Inventor
陈飞龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Rui Core Micro Polytron Technologies Inc
Original Assignee
Chengdu Rui Core Micro Polytron Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Rui Core Micro Polytron Technologies Inc filed Critical Chengdu Rui Core Micro Polytron Technologies Inc
Priority to CN201720673042.0U priority Critical patent/CN206878802U/zh
Application granted granted Critical
Publication of CN206878802U publication Critical patent/CN206878802U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型公开了一种高压差电平转换电路,包括低压域电源端、高压域电源端、低压域电源的输入逻辑信号端、高压域电源的输出逻辑信号端、第一场效应管、与所述第一场效应管相连的第二场效应管、第三场效应管、与所述第一场效应管和所述第二场效应管相连的第四场效应管、第五场效应管及与所述第四场效应管相连的第六场效应管,当所述低压域电源的输入逻辑信号端上的逻辑电平切换时,先让所述高压域电源端的电压降低到可以直接转换电平到所述高压域电源的输出逻辑信号端上,然后所述低压域电源的输入逻辑信号端的电平切换,再把所述高压域电源端升回到需要转换的电压上去。本实用新型电路结构简单且节省了面积。

Description

高压差电平转换电路
技术领域
本实用新型涉及集成电路领域,特别是涉及一种高压差电平转换电路。
背景技术
电平转换电路广泛应用于各种应用电路中,可以实现逻辑电平的电压域转换,包括从高压域向低压域的转换及从低压域向高压域的转换。其中,比较有难度的转换是从低压域向高压域的转换,电压差越大转换就越难。
在现有的电平转换电路中,比较大的电压差会通过两个电平转换器,且分两次来实现电平转换,电路结构复杂且面积较大。
实用新型内容
本实用新型的目的在于克服现有技术的不足,提供一种高压差电平转换电路。
本实用新型的目的是通过以下技术方案来实现的:一种高压差电平转换电路,包括低压域电源端、高压域电源端、低压域电源的输入逻辑信号端、高压域电源的输出逻辑信号端、与所述低压域电源端和所述低压域电源的输入逻辑信号端相连的第一场效应管、与所述第一场效应管相连的第二场效应管、与所述低压域电源的输入逻辑信号端相连的第三场效应管、与所述第一场效应管和所述第二场效应管相连的第四场效应管、与所述第三场效应管相连的第五场效应管及与所述第四场效应管相连的第六场效应管,当所述低压域电源的输入逻辑信号端上的逻辑电平切换时,先让所述高压域电源端的电压降低到可以直接转换电平到所述高压域电源的输出逻辑信号端上,然后所述低压域电源的输入逻辑信号端的电平切换,再把所述高压域电源端升回到需要转换的电压上去。
所述第一场效应管的栅极与所述第二场效应管的栅极及所述第三场效应管的栅极共同连接所述低压域电源的输入逻辑信号端,所述第一场效应管的源极与所述低压域电源端相连,所述第一场效应管的漏极与所述第二场效应管的漏极及所述第四场效应管的栅极相连。
所述第三场效应管的漏极与所述第五场效应管的漏极及所述第六场效应管的栅极相连。
所述第四场效应管的漏极与所述第五场效应管的栅极、所述第六场效应管的漏极及所述高压域电源的输出逻辑信号端相连。
所述第五场效应管的源极与所述第六场效应管的源极共同连接所述高压域电源端。
所述第二场效应管的源极、所述第三场效应管的源极及所述第四场效应管的源极共同连接地端。
所述第一场效应管、所述第五场效应管与所述第六场效应管为P型场效应管,所述第二场效应管、所述第三场效应管与所述第四场效应管为N型场效应管。
本实用新型的有益效果是:通过控制上电时序来实现高电压差的逻辑电平转换,以非常小的电路实现超高电压差的逻辑电平转换,电路结构简单且节省了面积。
附图说明
图1为本实用新型高压差电平转换电路的具体电路结构图;
图2为本实用新型高压差电平转换电路的时序关系示意图;
图3为本实用新型高压差电平转换电路的转换方法流程示意图。
具体实施方式
下面结合附图进一步详细描述本实用新型的技术方案,但本实用新型的保护范围不局限于以下所述。
如图1所示,本实用新型高压差电平转换电路包括低压域电源端VDDL、高压域电源端VDDH、低压域电源的输入逻辑信号端VIN、高压域电源的输出逻辑信号端VOUT、与低压域电源端VDDL和低压域电源的输入逻辑信号端VIN相连的第一场效应管M1、与第一场效应管M1相连的第二场效应管M2、与低压域电源的输入逻辑信号端VIN相连的第三场效应管M3、与第一场效应管M1和第二场效应管M2相连的第四场效应管M4、与第三场效应管M3相连的第五场效应管M5及与第四场效应管M4相连的第六场效应管M6。
当低压域电源的输入逻辑信号端VIN上的逻辑电平切换时,先让高压域电源端VDDH的电压降低到可以直接转换电平到高压域电源的输出逻辑信号端VOUT上;然后低压域电源的输入逻辑信号端VIN的电平切换,再把高压域电源端VDDH升回到需要转换的电压上去,从而不会出现电平转换不过的情况。
本实用新型高压差电平转换电路的具体电路连接关系如下:第一场效应管M1的栅极与第二场效应管M2的栅极及第三场效应管M3的栅极共同连接低压域电源的输入逻辑信号端VIN,第一场效应管M1的源极与低压域电源端VDDL相连,第一场效应管M1的漏极与第二场效应管M2的漏极及第四场效应管M4的栅极相连;第三场效应管M3的漏极与第五场效应管M5的漏极及第六场效应管M6的栅极相连;第四场效应管M4的漏极与第五场效应管M5的栅极、第六场效应管M6的漏极及高压域电源的输出逻辑信号端VOUT相连;第五场效应管M5的源极与第六场效应管M6的源极共同连接高压域电源端VDDH;第二场效应管M2的源极、第三场效应管M3的源极及第四场效应管M4的源极共同连接地端GND。
其中,在本实施例中,第一场效应管M1、第五场效应管M5与第六场效应管M6为P型场效应管,第二场效应管M2、第三场效应管M3与第四场效应管M4为N型场效应管,在其他实施例中,上述场效应管可以为其他结构可以实现相同功能的元器件,并不限于此。
本实用新型高压差电平转换电路的工作原理如下:
在初始状态,低压域电源的输入逻辑信号端VIN为低电平,高压域电源的输出逻辑信号端VOUT为低电平,低压域电源端VDDL的电压值为vddl,高压域电源端VDDH的电压值为vddh1,其中电压值vddh1小于电压值vddh2,且小于高压差电平转换电路的最大转换电压。
当低压域电源的输入逻辑信号端VIN的电平由低电平转换为高电平时,由于高压域电源端VDDH的电压不高,高压域电源的输出逻辑信号端VOUT也能够跟着转换,故高压域电源的输出逻辑信号端VOUT的电平也会由低电平转换为高电平;由于此时高压域电源端VDDH的电压为vddh1,故高压域电源的输出逻辑信号端VOUT的电压也只能达到vddh1。
当高压域电源的输出逻辑信号端VOUT的电平转换为高电平后,高压域电源端VDDH的电压开始由vddh1缓慢增加到vddh2,高压域电源的输出逻辑信号端VOUT的电压也由vddh1增加到vddh2;这样就完成了一个高电压差的电平转换,电压域由vddl转换成vddh2。
当需要再次切换逻辑电平时,高压域电源端VDDH的电压先从电压vddh2下降为vddh1,使高压域电源的输出逻辑信号端VOUT的电压由vddh2变成vddh1;然后低压域电源的输入逻辑信号端VIN的电平由高电平转换为低电平,从而导致高压域电源的输出逻辑信号端VOUT的电平变低。
高压域电源的输出逻辑信号端VOUT的电平变低后,高压域电源端VDDH的电压又从vddh1恢复到vddh2,完成电平转换;此时低压域电源的输入逻辑信号端VIN和高压域电源的输出逻辑信号端VOUT均是低电平,其分别为vddl和vddh2的电压域。
请同时参阅图2,图2为本实用新型高压差电平转换电路的时序关系示意图。从图中可以看出,低压域电源的输入逻辑信号端VIN的电平由低电平到高电平、再由高电平到低电平的各部分电压时序关系。
在本实用新型中,vddh2通常会比vddl大很多,如果在高压域电源端VDDH的电压为vddh2时,直接切换低压域电源的输入逻辑信号端VIN的逻辑电平,很容易出现高压域电源的输出逻辑信号端VOUT的逻辑不会跟着低压域电源的输入逻辑信号端VIN变化的情况,本实用新型通过让高压域电源端VDDH先降压再升压的方式,有效的解决了这个问题。
请参阅图3,图3为本实用新型高压差电平转换电路的转换方法流程示意图。本实用新型高压差电平转换电路的转换方法包括以下步骤:
步骤一,提供低压域电源端VDDL、高压域电源端VDDH、低压域电源的输入逻辑信号端VIN及高压域电源的输出逻辑信号端VOUT。
步骤二,当低压域电源的输入逻辑信号端VIN上的逻辑电平切换时,先让高压域电源端VDDH的电压降低到可以直接转换电平到高压域电源的输出逻辑信号端VOUT上,即由电压vddh2下降为电压vddh1。
步骤三,低压域电源的输入逻辑信号端VIN的电平切换。
步骤四,高压域电源端VDDH的电压升回到需要转换的电压上去,即由电压vddh1恢复到电压vddh2。
步骤五,完成高压差电平转换。
本实用新型高压差电平转换电路基于普通的电平转换电路,通过控制上电时序来实现高电压差的逻辑电平转换,本实用新型可以解决在对转换速度要求不高的情况下,以非常小的电路实现超高电压差的逻辑电平转换,在一些特殊的应用中有效的节省了面积。
综上所述,本实用新型高压差电平转换电路通过控制上电时序来实现高电压差的逻辑电平转换,以非常小的电路实现超高电压差的逻辑电平转换,电路结构简单且节省了面积。

Claims (7)

1.一种高压差电平转换电路,其特征在于:所述高压差电平转换电路包括低压域电源端、高压域电源端、低压域电源的输入逻辑信号端、高压域电源的输出逻辑信号端、与所述低压域电源端和所述低压域电源的输入逻辑信号端相连的第一场效应管、与所述第一场效应管相连的第二场效应管、与所述低压域电源的输入逻辑信号端相连的第三场效应管、与所述第一场效应管和所述第二场效应管相连的第四场效应管、与所述第三场效应管相连的第五场效应管及与所述第四场效应管相连的第六场效应管,当所述低压域电源的输入逻辑信号端上的逻辑电平切换时,先让所述高压域电源端的电压降低到可以直接转换电平到所述高压域电源的输出逻辑信号端上,然后所述低压域电源的输入逻辑信号端的电平切换,再把所述高压域电源端升回到需要转换的电压上去。
2.根据权利要求1所述的高压差电平转换电路,其特征在于:所述第一场效应管的栅极与所述第二场效应管的栅极及所述第三场效应管的栅极共同连接所述低压域电源的输入逻辑信号端,所述第一场效应管的源极与所述低压域电源端相连,所述第一场效应管的漏极与所述第二场效应管的漏极及所述第四场效应管的栅极相连。
3.根据权利要求2所述的高压差电平转换电路,其特征在于:所述第三场效应管的漏极与所述第五场效应管的漏极及所述第六场效应管的栅极相连。
4.根据权利要求3所述的高压差电平转换电路,其特征在于:所述第四场效应管的漏极与所述第五场效应管的栅极、所述第六场效应管的漏极及所述高压域电源的输出逻辑信号端相连。
5.根据权利要求4所述的高压差电平转换电路,其特征在于:所述第五场效应管的源极与所述第六场效应管的源极共同连接所述高压域电源端。
6.根据权利要求5所述的高压差电平转换电路,其特征在于:所述第二场效应管的源极、所述第三场效应管的源极及所述第四场效应管的源极共同连接地端。
7.根据权利要求1所述的高压差电平转换电路,其特征在于:所述第一场效应管、所述第五场效应管与所述第六场效应管为P型场效应管,所述第二场效应管、所述第三场效应管与所述第四场效应管为N型场效应管。
CN201720673042.0U 2017-06-12 2017-06-12 高压差电平转换电路 Active CN206878802U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720673042.0U CN206878802U (zh) 2017-06-12 2017-06-12 高压差电平转换电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720673042.0U CN206878802U (zh) 2017-06-12 2017-06-12 高压差电平转换电路

Publications (1)

Publication Number Publication Date
CN206878802U true CN206878802U (zh) 2018-01-12

Family

ID=61332919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720673042.0U Active CN206878802U (zh) 2017-06-12 2017-06-12 高压差电平转换电路

Country Status (1)

Country Link
CN (1) CN206878802U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204768A (zh) * 2017-06-12 2017-09-26 成都锐成芯微科技股份有限公司 高压差电平转换电路及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204768A (zh) * 2017-06-12 2017-09-26 成都锐成芯微科技股份有限公司 高压差电平转换电路及方法

Similar Documents

Publication Publication Date Title
CN103066841B (zh) 一种基于电荷泵电容的倍压型直流变换器
CN106200741A (zh) 电流沉负载电路及低压差线性稳压器
CN103944554B (zh) 一种电平转换电路及数模转换器
CN206878802U (zh) 高压差电平转换电路
CN204836095U (zh) 一种可以输出正负电压的运放扩流电路
CN204631677U (zh) 一种功率控制电路
CN102437841B (zh) 模拟开关电路
CN101494450B (zh) 电平转移电路
CN203405751U (zh) 一种新型的稳压器电路结构
CN103595248A (zh) 一种软开关Boost拓扑电路
CN203747789U (zh) Ecl耦合逻辑门电路
CN107493022B (zh) 一种低电压高效电荷泵
CN107204768A (zh) 高压差电平转换电路及方法
CN202309520U (zh) 一种用于芯片使能零关断电流的高压转低压电源电路
CN103187870B (zh) 降压式变换电路
CN107947580A (zh) 四开关buck‑boost变换器及其数字控制方法
CN108933592A (zh) 高速电平转换电路、电平转换方法和数据传输装置
CN206878701U (zh) 差分电荷泵电路
CN104836438B (zh) 一种开关电路装置及驱动电路
CN206211841U (zh) 一种dc‑dc电源管理器
CN204947925U (zh) 一种高频调制逆变器
CN207251472U (zh) 电荷泵电路及电荷泵
CN203289401U (zh) 平板电脑电平位移电路
CN105227166A (zh) 一种mos管背栅电压控制电路
CN206878700U (zh) 差动电荷泵单元电路

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant