CN205283183U - 一种基于电池能量状态估计的电池组主动均衡控制系统 - Google Patents
一种基于电池能量状态估计的电池组主动均衡控制系统 Download PDFInfo
- Publication number
- CN205283183U CN205283183U CN201521064381.6U CN201521064381U CN205283183U CN 205283183 U CN205283183 U CN 205283183U CN 201521064381 U CN201521064381 U CN 201521064381U CN 205283183 U CN205283183 U CN 205283183U
- Authority
- CN
- China
- Prior art keywords
- battery
- transformer
- theta
- soe
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 28
- 239000000178 monomer Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 230000000875 corresponding effect Effects 0.000 description 8
- 238000013178 mathematical model Methods 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 238000007599 discharging Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000011217 control strategy Methods 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
本实用新型公开了一种基于电池能量状态估计的电池组主动均衡控制系统,其包括:电池信息采集器、电池组、变压器、均衡控制器、主控制器;其中:所述电池组与所述电池信息采集器相连,所述电池组由n个单体电池串联组成;所述变压器的数量为n个,每一变压器的初级均单独与一单体电池并联,次级则接入整个电池组的总正和总负之间;所述均衡控制器通过多个引脚分别与每个变压器的初级和次级相连;所述电池信息采集器及所述均衡控制器均与所述主控制器相连。通过采用本实用新型公开的系统,可以提高电池组均衡控制精度,最大化电池组的能量利用率。
Description
技术领域
本实用新型涉及电池组主动均衡技术领域,尤其涉及一种基于电池能量状态估计的电池组主动均衡控制系统。
背景技术
电池储能系统是智能电网、分布式能源、电动汽车等新能源系统的核心。为了达到一定的电压、功率和能量等级,电池储能系统需要将大量电池单体串并联成组使用。由于电池的制作工艺问题和工作环境的影响,电池组中的单体电池间存在着一定的差异。这种差异使电池组的能量不能得到充分利用,而且随着电池间差异的不断累积将会使个别单体容量迅速衰减,进而限制电池组输出功率,缩短电池组寿命。对电池组进行均衡管理是改善电池组不一致性的重要方法。通过对使用过程中电池组状态参数的实时检测,判断电池组的不一致性状态,当达到均衡功能的执行条件时,通过有效的均衡控制策略控制均衡电路执行相应动作,使电池组中各单体在使用过程中的状态趋于一致。
电池组均衡主要有被动均衡和主动均衡两种电路拓扑。主动均衡电路以其能够实现电池间无损能量流动,解决被动均衡中能量损失和产热严重等问题,成为了目前技术研究的热点。常见的主动均衡电路有单体到单体、单体到总体、总体到单体以及单体到总体到单体等拓扑类型。单体到单体拓扑均衡速度慢、控制流程复杂,而单体到总体和总体到单体拓扑能量转移方式单一、灵活性较差,所以这三种拓扑的应用远不及单体到总体到单体拓扑应用广泛。单体到总体到单体的拓扑大多都基于单个反激变压器实现,但这种结构控制策略单一,均衡充放电过程无法并行操作,因此均衡速度较慢,均衡效率较低。
实用新型内容
本实用新型的目的是提供一种基于电池能量状态估计的电池组主动均衡控制系统,可以提高电池组均衡控制精度,最大化电池组的能量利用率。
本实用新型的目的是通过以下技术方案实现的:
一种基于电池能量状态估计的电池组主动均衡控制系统,包括:电池信息采集器、电池组、变压器、均衡控制器、主控制器;其中:
所述电池组与所述电池信息采集器相连,所述电池组由n个单体电池串联组成;所述变压器的数量为n个,每一变压器的初级均单独与一单体电池并联,次级则接入整个电池组的总正和总负之间;所述均衡控制器通过多个引脚分别与每个变压器的初级和次级相连;
所述电池信息采集器及所述均衡控制器均与所述主控制器相连。
进一步的,该系统还包括:SPI通信模块,所述电池信息采集器及所述均衡控制器均通过所述SPI通信模块与所述主控制器相连。
由上述本实用新型提供的技术方案可以看出,基于多变压器的均衡电路拓扑可采用多种控制变量,使得均衡充放电过程可直接并行操作,提高了均衡的效率。
附图说明
为了更清楚地说明本实用新型实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本实用新型实施例提供的一种基于电池能量状态估计的电池组主动均衡控制系统的结构示意图;
图2为本实用新型实施例提供的均衡控制过程的流程图;
图3为本实用新型实施例提供的均衡电池一阶RC网络等效电路模型;
图4为本实用新型实施例提供的Uoc-SOE,T关系图。
具体实施方式
下面结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型的保护范围。
图1为本实用新型实施例提供的一种基于电池能量状态估计的电池组主动均衡控制系统的结构示意图。如图1所示,其主要包括:电池信息采集器、电池组、变压器、均衡控制器、主控制器;其中:
所述电池组与所述电池信息采集器相连,所述电池组由n个单体电池串联组成(单体电池记为B1~Bn);所述变压器的数量为n个,每一变压器的初级均单独与一单体电池并联,次级则接入整个电池组的总正和总负之间;所述均衡控制器通过多个引脚分别与每个变压器的初级和次级相连;
所述电池信息采集器及所述均衡控制器均与所述主控制器相连。
进一步的,该系统还包括:SPI通信模块,所述电池信息采集器及所述均衡控制器均通过所述SPI通信模块与所述主控制器相连;用于实现电池信息采集器与主控制器,以及均衡控制器与主控制器之间的信息交互。
本实施例所提供的电池组主动均衡控制系统可以提高电池组均衡控制精度,最大化电池组的能量利用率。
为了便于理解,下面针对该系统的工作原理进行介绍;需要说明的是,下述工作原理介绍中所采用的各种控制、逻辑算法仅为举例说明,并非构成限制;在本实用新型实施例所提供的系统结构基础上,用户可根据实际情况选择相应的算法,如平均值差值法、滞回控制法、模糊算法等。
本示例中,将电池能量状态(StateOfEnergy,SOE)作为电池均衡策略的控制变量,系统各个单元模块的功能如下:
所述电池信息采集器,用于采集每一单体电池的信息(包括电压、电流、温度等),并传输给主控制器;
所述主控制器,用于根据采集到的每一单体电池的信息结合双不变嵌入法在线辨识电池模型参数,进而估计各个单体电池的SOE值;再根据所有单体电池的SOE值计算电池组的平均SOE值,并根据每一单体电池的SOE值与平均SOE值的差值大小来下发相应的充电或放电控制信号;
所述变压器的数量为n个,每一变压器的初级均单独与一单体电池并联,次级则接入整个电池组的总正和总负之间;所述变压器通过接收均衡控制器的开启或关闭命令对相应的单体电池实行能量流动;
所述均衡控制器通过多个引脚信号分别控制每个变压器的初级和次级的开闭状态,具体的可通过两个MOS管来分别与每一变压器的初级和次级串联(例如,通过MOS管MOSp1及MOSs1与变压器T1初级和次级串联),每个MOS管的G极均连入均衡控制器的开关控制引脚。所述均衡控制器根据接收到的所述主控制器下发的充电或放电控制信号来下发开启或关闭命令至相应的变压器。
本实用新型实施例中,为单体电池充电时,均衡控制器通过引脚信号控制变压器先开启次级再开启初级,为单体电池放电时,开闭顺序与充电时相反。
本实用新型通过监测电池状态,包括电压、电流、温度等,利用双不变嵌入法同时在线辨识电池模型参数、估算SOE,以电池SOE作为控制变量,设置均衡开启条件,当电池组中某个或多个电池达到均衡开启条件时,控制相应开关,使能量高于平均值一定范围的单体向电池组总体放电,同时电池组向能量低于平均值一定范围的单体充电,以达到快速均衡的目的。所述的SOE考虑了电池在充放电过程中电压的变化,能够克服SOC的不足,更为准确的反映出电池的真实状态。以SOE作为均衡控制变量能提高均衡控制精度,使均衡后的电池能量保持精确一致,最大化电池组的能量利用率。
本实用新型实施例中,所述主控制器实现均衡控制的具体过程可如图2所示。系统初始化时,预先设定均衡误差误差带ΔSOE1与ΔSOE2。当电池信息采集器开始工作后,采集每一单体电池的信息(包括电压、电流、温度等),并传输给主控制器。
主控制器首先对信息采集器发送过来的数据进行预处理。为了提高模型准确性和SOE估计精度,本实用新型实施例利用双不变嵌入法在线辨识电池模型参数,估计单体电池的SOE值,电池组中第i个单体电池的SOE值记为SOEi。然后,依据每一单体电池的SOEi值计算整个电池组平均SOEavg值。当SOEi-SOEavg≤ΔSOE1时,判断该单体电池的能量低于电池组中单体能量平均值,并且超过了均衡控制下误差带,主控制器下发充电控制信号,对该单体电池开启充电均衡功能;当SOEi-SOEavg≥ΔSOE2时,判断该单体能量高于电池组中单体能量平均值,并且超过了均衡控制上误差带,主控制器下发放电控制信号,对该单体电池开启放电均衡功能;直到所有单体电池的SOE值均满足均衡关闭条件:ΔSOE1≤SOEi-SOEavg≤ΔSOE2。
本实用新型实施例中,利用双不变嵌入法在线辨识电池模型参数,估计单体电池的SOE值的具体过程如下:
1)根据采集到的每一单体电池的信息并通过功率积分法计算电池均衡前的SOE值。
其计算公式为:
其中,z(t)为t时刻的SOE值;z(t0)为电池初始SOE值;EN为电池额定能量;P(t)为电池的充放电功率,其值为t时刻电池端电压v(t)和流过电流i(t)的乘积。
2)建立均衡电池一阶RC网络等效电路模型。
所述电池一阶RC网络等效电路模型如图3所示,其包括:一个理想电压源UOC、一个串联内阻Ro以及一个动态RC网络;
其中,串联内阻Ro在充放电情况下的数值分为Rchg与Rdis;动态RC网络的分散电阻、分散电容值分别为RD、CD;IL为流入单体电池的电流,Ut为单体电池的端电压。
本实用新型实施例中,整个等效电路相当于一个“单体电池”,即用这个等效电路来模拟本实用新型所说的单体电池的电特性。
3)在电池一阶RC网络等效电路模型的基础上结合功率积分法,建立相应的电池单体数学模型。
所建立的数学模型为:
其中,UD为动态RC网络的端电压,为UD的微分;Uoc为单体电池的开路电压,其为温度T和SOE的函数,三者间的函数关系式为Uoc(SOE,T);该数学模型的参数为θ=[RdisRchgCDRD]。
电池电流IL、端电压Ut以及温度T值可以通过信息采集器采集获得,Uoc为T和SOE的函数,通过实验可获得如图4所示的Uoc-SOE,T关系图。利用曲线拟合可以得到单体电池的开路电压Uoc与SOE,T的函数关系式Uoc(z,T)。由于串联内阻Rchg、Rdis、分散电容CD以及分散电阻RD为该模型中不可知参数,本实用新型中采用不变嵌入法对其进行估计。
4)将该数学模型进行离散化处理,得到单体电池状态估计的空间方程(3)和输出方程(4),以及单体电池参数估计的空间方程(5)和输出方程(6)。
将结合式(1)(2)并将其离散化可得到单体电池状态估计的空间方程(3)和输出方程(4)为:
其中:所有参数的表达式中下标k以及k+1相应的表示k时刻与k+1时刻,Δt为采样时间,α=exp(-Δt/RDCD)。f、g相应的表示电池单体模型的状态空间方程、输出方程函数;x表示模型状态,即单体电池的两个状态分量 zk+1表示k+1时刻单体电池的SOE值(可通过前述公式1来计算),UD,k+1表示k+1时刻单体电池的端电压;y表示模型输出,即单体电池的输出端电压Ut,k,yk表示k时刻单体电池的端电压;u表示模型输入,即单体电池的输入电流IL,k,uk表示k时刻流入单体电池电流;wk、vk分别为服从高斯分布的过程噪声、测量噪声;θk表示k时刻单体电池参数向量,具体含义见下文。
单体电池参数估计的空间方程(5)和输出方程(6)为:
与前文类似的,上述表达式中所有参数的表达式中下标k以及k+1表示相应的k时刻与k+1时刻;表示对单体电池参数θ的估计;r为白噪声;式中的dk即为k时刻单体电池的端电压Ut,k。
本实用新型实施例中,为了便于式(3)中状态估计,本实用新型中将对参数Rchg、Rdis、CD、RD的估计转化为对θ=[RdisRchgαRD]的估计。由于电池参数的变化是非常缓慢的,所以在参数估计状态空间方程中假设参数估计值为受到白噪声rk扰动的恒定值;由于采用不变嵌入法进行参数估计的输出方程必须为可观测,所以在此仍采用电池状态估计的输出方程(4)。
5)根据前文步骤4所获得的方程,并利用双不变嵌入法结合单体电池的信息估计单体电池的参数包括:
在前述步骤4主要提出了单体电池的数学模型,但是并无计算过程,该数学模型是步骤5算法的基础,所以步骤5中算法的中间变量都是基于该数学模型推导而得的。
利用不变嵌入法在线估计k时刻电池参数θk,得出实时电池参数值后,再利用不变嵌入滤波算法和实时参数值估计k时刻电池状态xk;其包括初始化、时间更新、误差产生和测量更新四个步骤:θk,xk是由两个迭代过程估计得到的,分别为时间更新和测量更新测量更新后的值被看做每个k时刻的θk,xk。与前文类似的,在下面的表达式中,下标k、k+1、k-1相应的表示k时刻、k+1时刻、k-1时刻。
1)初始化:
初始化单体电池参数θ0以及协方差误差矩阵的初始值:
初始化单体电池状态x0以及协方差误差矩阵的初始值:
其中,E[]表示期望。Σ为误差协方差矩阵。
2)时间更新:
参数估计的时间更新:
状态估计的时间更新:
其中:Σr与Σw表示系统噪声的协方差。
3)误差产生:
利用前述数学模型中的yk值与实际测量值的偏差ek值得到状态误差矩阵与参数误差矩阵
其中, Σv为系统测量噪声协方差。
4)测量更新:
根据状态误差矩阵与参数误差矩阵及其偏导得出测量更新过程:
其中:
其中:Ak-1为对单体电池状态的空间方程式(3)和输出方程式(4)求导或偏导得到的中间变量。
需要强调的是,本示例上述方案仅为举例,用户可在本实用新型所提供结构的基础上结合平均值差值法、滞回控制法、模糊算法,或其他类似方法来实现电池主动均衡,从而提高电池组均衡控制精度,最大化电池组的能量利用率。
以上所述,仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应该以权利要求书的保护范围为准。
Claims (2)
1.一种基于电池能量状态估计的电池组主动均衡控制系统,其特征在于,包括:电池信息采集器、电池组、变压器、均衡控制器、主控制器;其中:
所述电池组与所述电池信息采集器相连,所述电池组由n个单体电池串联组成;所述变压器的数量为n个,每一变压器的初级均单独与一单体电池并联,次级则接入整个电池组的总正和总负之间;所述均衡控制器通过多个引脚分别与每个变压器的初级和次级相连;
所述电池信息采集器及所述均衡控制器均与所述主控制器相连。
2.根据权利要求1所述的系统,其特征在于,该系统还包括:SPI通信模块,所述电池信息采集器及所述均衡控制器均通过所述SPI通信模块与所述主控制器相连。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201521064381.6U CN205283183U (zh) | 2015-12-16 | 2015-12-16 | 一种基于电池能量状态估计的电池组主动均衡控制系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201521064381.6U CN205283183U (zh) | 2015-12-16 | 2015-12-16 | 一种基于电池能量状态估计的电池组主动均衡控制系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN205283183U true CN205283183U (zh) | 2016-06-01 |
Family
ID=56067719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201521064381.6U Active CN205283183U (zh) | 2015-12-16 | 2015-12-16 | 一种基于电池能量状态估计的电池组主动均衡控制系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN205283183U (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106707180A (zh) * | 2016-12-01 | 2017-05-24 | 深圳市麦澜创新科技有限公司 | 一种并联电池组故障检测方法 |
CN107015166A (zh) * | 2017-06-22 | 2017-08-04 | 安徽锐能科技有限公司 | 用于估计电池能量状态的方法及计算机可读存储介质 |
CN107091993A (zh) * | 2017-06-22 | 2017-08-25 | 安徽锐能科技有限公司 | 用于估计电池能量状态的装置 |
-
2015
- 2015-12-16 CN CN201521064381.6U patent/CN205283183U/zh active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106707180A (zh) * | 2016-12-01 | 2017-05-24 | 深圳市麦澜创新科技有限公司 | 一种并联电池组故障检测方法 |
CN106707180B (zh) * | 2016-12-01 | 2020-09-11 | 深圳市麦澜创新科技有限公司 | 一种并联电池组故障检测方法 |
CN107015166A (zh) * | 2017-06-22 | 2017-08-04 | 安徽锐能科技有限公司 | 用于估计电池能量状态的方法及计算机可读存储介质 |
CN107091993A (zh) * | 2017-06-22 | 2017-08-25 | 安徽锐能科技有限公司 | 用于估计电池能量状态的装置 |
CN107091993B (zh) * | 2017-06-22 | 2019-08-20 | 安徽锐能科技有限公司 | 用于估计电池能量状态的装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106887877B (zh) | 一种基于电池能量状态估计的电池组主动均衡控制系统 | |
CN104795857B (zh) | 锂离子电池能量均衡的实现方法 | |
Lee et al. | Soft computing for battery state-of-charge (BSOC) estimation in battery string systems | |
CN109061506A (zh) | 基于神经网络优化ekf的锂离子动力电池soc估计方法 | |
CN105954679B (zh) | 一种锂电池荷电状态的在线估计方法 | |
CN107134827B (zh) | 总线式锂电池组均衡系统预测控制方法 | |
CN107576919A (zh) | 基于armax模型的动力电池荷电状态估算系统及方法 | |
CN107957562A (zh) | 一种锂离子电池剩余寿命在线预测方法 | |
CN107367693B (zh) | 一种电动汽车动力电池soc检测系统 | |
CN112331941A (zh) | 云端辅助电池管理系统及方法 | |
JP2021520178A (ja) | バッテリ状態推定方法 | |
CN103020445A (zh) | 一种电动车车载磷酸铁锂电池的soc与soh预测方法 | |
CN205283183U (zh) | 一种基于电池能量状态估计的电池组主动均衡控制系统 | |
CN109617185A (zh) | 一种基于主从模式的电池被动均衡方法 | |
CN111628535A (zh) | 一种电池模组均衡控制方法与装置 | |
WO2019006995A1 (zh) | 一种电动汽车动力电池soc智能化预测系统 | |
CN114781176B (zh) | 一种锂离子电池储能系统集总参数的等效电路参数辨识方法 | |
CN115101836B (zh) | 一种云-端融合的电池系统管理方法及装置 | |
CN108169687A (zh) | 一种基于云平台的蓄电池soc估算方法 | |
CN118381162B (zh) | 基于云边协同的储能系统均衡管理方法及其系统 | |
CN117096984A (zh) | 基于强化学习的电池组均衡感知快充控制方法和系统 | |
CN105974320A (zh) | 一种液态或半液态金属电池荷电状态估计方法 | |
CN117595439A (zh) | 一种电网储能电池管理的均衡控制方法及系统 | |
CN113109725B (zh) | 基于状态噪声矩阵自调节并联电池荷电状态估计方法 | |
CN112946480B (zh) | 一种提高soc估计实时性的锂电池电路模型简化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |