CN205246212U - Integrated spectrum subassembly of infrared multichannel of shortwave - Google Patents
Integrated spectrum subassembly of infrared multichannel of shortwave Download PDFInfo
- Publication number
- CN205246212U CN205246212U CN201520978955.4U CN201520978955U CN205246212U CN 205246212 U CN205246212 U CN 205246212U CN 201520978955 U CN201520978955 U CN 201520978955U CN 205246212 U CN205246212 U CN 205246212U
- Authority
- CN
- China
- Prior art keywords
- channel
- short
- wave infrared
- ingaas
- spectrum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 19
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims abstract description 32
- 230000007704 transition Effects 0.000 claims abstract description 16
- 238000003466 welding Methods 0.000 claims abstract description 10
- 239000004065 semiconductor Substances 0.000 claims abstract description 8
- 238000001465 metallisation Methods 0.000 claims abstract description 4
- 230000003287 optical effect Effects 0.000 claims description 11
- 230000010354 integration Effects 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 abstract description 32
- 229910052751 metal Inorganic materials 0.000 abstract description 19
- 239000002184 metal Substances 0.000 abstract description 19
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 abstract description 2
- 238000002834 transmittance Methods 0.000 description 6
- 229920006335 epoxy glue Polymers 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000012788 optical film Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Landscapes
- Spectrometry And Color Measurement (AREA)
Abstract
本专利公开了一种短波红外多通道集成光谱组件,它包括:高长宽比InGaAs线列光敏芯片、读出电路、过渡电极板、测温电阻、半导体致冷器、多通道数字式分光器、窗口、金属管壳与盖板。多通道数字式分光器作为微型光谱仪的分光元件,通过边缘金属化焊接直接固定在高长宽比InGaAs线列光敏芯片上,集成在探测器组件内部。本专利优点是:InGaAs线列光敏芯片的光敏元为高长宽比结构,可提高光谱测试的信噪比;多通道数字式分光器可在单个基片上实现光谱的精细调控,并抑制各通道内的光谱噪声、通道间串音、通道外杂散光;在探测器组件实现多个光谱通道探测简化了微型光谱仪的结构,提高仪器的可靠性和稳定性,减轻仪器的重量。
This patent discloses a short-wave infrared multi-channel integrated spectrum component, which includes: a high aspect ratio InGaAs linear photosensitive chip, a readout circuit, a transition electrode plate, a temperature measuring resistor, a semiconductor refrigerator, a multi-channel digital beam splitter, and a window , Metal shell and cover. The multi-channel digital spectrometer, as the spectroscopic element of the miniature spectrometer, is directly fixed on the high aspect ratio InGaAs linear photosensitive chip through edge metallization welding, and is integrated inside the detector assembly. The advantages of this patent are: the photosensitive element of the InGaAs linear photosensitive chip has a high aspect ratio structure, which can improve the signal-to-noise ratio of the spectrum test; Spectral noise, crosstalk between channels, and stray light outside the channel; the detection of multiple spectral channels in the detector assembly simplifies the structure of the micro-spectrometer, improves the reliability and stability of the instrument, and reduces the weight of the instrument.
Description
技术领域technical field
本专利一种InGaAs探测器组件,具体涉及一种应用于微型光谱仪的内部集成有多通道数字式分光器的InGaAs探测器组件。The patent relates to an InGaAs detector component, in particular to an InGaAs detector component integrated with a multi-channel digital beam splitter used in a miniature spectrometer.
背景技术Background technique
微型光谱仪在农业、食品、工业等领域具有广泛的应用需求,是现场品质快检和在线检测的理想仪器,具有快速、高通量、无损、无污染、高精度、低成本和操作方便等优点。短波红外InGaAs探测器在0.9μm~1.7μm波段具有非制冷室温工作、探测率高、均匀性好等优点,成为微型光谱仪的理想选择。基于短波红外InGaAs探测器的微型光谱仪,通常采用以下两种技术方案:(1)采用InGaAs单元探测器,以及扫描步进装置和光栅、反射镜等,实现光谱测量。其优点是成本低,其缺点是仪器内部有运动部件,影响仪器的长期稳定性和可靠性。(2)采用InGaAs线列焦平面探测器组件和光栅、反射镜等,仪器内部为全固态式分光系统,其稳定性和可靠性大幅提升,仪器的集成度水平有待进一步提升。Miniature spectrometers have a wide range of application requirements in agriculture, food, industry and other fields. They are ideal instruments for on-site quality inspection and on-line inspection. . The short-wave infrared InGaAs detector has the advantages of uncooled room temperature operation, high detection rate and good uniformity in the 0.9 μm ~ 1.7 μm band, and has become an ideal choice for miniature spectrometers. Micro-spectrometers based on short-wave infrared InGaAs detectors usually adopt the following two technical solutions: (1) use InGaAs unit detectors, and scanning stepping devices, gratings, mirrors, etc. to achieve spectral measurement. Its advantage is low cost, and its disadvantage is that there are moving parts inside the instrument, which affects the long-term stability and reliability of the instrument. (2) InGaAs line-column focal plane detector components, gratings, mirrors, etc. are used. The interior of the instrument is an all-solid-state spectroscopic system, and its stability and reliability are greatly improved. The integration level of the instrument needs to be further improved.
随着光学设计能力和加工能力的提升,现有技术有可能实现0.9μm~1.7μm波段的单片多通道数字式分光器。针对微型光谱仪的应用需求,将单片多通道数字式分光器集成到InGaAs焦平面探测器组件内部,实现短波红外多通道集成光谱组件,将大幅简化光谱仪的结构,提高仪器的稳定性与长期可靠性,并能抑制杂散光,对微型光谱仪的技术发展具有重要意义。With the improvement of optical design capabilities and processing capabilities, it is possible to realize a single-chip multi-channel digital optical splitter in the 0.9 μm ~ 1.7 μm band with the existing technology. For the application requirements of micro-spectrometers, the single-chip multi-channel digital spectrometer is integrated into the InGaAs focal plane detector component to realize the short-wave infrared multi-channel integrated spectral component, which will greatly simplify the structure of the spectrometer and improve the stability and long-term reliability of the instrument. Sex, and can suppress stray light, which is of great significance to the technical development of micro-spectrometers.
发明内容Contents of the invention
本专利提出一种内部集成多通道数字式分光器的短波红外InGaAs线列焦平面探测器组件,应用于微型光谱仪和新型传感物联网光谱感知节点。This patent proposes a short-wave infrared InGaAs linear focal plane detector component integrated with a multi-channel digital beam splitter, which is applied to a micro-spectrometer and a new type of sensing IoT spectrum sensing node.
本专利的主要特征在于:为提高微型光谱仪和光谱感知节点的集成度水平与长期可靠性,发明一种短波红外多通道集成光谱组件,包括高长宽比InGaAs线列光敏芯片1、读出电路2、过渡电极板3、测温电阻4、半导体致冷器5、多通道数字式分光器6、窗口7、金属管壳8与盖板9。The main features of this patent are: In order to improve the integration level and long-term reliability of micro-spectrometers and spectral sensing nodes, a short-wave infrared multi-channel integrated spectral component is invented, including a high aspect ratio InGaAs linear photosensitive chip 1, a readout circuit 2, Transition electrode plate 3, temperature measuring resistor 4, semiconductor cooler 5, multi-channel digital beam splitter 6, window 7, metal tube shell 8 and cover plate 9.
所述的多通道数字式分光器6作为微型光谱仪的分光元件,通过边缘金属化焊接,直接与高长宽比InGaAs线列光敏芯片1耦合,集成到短波红外多通道集成光谱组件中。The multi-channel digital spectrometer 6 is used as the spectroscopic element of the miniature spectrometer. It is directly coupled with the high aspect ratio InGaAs linear photosensitive chip 1 through edge metallization welding, and integrated into the short-wave infrared multi-channel integrated spectrum component.
所述的高长宽比InGaAs线列光敏芯片1的光敏元为长方形结构,长宽比为10:1或者20:1;光敏元长度为500μm~1000μm,光敏元宽度为25μm~50μm,线列规模为256×1或512×1,光谱响应范围0.9μm~1.7μm。The photosensitive element of the high aspect ratio InGaAs linear photosensitive chip 1 has a rectangular structure, the aspect ratio is 10:1 or 20:1; 256×1 or 512×1, the spectral response range is 0.9μm~1.7μm.
所述的多通道数字式分光器6为一个单片多通道短波红外滤光片,光谱通道数为64、128或者256,各通道的光谱连续均匀分布或不连续分布,每个通道的光谱带宽2nm~5nm,中心波长定位精度±1nm,透过率≥50%,单个通道内的光谱噪声小于1%,通道间的串音小于1%,在分光通道以外的区域沉积短波红外波段透过率小于0.1%的光学薄膜,抑制杂散光。The multi-channel digital spectrometer 6 is a single-chip multi-channel short-wave infrared filter, the number of spectral channels is 64, 128 or 256, the spectrum of each channel is continuously and evenly distributed or discontinuously distributed, and the spectral bandwidth of each channel is 2nm to 5nm, central wavelength positioning accuracy ±1nm, transmittance ≥ 50%, spectral noise within a single channel is less than 1%, crosstalk between channels is less than 1%, and short-wave infrared band transmittance is deposited in areas other than the splitting channel Less than 0.1% optical film, suppresses stray light.
所述的高长宽比InGaAs线列光敏芯片1与读出电路2通过倒焊互连,多通道数字式分光器6通过边缘金属化焊接光谱通道以外的区域,直接与高长宽比InGaAs线列光敏芯片1耦合,集成到短波红外多通道集成光谱组件中,密封在一个金属管壳8内部,在微小区域内构成有多个光谱通道的集成光谱组件。The high aspect ratio InGaAs linear photosensitive chip 1 and the readout circuit 2 are interconnected by reverse soldering, and the multi-channel digital beam splitter 6 is directly connected to the high aspect ratio InGaAs linear photosensitive chip 1 through edge metallization soldering to the region other than the spectral channel. Coupling, integrated into the short-wave infrared multi-channel integrated spectrum component, sealed inside a metal tube shell 8, forming an integrated spectrum component with multiple spectral channels in a small area.
本专利的技术方案如下:高长宽比InGaAs线列光敏芯片1与读出电路2通过倒焊互连,形成焦平面模块,胶接在过渡电极板3上;在高长宽比InGaAs线列光敏芯片1上对准装配多通道数字式分光器6;在金属管壳8内,焊接半导体致冷器5;半导体致冷器5上胶接过渡电极板3;测温电阻4胶接过渡电极板3上;窗口7焊接在盖板9上;盖板9与金属管壳8进行焊接密封。其中,读出电路2与过渡电极板3通过金属丝实现电学连接,过渡电极板3、测温电阻4与金属管壳8的引脚通过金属丝实现电学连接。The technical scheme of this patent is as follows: the high aspect ratio InGaAs line array photosensitive chip 1 and the readout circuit 2 are interconnected by reverse welding to form a focal plane module, which is glued on the transition electrode plate 3; on the high aspect ratio InGaAs line array photosensitive chip 1 Align and assemble the multi-channel digital beam splitter 6; weld the semiconductor cooler 5 in the metal tube shell 8; glue the transition electrode plate 3 on the semiconductor cooler 5; glue the transition electrode plate 3 on the temperature measuring resistor 4; The window 7 is welded on the cover plate 9; the cover plate 9 and the metal tube shell 8 are welded and sealed. Wherein, the readout circuit 2 and the transition electrode plate 3 are electrically connected through metal wires, and the transition electrode plate 3, the temperature measuring resistor 4 and the pins of the metal casing 8 are electrically connected through metal wires.
本专利的优点在于:The advantage of this patent is:
1.高长宽比InGaAs线列光敏芯片1采用长宽比10:1或20:1的光敏元结构,能有效提高光谱测量的信噪比;1. The high aspect ratio InGaAs linear photosensitive chip 1 adopts a photosensitive element structure with an aspect ratio of 10:1 or 20:1, which can effectively improve the signal-to-noise ratio of spectral measurement;
2.多通道数字式分光器6可在单个基片上实现光谱的精细调控,并抑制各通道内的光谱噪声、通道间串音、通道外杂散光;2. The multi-channel digital optical splitter 6 can realize fine control of the spectrum on a single substrate, and suppress spectral noise in each channel, crosstalk between channels, and stray light outside the channel;
3.多通道数字式分光器6直接与高长宽比InGaAs线列光敏芯片1耦合,集成到探测器组件内部,在微小区域内实现多个光谱通道;3. The multi-channel digital beam splitter 6 is directly coupled with the high aspect ratio InGaAs linear photosensitive chip 1 and integrated into the detector assembly to realize multiple spectral channels in a small area;
4.光谱组件大大简化微型光谱仪的分光系统,提高仪器的可靠性和稳定性,减轻仪器的重量。4. The spectral component greatly simplifies the spectroscopic system of the miniature spectrometer, improves the reliability and stability of the instrument, and reduces the weight of the instrument.
附图说明Description of drawings
图1为InGaAs线列芯片的光敏元排布示意图。FIG. 1 is a schematic diagram of the arrangement of photosensitive elements of an InGaAs linear chip.
图2为多通道数字式分光器示意图。Fig. 2 is a schematic diagram of a multi-channel digital optical splitter.
图3为短波红外多通道集成光谱组件结构示意图。Fig. 3 is a schematic diagram of the structure of the short-wave infrared multi-channel integrated spectrum component.
其中:in:
p1——第1个光敏元;p1——the first photosensitive element;
p2——第2个光敏元;p2——the second photosensitive element;
p3——第3个光敏元;p3——the third photosensitive element;
p255——第255个光敏元;p255 - the 255th photosensitive element;
p256——第256个光敏元;p256 - the 256th photosensitive element;
f1——第1个光谱通道;f1——the first spectral channel;
f2——第2个光谱通道;f2——the second spectral channel;
f3——第3个光谱通道;f3——the third spectral channel;
f126——第126个光谱通道;f126——the 126th spectral channel;
f127——第127个光谱通道;f127——the 127th spectral channel;
f128——第128个光谱通道;f128——the 128th spectral channel;
1——高长宽比InGaAs线列光敏芯片;1——High aspect ratio InGaAs linear photosensitive chip;
2——读出电路;2 - readout circuit;
3——过渡电极板;3——transition electrode plate;
4——测温电阻;4——temperature measuring resistance;
5——半导体致冷器;5 - semiconductor refrigerator;
6——多通道数字式分光器;6——Multi-channel digital optical splitter;
7——窗口;7 - window;
8——金属管壳;8——Metal shell;
9——盖板。9——Cover plate.
具体实施方式detailed description
以下结合附图对本发明的实施作进一步的描述。The implementation of the present invention will be further described below in conjunction with the accompanying drawings.
实施例一:Embodiment one:
本实施例是128×1短波红外多通道集成光谱组件。This embodiment is a 128×1 short-wave infrared multi-channel integrated spectrum component.
按图1所示,背照射InGaAs线列芯片的光敏元长宽比为10:1,p1与p2中心距50μm,光敏元长度500μm,芯片规模为256×1,光谱响应范围是0.9μm~1.7μm。将1条256×1的InGaAs线列芯片1与1条256×1规模的读出电路2通过In柱倒焊互连,形成256×1背照射焦平面模块。As shown in Figure 1, the aspect ratio of the photosensitive element of the back-illuminated InGaAs linear chip is 10:1, the center distance between p1 and p2 is 50 μm, the length of the photosensitive element is 500 μm, the chip size is 256×1, and the spectral response range is 0.9 μm to 1.7 μm. A 256×1 InGaAs linear array chip 1 and a 256×1 readout circuit 2 are interconnected through In-column flip-bonding to form a 256×1 back-illuminated focal plane module.
按图2所示,多通道数字式分光器6为128×1通道的短波红外分光器,在300μm~500μm厚度的蓝宝石片基片上、0.9μm~1.7μm的光谱范围内,不连续分布了128个光谱通道,f1与f2的中心距为100μm,每个光谱通道的带宽为3nm,透过率为50%~60%,单个通道内的光谱噪声小于1%,通道间的串音小于1%,在分光通道以外的区域沉积了短波红外波段透过率小于0.1%的光学薄膜。As shown in Figure 2, the multi-channel digital beam splitter 6 is a short-wave infrared beam splitter with 128 × 1 channel. On a sapphire substrate with a thickness of 300 μm to 500 μm, within the spectral range of 0.9 μm to 1.7 μm, 128 The center distance between f1 and f2 is 100μm, the bandwidth of each spectral channel is 3nm, the transmittance is 50%~60%, the spectral noise in a single channel is less than 1%, and the crosstalk between channels is less than 1%. , an optical film with a transmittance of less than 0.1% in the short-wave infrared band is deposited in the area outside the light-splitting channel.
按图3所示,在金属管壳8内,采用银浆焊接半导体致冷器5,120℃高温固化6~8小时,然后环氧胶胶接过渡电极板3,60℃固化12~18小时。在过渡电极板3上,采用环氧胶胶接测温电阻4,对中装配背照射256×1焦平面模块,读出电路2与过渡电极板3采用Ф25μm~Ф50μm的Si/Al丝通过超声楔焊进行电学连接。在50倍高精度投影仪下,将128×1通道数字式分光器6与256×1背照射InGaAs线列芯片1对准装配,光谱通道以外的边缘区域进行金属铟焊,f1通道对应p1、p2光敏元,f2通道对应p3、p4光敏元,依次类推,f128通道对应p255、p256光敏元。过渡电极板3与金属管壳8的引脚,采用Ф25μm~Ф50μm的Si/Al丝通过超声楔焊进行电学连接。窗口7的边缘区域与盖板9开孔处进行金属铟焊,盖板9与金属管壳8通过平行缝焊的方式进行密封。As shown in Figure 3, in the metal tube shell 8, the semiconductor refrigerator 5 is welded with silver paste, cured at a high temperature of 120°C for 6-8 hours, and then the transition electrode plate 3 is glued with epoxy glue, cured at 60°C for 12-18 hours . On the transition electrode plate 3, the temperature measuring resistor 4 is bonded with epoxy glue, and the back-illuminated 256×1 focal plane module is assembled in the center. The readout circuit 2 and the transition electrode plate 3 use Ф25μm~Ф50μm Si/Al wire through ultrasonic Wedge soldering for electrical connection. Under the 50 times high-precision projector, the 128×1 channel digital beam splitter 6 is aligned with the 256×1 back-illuminated InGaAs line array chip 1, and the edge area outside the spectral channel is soldered with metal indium, and the f1 channel corresponds to p1, P2 photosensitive element, f2 channel corresponds to p3, p4 photosensitive element, and so on, f128 channel corresponds to p255, p256 photosensitive element. The pins of the transition electrode plate 3 and the metal casing 8 are electrically connected by ultrasonic wedge welding with Si/Al wires of Ф25 μm˜Ф50 μm. Metal indium welding is performed between the edge area of the window 7 and the opening of the cover plate 9 , and the cover plate 9 and the metal shell 8 are sealed by parallel seam welding.
实施例二:Embodiment two:
本实施例是128×1短波红外多通道集成光谱组件。This embodiment is a 128×1 short-wave infrared multi-channel integrated spectrum component.
按图1所示,背照射InGaAs线列芯片的光敏元长宽比为20:1,p1与p2中心距50μm,光敏元长度1000μm,芯片规模为256×1,光谱响应范围是0.9μm~1.7μm。将1条256×1的InGaAs线列芯片1与1条256×1规模的读出电路2通过In柱倒焊互连,形成256×1背照射焦平面模块。As shown in Figure 1, the aspect ratio of the photosensitive element of the back-illuminated InGaAs linear chip is 20:1, the center distance between p1 and p2 is 50 μm, the length of the photosensitive element is 1000 μm, the chip size is 256×1, and the spectral response range is 0.9 μm to 1.7 μm. A 256×1 InGaAs linear array chip 1 and a 256×1 readout circuit 2 are interconnected through In-column flip-bonding to form a 256×1 back-illuminated focal plane module.
按图2所示,多通道数字式分光器6为128×1通道的短波红外分光器,在300μm~500μm厚度的蓝宝石片基片上、0.9μm~1.7μm的光谱范围内,不连续分布了128个光谱通道,f1与f2的中心距为100μm,每个光谱通道的带宽为3nm,透过率为50%~60%,单个通道内的光谱噪声小于1%,通道间的串音小于1%,在分光通道以外的区域沉积了短波红外波段透过率小于0.1%的光学薄膜。As shown in Figure 2, the multi-channel digital beam splitter 6 is a short-wave infrared beam splitter with 128 × 1 channel. On a sapphire substrate with a thickness of 300 μm to 500 μm, within the spectral range of 0.9 μm to 1.7 μm, 128 The center distance between f1 and f2 is 100μm, the bandwidth of each spectral channel is 3nm, the transmittance is 50%~60%, the spectral noise in a single channel is less than 1%, and the crosstalk between channels is less than 1%. , an optical film with a transmittance of less than 0.1% in the short-wave infrared band is deposited in the area outside the light-splitting channel.
按图3所示,在金属管壳8内,采用银浆焊接半导体致冷器5,120℃高温固化6~8小时,然后环氧胶胶接过渡电极板3,60℃固化12~18小时。在过渡电极板3上,采用环氧胶胶接测温电阻4,对中装配背照射256×1焦平面模块,读出电路2与过渡电极板3采用Ф25μm~Ф50μm的Si/Al丝通过超声楔焊进行电学连接。在50倍高精度投影仪下,将128×1通道数字式分光器6与256×1背照射InGaAs线列芯片1对准装配,光谱通道以外的边缘区域进行金属铟焊,f1通道对应p1、p2光敏元,f2通道对应p3、p4光敏元,依次类推,f128通道对应p255、p256光敏元。过渡电极板3与金属管壳8的引脚,采用Ф25μm~Ф50μm的Si/Al丝通过超声楔焊进行电学连接。窗口7的边缘区域与盖板9开孔处进行金属铟焊,盖板9与金属管壳8通过平行缝焊的方式进行密封。As shown in Figure 3, in the metal tube shell 8, the semiconductor refrigerator 5 is welded with silver paste, cured at a high temperature of 120°C for 6-8 hours, and then the transition electrode plate 3 is glued with epoxy glue, cured at 60°C for 12-18 hours . On the transition electrode plate 3, the temperature measuring resistor 4 is bonded with epoxy glue, and the back-illuminated 256×1 focal plane module is assembled in the center. The readout circuit 2 and the transition electrode plate 3 use Ф25μm~Ф50μm Si/Al wire through ultrasonic Wedge soldering for electrical connection. Under the 50 times high-precision projector, the 128×1 channel digital beam splitter 6 is aligned with the 256×1 back-illuminated InGaAs line array chip 1, and the edge area outside the spectral channel is soldered with metal indium, and the f1 channel corresponds to p1, P2 photosensitive element, f2 channel corresponds to p3, p4 photosensitive element, and so on, f128 channel corresponds to p255, p256 photosensitive element. The pins of the transition electrode plate 3 and the metal casing 8 are electrically connected by ultrasonic wedge welding with Si/Al wires of Ф25 μm˜Ф50 μm. Metal indium welding is performed between the edge area of the window 7 and the opening of the cover plate 9 , and the cover plate 9 and the metal shell 8 are sealed by parallel seam welding.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520978955.4U CN205246212U (en) | 2015-07-16 | 2015-12-01 | Integrated spectrum subassembly of infrared multichannel of shortwave |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510416712.6A CN105021278A (en) | 2015-07-16 | 2015-07-16 | Short wave infrared multichannel integrated spectral assembly |
CN2015104167126 | 2015-07-16 | ||
CN201520978955.4U CN205246212U (en) | 2015-07-16 | 2015-12-01 | Integrated spectrum subassembly of infrared multichannel of shortwave |
Publications (1)
Publication Number | Publication Date |
---|---|
CN205246212U true CN205246212U (en) | 2016-05-18 |
Family
ID=54411417
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510416712.6A Pending CN105021278A (en) | 2015-07-16 | 2015-07-16 | Short wave infrared multichannel integrated spectral assembly |
CN201510864335.2A Active CN105371951B (en) | 2015-07-16 | 2015-12-01 | A kind of short-wave infrared multichannel integration spectrum component |
CN201520978955.4U Expired - Fee Related CN205246212U (en) | 2015-07-16 | 2015-12-01 | Integrated spectrum subassembly of infrared multichannel of shortwave |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510416712.6A Pending CN105021278A (en) | 2015-07-16 | 2015-07-16 | Short wave infrared multichannel integrated spectral assembly |
CN201510864335.2A Active CN105371951B (en) | 2015-07-16 | 2015-12-01 | A kind of short-wave infrared multichannel integration spectrum component |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN105021278A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105371951A (en) * | 2015-07-16 | 2016-03-02 | 中国科学院上海技术物理研究所 | Short-wave-infrared multichannel integrated optical spectrum assembly |
CN107888810A (en) * | 2017-11-13 | 2018-04-06 | 合肥美亚光电技术股份有限公司 | InGaAs infrared cameras and control method |
CN109029726A (en) * | 2018-05-25 | 2018-12-18 | 西北工业大学 | A kind of window integrated form spectrum/polarized imaging system |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105572880B (en) * | 2016-03-23 | 2018-08-28 | 山东大学 | A kind of incident optical system and its working method near infrared spectrum sensing node |
CN106449548A (en) * | 2016-10-28 | 2017-02-22 | 中国电子科技集团公司第四十四研究所 | Mini type packaging structure for electronic multiplying charge-coupled device |
CN107290053A (en) * | 2017-05-27 | 2017-10-24 | 中国科学院上海技术物理研究所 | Miniature long wave near-infrared Internet of things node based on linear variable filter |
CN108169807B (en) * | 2017-12-27 | 2019-08-02 | 长光卫星技术有限公司 | A kind of integrated form short-wave infrared optical imaging system |
US10859436B2 (en) * | 2019-02-19 | 2020-12-08 | Renesas Electronics America Inc. | Spectrometer on a chip |
CN110855899B (en) * | 2019-10-18 | 2021-01-01 | 山东大学 | High dynamic range imaging method of InGaAs short wave infrared camera based on correlated double sampling |
CN112556847A (en) * | 2020-11-27 | 2021-03-26 | 云南昆物新跃光电科技有限公司 | InGaAs multi-line photosensitive chip and application thereof |
CN113419289A (en) * | 2021-05-13 | 2021-09-21 | 中国电子科技集团公司第十一研究所 | Method for mounting multi-spectral filter for infrared detector and infrared detector |
CN114242711A (en) * | 2021-12-17 | 2022-03-25 | 电子科技大学 | A kind of preparation technology of hyperspectral photodetector |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003091676A1 (en) * | 2002-04-23 | 2003-11-06 | Hiromu Maeda | Small packaged spectroscopic sensor unit |
CN1193213C (en) * | 2002-05-13 | 2005-03-16 | 重庆大学 | Integrated Micro Spectrometer |
US7167249B1 (en) * | 2003-11-25 | 2007-01-23 | Kestrel Corporation | High efficiency spectral imager |
CN101871816B (en) * | 2010-06-03 | 2012-02-29 | 北京航空航天大学 | Modular Split Sagnac Interferometer |
CN103500749B (en) * | 2013-10-10 | 2016-09-28 | 中国科学院上海技术物理研究所 | A kind of super long alignment InGaAs detector encapsulating structure of thermoelectric cooling |
CN105021278A (en) * | 2015-07-16 | 2015-11-04 | 中国科学院上海技术物理研究所 | Short wave infrared multichannel integrated spectral assembly |
-
2015
- 2015-07-16 CN CN201510416712.6A patent/CN105021278A/en active Pending
- 2015-12-01 CN CN201510864335.2A patent/CN105371951B/en active Active
- 2015-12-01 CN CN201520978955.4U patent/CN205246212U/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105371951A (en) * | 2015-07-16 | 2016-03-02 | 中国科学院上海技术物理研究所 | Short-wave-infrared multichannel integrated optical spectrum assembly |
CN107888810A (en) * | 2017-11-13 | 2018-04-06 | 合肥美亚光电技术股份有限公司 | InGaAs infrared cameras and control method |
CN107888810B (en) * | 2017-11-13 | 2024-03-01 | 合肥美亚光电技术股份有限公司 | InGaAs infrared camera and control method |
CN109029726A (en) * | 2018-05-25 | 2018-12-18 | 西北工业大学 | A kind of window integrated form spectrum/polarized imaging system |
Also Published As
Publication number | Publication date |
---|---|
CN105371951B (en) | 2018-10-23 |
CN105371951A (en) | 2016-03-02 |
CN105021278A (en) | 2015-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205246212U (en) | Integrated spectrum subassembly of infrared multichannel of shortwave | |
CN105683725B (en) | Optical detection device | |
CN106500835B (en) | A kind of haplotype dual-band infrared probe assembly suitable for low temperature environment | |
WO2017000130A1 (en) | Packaging structure for four-channel integrated tunable array laser chip | |
US7224910B2 (en) | Direct attach optical receiver module and method of testing | |
JP2001228022A (en) | Wavelength-selecting infrared detection element and infrared-ray gas analyzer | |
JP6476634B2 (en) | Optical receiver module | |
CN106338799A (en) | Light emitting assembly | |
DE102018212755A1 (en) | Spectrometer device and method for producing a spectrometer device | |
JP5531275B2 (en) | Infrared sensor and manufacturing method thereof | |
CN115078289A (en) | A sandwich-type on-chip integrated miniature infrared gas sensor | |
JP2009058948A (en) | Spectroscopic element, spectroscopic device, and spectroscopic method | |
US6121615A (en) | Infrared radiation sensitive device | |
CN110462443A (en) | Semiconductor Radiation Detector | |
JP2014142237A (en) | Infrared receiving unit and infrared application device including the same | |
CN217605118U (en) | A kind of optoelectronic testing device based on PCB board | |
CN116692766A (en) | Array MEMS Fabry-Perot cavity chip, photoelectric detector, spectrum sensor and spectrometer | |
CN110010592A (en) | A multi-band semiconductor photodetector | |
CN112556847A (en) | InGaAs multi-line photosensitive chip and application thereof | |
JP2023049386A (en) | Optical gas sensor device | |
US7176439B2 (en) | Method for manufacturing photodetector for weak light | |
CN111721414A (en) | Spectrometer | |
JP3713872B2 (en) | Optical receiver module | |
JP6202440B2 (en) | Infrared gas sensor | |
JP2002222983A (en) | Optical communication light-receiving module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160518 Termination date: 20191201 |