CN105371951A - Short-wave-infrared multichannel integrated optical spectrum assembly - Google Patents

Short-wave-infrared multichannel integrated optical spectrum assembly Download PDF

Info

Publication number
CN105371951A
CN105371951A CN201510864335.2A CN201510864335A CN105371951A CN 105371951 A CN105371951 A CN 105371951A CN 201510864335 A CN201510864335 A CN 201510864335A CN 105371951 A CN105371951 A CN 105371951A
Authority
CN
China
Prior art keywords
spectrum
short
ingaas
channel
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510864335.2A
Other languages
Chinese (zh)
Other versions
CN105371951B (en
Inventor
邵秀梅
周东平
方家熊
程吉凤
徐勤飞
黄松垒
陈郁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jingding Photoelectric Technology Co ltd
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Jingding Photoelectric Technology Co ltd
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jingding Photoelectric Technology Co ltd, Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Jingding Photoelectric Technology Co ltd
Priority to CN201510864335.2A priority Critical patent/CN105371951B/en
Publication of CN105371951A publication Critical patent/CN105371951A/en
Application granted granted Critical
Publication of CN105371951B publication Critical patent/CN105371951B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention discloses a short-wave-infrared multichannel integrated optical spectrum assembly. The short-wave-infrared multichannel integrated optical spectrum assembly comprises a high length-width ratio InGaAs alignment photosensitive chip, a reading circuit, a transition plate electrode, a measurement resistor, a semiconductor refrigerator, a multichannel digital optical splitter, a window, a metal tube casing and a cover plate. The multichannel digital optical splitter is taken as the splitting element of a micro spectrometer, directly welded and fixed on the high length-width ratio InGaAs alignment photosensitive chip through edge metallization, and integrated in a detector assembly. The short-wave-infrared multichannel integrated optical spectrum assembly is characterized in that: the photosensitive component of an InGaAs alignment photosensitive chip has a high length-width ratio structure so as to improve the signal to noise ratios of a spectrum test; a multichannel digital optical splitter is able to realize fine control of the spectrum on single substrate and restrain spectrum noise in each channel, crosstalk among channels and stray light outside the channels; and a detector assembly is able to realize detection of a plurality of spectrum channels so that the structure of a micro spectrometer is simplified, the reliability and the stability of an instrument is improved and the weight of the instrument is mitigated.

Description

A kind of short-wave infrared hyperchannel integration spectrum assembly
Technical field
A kind of InGaAs detector assembly of the present invention, is specifically related to the InGaAs detector assembly that a kind of inside being applied to micro spectrometer is integrated with multi-channel digital optical splitter.
Background technology
Micro spectrometer has a wide range of applications demand in fields such as agricultural, food, industry, is that on-the-spot quality examines the desirable instrument with on-line checkingi soon, have fast, high flux, harmless, pollution-free, high precision, low cost and the advantage such as easy to operate.Short-wave infrared InGaAs detector has the advantages such as non-brake method working and room temperature, detectivity is high, homogeneity is good at 0.9 μm ~ 1.7 mu m wavebands, becomes the ideal chose of micro spectrometer.Based on the micro spectrometer of short-wave infrared InGaAs detector, usually adopt following two kinds of technical schemes: (1) adopts InGaAs single-element detector, and scan step device and grating, catoptron etc., realize spectral measurement.Its advantage is that cost is low, and its shortcoming is that instrument internal has moving component, affects long-time stability and the reliability of instrument.(2) adopt InGaAs Linear FPA detector assembly and grating, catoptron etc., instrument internal is all solid state formula beam splitting system, and its stability and reliability significantly promote, and the integrated level level of instrument needs to be further improved.
Along with the lifting of optical design ability and working ability, prior art likely realizes the monolithic multi-channel digital optical splitter of 0.9 μm ~ 1.7 mu m wavebands.For the application demand of micro spectrometer, monolithic multi-channel digital optical splitter is integrated into InGaAs focus planardetector component internal, realize short-wave infrared hyperchannel integration spectrum assembly, to significantly simplify the structure of spectrometer, improve stability and the long-term reliability of instrument, and can parasitic light be suppressed, significant to the technical development of micro spectrometer.
Summary of the invention
The present invention proposes the short-wave infrared InGaAs Linear FPA detector assembly of the digital optical splitter of a kind of inner integrated multi-channel, is applied to micro spectrometer and novel sensor networking spectrum sensing node.
The present invention is characterized in: for improving integrated level level and the long-term reliability of micro spectrometer and spectrum sensing node, invent a kind of short-wave infrared hyperchannel integration spectrum assembly, comprise high-aspect-ratio InGaAs alignment photosensor chip 1, sensing circuit 2, transition electrode plate 3, temperature detecting resistance 4, semiconductor cooler 5, multi-channel digital optical splitter 6, window 7, Can 8 and cover plate 9.
Described multi-channel digital optical splitter 6, as the beam splitter of micro spectrometer, is welded by metallizing edges, is directly coupled with high-aspect-ratio InGaAs alignment photosensor chip 1, is integrated in short-wave infrared hyperchannel integration spectrum assembly.
The photosensitive unit of described high-aspect-ratio InGaAs alignment photosensor chip 1 is rectangle structure, and length breadth ratio is 10:1 or 20:1; Photosensitive first length is 500 μm ~ 1000 μm, and photosensitive first width is 25 μm ~ 50 μm, and alignment scale is 256 × 1 or 512 × 1, spectral response range 0.9 μm ~ 1.7 μm.
Described multi-channel digital optical splitter 6 is a monolithic hyperchannel short-wave infrared optical filter, spectrum channel number is 64,128 or 256, the spectrum continuous uniform distribution or discontinuously arranged of each passage, spectral bandwidth 2nm ~ the 5nm of each passage, centre wavelength positioning precision ± 1nm, transmitance >=50%, spectral noise in single passage is less than 1%, interchannel cross-talk is less than 1%, the optical thin film that area deposition short infrared wave band transmitance beyond point optical channel is less than 0.1%, suppresses parasitic light.
Described high-aspect-ratio InGaAs alignment photosensor chip 1 is interconnected by inverse bonding with sensing circuit 2, multi-channel digital optical splitter 6 is by the region beyond metallizing edges welding spectrum channel, directly be coupled with high-aspect-ratio InGaAs alignment photosensor chip 1, be integrated in short-wave infrared hyperchannel integration spectrum assembly, be sealed in a Can 8 inner, in tiny area, be configured with the integration spectrum assembly of multiple spectrum channel.
Technical scheme of the present invention is as follows: high-aspect-ratio InGaAs alignment photosensor chip 1 and sensing circuit 2 are interconnected by inverse bonding, forms focal plane module, is glued on transition electrode plate 3; High-aspect-ratio InGaAs alignment photosensor chip 1 is aimed at assembling multi-channel digital optical splitter 6; In Can 8, welding semiconductor cooler 5; Semiconductor cooler 5 gluing is taken over and is crossed battery lead plate 3; Temperature detecting resistance 4 glueds joint on transition electrode plate 3; Window 7 is welded on cover plate 9; Cover plate 9 and Can 8 carry out welded seal.Wherein, sensing circuit 2 realizes electricity with transition electrode plate 3 by tinsel and is connected, and transition electrode plate 3, temperature detecting resistance 4 realize electricity with the pin of Can 8 by tinsel and be connected.
The invention has the advantages that:
1. high-aspect-ratio InGaAs alignment photosensor chip 1 adopts the photosensitive meta structure of length breadth ratio 10:1 or 20:1, effectively can improve the signal to noise ratio (S/N ratio) of spectral measurement;
2. multi-channel digital optical splitter 6 can realize the finely regulating of spectrum on a single substrate, and suppresses the outer parasitic light of the spectral noise in each passage, interchannel cross-talk, passage;
3. multi-channel digital optical splitter 6 is directly coupled with high-aspect-ratio InGaAs alignment photosensor chip 1, is integrated into detector assembly inside, realizes multiple spectrum channel in tiny area;
4. spectrum assembly simplifies the beam splitting system of micro spectrometer greatly, improves the reliability and stability of instrument, alleviates the weight of instrument.
Accompanying drawing explanation
Fig. 1 is the photosensitive unit arrangement schematic diagram of InGaAs alignment chip.
Fig. 2 is multi-channel digital optical splitter schematic diagram.
Fig. 3 is short-wave infrared hyperchannel integration spectrum modular construction schematic diagram.
Wherein:
P1---the 1st photosensitive unit;
P2---the 2nd photosensitive unit;
P3---the 3rd photosensitive unit;
P255---the 255th photosensitive unit;
P256---the 256th photosensitive unit;
F1---the 1st spectrum channel;
F2---the 2nd spectrum channel;
F3---the 3rd spectrum channel;
F126---the 126th spectrum channel;
F127---the 127th spectrum channel;
F128---the 128th spectrum channel;
1---high-aspect-ratio InGaAs alignment photosensor chip;
2---sensing circuit;
3---transition electrode plate;
4---temperature detecting resistance;
5---semiconductor cooler;
6---multi-channel digital optical splitter;
7---window;
8---Can;
9---cover plate.
Embodiment
Below in conjunction with accompanying drawing, enforcement of the present invention is further described.
Embodiment one:
The present embodiment is 128 × 1 short-wave infrared hyperchannel integration spectrum assemblies.
Shown in Fig. 1, photosensitive first length breadth ratio of back illumination InGaAs alignment chip is 10:1, p1 and p2 centre distance 50 μm, photosensitive first length 500 μm, and chip-scale is 256 × 1, and spectral response range is 0.9 μm ~ 1.7 μm.The sensing circuit 2 of the InGaAs alignment chip 1 of 1 256 × 1 and 1 256 × 1 scale is interconnected by the inverse bonding of In post, forms 256 × 1 back illumination focal plane modules.
Shown in Fig. 2, multi-channel digital optical splitter 6 is the short-wave infrared optical splitter of 128 × 1 passages, on the sapphire sheet substrate of 300 μm ~ 500 μm of thickness, in the spectral range of 0.9 μm ~ 1.7 μm, discontinuously arranged 128 spectrum channels, the centre distance of f1 and f2 is 100 μm, the bandwidth of each spectrum channel is 3nm, transmitance is 50% ~ 60%, spectral noise in single passage is less than 1%, interchannel cross-talk is less than 1%, is dividing the optical thin film that short infrared wave band transmitance is less than 0.1% of the area deposition beyond optical channel.
Shown in Fig. 3, in Can 8, adopt silver slurry welding semiconductor cooler 5,120 DEG C of hot settings 6 ~ 8 hours, then epoxy glue glueds joint transition electrode plate 3,60 DEG C solidification 12 ~ 18 hours.On transition electrode plate 3, adopt epoxy glue to glued joint temperature detecting resistance 4, centered assembling back illumination 256 × 1 focal plane module, sensing circuit 2 and transition electrode plate 3 adopt the Si/Al silk of Ф 25 μm ~ Ф 50 μm to carry out electricity by ultrasonic wedge bonding to be connected.Under 50 times of high-accuracy projectors, the digital optical splitter 6 of 128 × 1 passage is aimed at 256 × 1 back illumination InGaAs alignment chips 1 and assembles, fringe region beyond spectrum channel carries out indium metal weldering, the corresponding photosensitive unit of p1, p2 of f1 passage, the corresponding photosensitive unit of p3, p4 of f2 passage, the like, the corresponding photosensitive unit of p255, p256 of f128 passage.Transition electrode plate 3 and the pin of Can 8, adopt the Si/Al silk of Ф 25 μm ~ Ф 50 μm to carry out electricity connection by ultrasonic wedge bonding.Fringe region and cover plate 9 tapping of window 7 carry out indium metal weldering, and cover plate 9 and Can 8 are sealed by the mode of parallel seam welding.
Embodiment two:
The present embodiment is 128 × 1 short-wave infrared hyperchannel integration spectrum assemblies.
Shown in Fig. 1, photosensitive first length breadth ratio of back illumination InGaAs alignment chip is 20:1, p1 and p2 centre distance 50 μm, photosensitive first length 1000 μm, and chip-scale is 256 × 1, and spectral response range is 0.9 μm ~ 1.7 μm.The sensing circuit 2 of the InGaAs alignment chip 1 of 1 256 × 1 and 1 256 × 1 scale is interconnected by the inverse bonding of In post, forms 256 × 1 back illumination focal plane modules.
Shown in Fig. 2, multi-channel digital optical splitter 6 is the short-wave infrared optical splitter of 128 × 1 passages, on the sapphire sheet substrate of 300 μm ~ 500 μm of thickness, in the spectral range of 0.9 μm ~ 1.7 μm, discontinuously arranged 128 spectrum channels, the centre distance of f1 and f2 is 100 μm, the bandwidth of each spectrum channel is 3nm, transmitance is 50% ~ 60%, spectral noise in single passage is less than 1%, interchannel cross-talk is less than 1%, is dividing the optical thin film that short infrared wave band transmitance is less than 0.1% of the area deposition beyond optical channel.
Shown in Fig. 3, in Can 8, adopt silver slurry welding semiconductor cooler 5,120 DEG C of hot settings 6 ~ 8 hours, then epoxy glue glueds joint transition electrode plate 3,60 DEG C solidification 12 ~ 18 hours.On transition electrode plate 3, adopt epoxy glue to glued joint temperature detecting resistance 4, centered assembling back illumination 256 × 1 focal plane module, sensing circuit 2 and transition electrode plate 3 adopt the Si/Al silk of Ф 25 μm ~ Ф 50 μm to carry out electricity by ultrasonic wedge bonding to be connected.Under 50 times of high-accuracy projectors, the digital optical splitter 6 of 128 × 1 passage is aimed at 256 × 1 back illumination InGaAs alignment chips 1 and assembles, fringe region beyond spectrum channel carries out indium metal weldering, the corresponding photosensitive unit of p1, p2 of f1 passage, the corresponding photosensitive unit of p3, p4 of f2 passage, the like, the corresponding photosensitive unit of p255, p256 of f128 passage.Transition electrode plate 3 and the pin of Can 8, adopt the Si/Al silk of Ф 25 μm ~ Ф 50 μm to carry out electricity connection by ultrasonic wedge bonding.Fringe region and cover plate 9 tapping of window 7 carry out indium metal weldering, and cover plate 9 and Can 8 are sealed by the mode of parallel seam welding.

Claims (3)

1. a short-wave infrared hyperchannel integration spectrum assembly, comprise high-aspect-ratio InGaAs alignment photosensor chip (1), sensing circuit (2), transition electrode plate (3), temperature detecting resistance (4), semiconductor cooler (5), multi-channel digital optical splitter (6), window (7), Can (8) and cover plate (9), it is characterized in that:
Described high-aspect-ratio InGaAs alignment photosensor chip (1) and sensing circuit (2) are interconnected by inverse bonding, multi-channel digital optical splitter (6) is by the region beyond metallizing edges welding spectrum channel, directly be coupled with high-aspect-ratio InGaAs alignment photosensor chip (1), be integrated in short-wave infrared hyperchannel integration spectrum assembly, be sealed in the inside of a Can (8), in tiny area, be configured with the integration spectrum assembly of multiple spectrum channel.
2. a kind of short-wave infrared hyperchannel integration spectrum assembly according to claim 1, is characterized in that: the photosensitive unit of described high-aspect-ratio InGaAs alignment photosensor chip (1) is rectangle structure, and length breadth ratio is 10:1 or 20:1.
3. a kind of short-wave infrared hyperchannel integration spectrum assembly according to claim 1, it is characterized in that: described multi-channel digital optical splitter (6) is a monolithic hyperchannel short-wave infrared optical filter, spectrum channel number is 64, 128 or 256, the spectrum continuous uniform distribution or discontinuously arranged of each passage, spectral bandwidth 2nm ~ the 5nm of each passage, centre wavelength positioning precision ± 1nm, transmitance >=50%, spectral noise in single passage is less than 1%, interchannel cross-talk is less than 1%, the optical thin film that area deposition short infrared wave band transmitance beyond point optical channel is less than 0.1%.
CN201510864335.2A 2015-07-16 2015-12-01 A kind of short-wave infrared multichannel integration spectrum component Active CN105371951B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510864335.2A CN105371951B (en) 2015-07-16 2015-12-01 A kind of short-wave infrared multichannel integration spectrum component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2015104167126 2015-07-16
CN201510416712.6A CN105021278A (en) 2015-07-16 2015-07-16 Short wave infrared multichannel integrated spectral assembly
CN201510864335.2A CN105371951B (en) 2015-07-16 2015-12-01 A kind of short-wave infrared multichannel integration spectrum component

Publications (2)

Publication Number Publication Date
CN105371951A true CN105371951A (en) 2016-03-02
CN105371951B CN105371951B (en) 2018-10-23

Family

ID=54411417

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201510416712.6A Pending CN105021278A (en) 2015-07-16 2015-07-16 Short wave infrared multichannel integrated spectral assembly
CN201510864335.2A Active CN105371951B (en) 2015-07-16 2015-12-01 A kind of short-wave infrared multichannel integration spectrum component
CN201520978955.4U Expired - Fee Related CN205246212U (en) 2015-07-16 2015-12-01 Integrated spectrum subassembly of infrared multichannel of shortwave

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510416712.6A Pending CN105021278A (en) 2015-07-16 2015-07-16 Short wave infrared multichannel integrated spectral assembly

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201520978955.4U Expired - Fee Related CN205246212U (en) 2015-07-16 2015-12-01 Integrated spectrum subassembly of infrared multichannel of shortwave

Country Status (1)

Country Link
CN (3) CN105021278A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572880A (en) * 2016-03-23 2016-05-11 山东大学 Incident optical system used for near infrared spectrum perception node and working method thereof
CN106449548A (en) * 2016-10-28 2017-02-22 中国电子科技集团公司第四十四研究所 Mini type packaging structure for electronic multiplying charge-coupled device
CN108169807A (en) * 2017-12-27 2018-06-15 长光卫星技术有限公司 A kind of integrated form short-wave infrared optical imaging system
CN111579497A (en) * 2019-02-19 2020-08-25 艾迪悌科技有限公司 On-chip spectrometer
CN113419289A (en) * 2021-05-13 2021-09-21 中国电子科技集团公司第十一研究所 Method for mounting multi-spectral filter for infrared detector and infrared detector
CN114242711A (en) * 2021-12-17 2022-03-25 电子科技大学 Preparation process of hyperspectral photoelectric detector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021278A (en) * 2015-07-16 2015-11-04 中国科学院上海技术物理研究所 Short wave infrared multichannel integrated spectral assembly
CN107290053A (en) * 2017-05-27 2017-10-24 中国科学院上海技术物理研究所 Miniature long wave near-infrared Internet of things node based on linear variable filter
CN107888810B (en) * 2017-11-13 2024-03-01 合肥美亚光电技术股份有限公司 InGaAs infrared camera and control method
CN109029726B (en) * 2018-05-25 2021-02-02 西北工业大学 Window integrated type spectrum/polarization imaging system
CN110855899B (en) * 2019-10-18 2021-01-01 山东大学 High dynamic range imaging method of InGaAs short wave infrared camera based on correlated double sampling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1388362A (en) * 2002-05-13 2003-01-01 重庆大学 Integrated miniature spectrometer
CN1518660A (en) * 2002-04-23 2004-08-04 ǰ����� Small packaged spectroslopic sensor unit
US7167249B1 (en) * 2003-11-25 2007-01-23 Kestrel Corporation High efficiency spectral imager
CN101871816A (en) * 2010-06-03 2010-10-27 北京航空航天大学 Modularized split Sagnac interferometer
CN103500749A (en) * 2013-10-10 2014-01-08 中国科学院上海技术物理研究所 Thermoelectric refrigerating ultra-long linear array InGaAs detector encapsulation structure
CN205246212U (en) * 2015-07-16 2016-05-18 中国科学院上海技术物理研究所 Integrated spectrum subassembly of infrared multichannel of shortwave

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518660A (en) * 2002-04-23 2004-08-04 ǰ����� Small packaged spectroslopic sensor unit
CN1388362A (en) * 2002-05-13 2003-01-01 重庆大学 Integrated miniature spectrometer
US7167249B1 (en) * 2003-11-25 2007-01-23 Kestrel Corporation High efficiency spectral imager
CN101871816A (en) * 2010-06-03 2010-10-27 北京航空航天大学 Modularized split Sagnac interferometer
CN103500749A (en) * 2013-10-10 2014-01-08 中国科学院上海技术物理研究所 Thermoelectric refrigerating ultra-long linear array InGaAs detector encapsulation structure
CN205246212U (en) * 2015-07-16 2016-05-18 中国科学院上海技术物理研究所 Integrated spectrum subassembly of infrared multichannel of shortwave

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572880A (en) * 2016-03-23 2016-05-11 山东大学 Incident optical system used for near infrared spectrum perception node and working method thereof
CN106449548A (en) * 2016-10-28 2017-02-22 中国电子科技集团公司第四十四研究所 Mini type packaging structure for electronic multiplying charge-coupled device
CN108169807A (en) * 2017-12-27 2018-06-15 长光卫星技术有限公司 A kind of integrated form short-wave infrared optical imaging system
CN108169807B (en) * 2017-12-27 2019-08-02 长光卫星技术有限公司 A kind of integrated form short-wave infrared optical imaging system
CN111579497A (en) * 2019-02-19 2020-08-25 艾迪悌科技有限公司 On-chip spectrometer
CN113419289A (en) * 2021-05-13 2021-09-21 中国电子科技集团公司第十一研究所 Method for mounting multi-spectral filter for infrared detector and infrared detector
CN114242711A (en) * 2021-12-17 2022-03-25 电子科技大学 Preparation process of hyperspectral photoelectric detector

Also Published As

Publication number Publication date
CN205246212U (en) 2016-05-18
CN105371951B (en) 2018-10-23
CN105021278A (en) 2015-11-04

Similar Documents

Publication Publication Date Title
CN105371951A (en) Short-wave-infrared multichannel integrated optical spectrum assembly
CN105683726B (en) Optical detection device
CN103154784A (en) Optical demultiplexing system
US7812417B2 (en) Electret capacitor type composite sensor
CN101290246A (en) Rapid spectrometer and its measurement method
US11604093B2 (en) Spectrometer device and method for producing a spectrometer device
CN100443882C (en) Multichannel detector module on focal plane of infrared ray and installation method
CN104236714A (en) Spectrum sensor for detecting strength of target waveband
CN101363755A (en) Integration grating Fourier spectrometer
CN212230437U (en) InSb sensitive element, InSb photoelectric infrared sensor and detector
JP2011080772A (en) Infrared sensor and method for manufacturing the same
CN103035658B (en) Light sensor module and light sensor
CN113196021A (en) Spectrometer device and method for manufacturing a spectrometer device
CN102801478A (en) Optical receiving device
JP5604959B2 (en) Light measuring device
CN205176331U (en) Light wavelength devision multiplex separates multiplexing encapsulation subassembly
CN111721414A (en) Spectrometer
CN101281062A (en) Static state Fourier spectrometer
CN212434634U (en) InSb sensitive element, leadless InSb photoelectric infrared sensor and detector
CN100587421C (en) Fourier spectrometer
CN104596640A (en) Optical signal receiver
US11959802B2 (en) Spectrometer device and method for producing a spectrometer device
WO2023133731A1 (en) Detection device and detection method for obtaining detection information of object to be detected
CN116625503A (en) Chip-level infrared spectrometer
CN101303255A (en) Integrated Fourier spectrometer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant