CN205160389U - 具有功率因数校正功能的三相ac-dc非接触供电系统 - Google Patents

具有功率因数校正功能的三相ac-dc非接触供电系统 Download PDF

Info

Publication number
CN205160389U
CN205160389U CN201520963356.5U CN201520963356U CN205160389U CN 205160389 U CN205160389 U CN 205160389U CN 201520963356 U CN201520963356 U CN 201520963356U CN 205160389 U CN205160389 U CN 205160389U
Authority
CN
China
Prior art keywords
phase
power
voltage
circuit
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201520963356.5U
Other languages
English (en)
Inventor
周成虎
张秋慧
黄明明
王楠
陈素霞
黄全振
周诗洁
刘玉平
何家梅
瓮嘉民
李柏松
袁勋
贾贞贞
张菲菲
刘磊
吴洪波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Institute of Engineering
Original Assignee
Henan Institute of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Institute of Engineering filed Critical Henan Institute of Engineering
Priority to CN201520963356.5U priority Critical patent/CN205160389U/zh
Application granted granted Critical
Publication of CN205160389U publication Critical patent/CN205160389U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Rectifiers (AREA)

Abstract

本实用新型公开了一种具有功率因数校正功能的三相AC-DC非接触供电系统,用单相全桥整流电路将三路单相交流电分别整流成单向脉动直流电,将这三个脉动直流电斩波得到高频交流电,通过原边线圈向副边线圈传递电能,三个副边线圈分别与电容并联构成电流源,三路电流源分别向倍压整流电路输出能量构成三路充电泵电路,将这三路充电泵电路的输出端并联,得到统一的直流电压,再使用副边滤波电路即可得到稳定的直流电压。本实用新型采用简单的附加功率因数校正电路进一步提高功率因数,使供电电流的谐波畸变率较小,使其交流电源AC侧的线电流正弦化,功率因数接近于1,同时直流侧输出功率保持平衡。结果表明,所提出的系统工作可靠,供电效率最高可达90%以上。

Description

具有功率因数校正功能的三相AC-DC非接触供电系统
技术领域
本实用新型涉及非接触供电及自动控制的技术领域,具体涉及一种具有功率因数校正功能的三相AC-DC非接触供电系统。
背景技术
传统的非接触电路一般采用DC-DC结构,针对非接触供电技术的研究集中在DC/DC变换电路的实现与控制上,这种电路通常由交流低压市电电源(220V/380V)供电,在电源与DC-DC非接触电路之间加入AC-DC功率因数校正电路才能将交流电转化成直流电供给DC-DC非接触电路使用。AC-DC功率因数校正电路需要增加一套额外的控制电路、检测电路和变换器电路,使电路更复杂。AC-DC非接触供电系统只需要一套控制电路、检测电路和变换器电路,更有利于优化效率和提高电路的功率因数。
实用新型内容
为了解决上述技术问题,本实用新型提出了一种具有功率因数校正功能的三相AC-DC非接触供电系统,供电电流的谐波畸变率小,工作可靠,供电效率最高可达90%以上。
为了达到上述目的,本实用新型的技术方案是:一种具有功率因数校正功能的三相AC-DC非接触供电系统,包括三路依次连接的交流电源、整流电路、原边滤波电路、斩波电路、原边线圈、副边线圈、二倍压整流电路,三路二倍压整流电路并联后与负载RO相连接,负载RO与输出电感LO串联连接,负载RO两端并联有输出电容CO,输出电感LO和输出电容CO构成副边滤波电路;交流电源上设有供电电压采样滤波检测装置以及供电电压过零检测装置,原边滤波电路上设有整流电路采样滤波检测装置,斩波电路上设有驱动电路,负载RO上设有负载电压电流采样滤波检测装置;供电电压采样滤波检测装置、供电电压过零检测装置、整流电路采样滤波检测装置、驱动电路与控制装置相连接,负载电压电流采样滤波检测装置通过无线通信与控制装置相连接。
所述交流电源包括uA1、uB1和uC1,整流电路包括桥式连接的整流二极管DA5~DA8、DB5~DB8和DC5~DC8,原边滤波电路包括滤波电感LAH、滤波电感LBH、滤波电感LCH和滤波电容CAH、滤波电容CBH、滤波电容CCH,斩波电路包括桥式连接的开关管SA1~SA4、SB1~SB4、SC1~SC4,原边线圈包括LAP、LBP、LCP,副边线圈包括LAS、LBS、LCS,二倍压整流电路包括桥式连接的二极管D1~D2和电容C1~C2、桥式连接的二极管D3~D4和电容C3~C4、桥式连接的二极管D5~D6和电容C5~C6
所述交流电源uA1与桥式连接的整流二极管DA5~DA8相连接,滤波电感LAH与整流二极管DA5~DA8串联连接,滤波电容CAH与整流二极管DA5~DA8并联连接,滤波电感LAH与桥式连接的开关管SA1~SA4相连接,开关管SA1~SA4与原边线圈LAP相连接,原边线圈LAP与副边线圈LAS通过磁感应相连接,副边线圈LAS与桥式连接的二极管D1~D2和电容C1~C2相连接;所述交流电源uB1与桥式连接的整流二极管DB5~DB8相连接,滤波电感LBH与整流二极管DB5~DB8串联连接,滤波电容CBH与整流二极管DB5~DB8并联连接,滤波电感LBH与桥式连接的开关管SB1~SB4相连接,开关管SB1~SB4与原边线圈LBP相连接,原边线圈LBP与副边线圈LBS通过磁感应相连接,副边线圈LBS与桥式连接的二极管D3~D4和电容C3~C4相连接;所述交流电源uC1与桥式连接的整流二极管DC5~DC8相连接,滤波电感LCH与整流二极管DC5~DC8串联连接,滤波电容CCH与整流二极管DC5~DC8并联连接,滤波电感LCH与桥式连接的开关管SC1~SC4相连接,开关管SC1~SC4与原边线圈LCP相连接,原边线圈LCP与副边线圈LCS通过磁感应相连接,副边线圈LCS与桥式连接的二极管D5~D6和电容C5~C6相连接;原边线圈LAP上并联有补偿电容CAP,副边线圈LAS上并联有补偿电容CAS
所述交流电源uA1、uB1、uC1采用三路单相交流市电电源,供电电压为交流220V,交流电源uA1、uB1、uC1的电压相位相差分别为0°、120°、240°。
所述滤波电容CAH、CBH、CCH上分别串联有谐波二极管DAH、DCH、DVH,谐波二极管DAH、DCH、DVH上并联有谐波开关管SAH、SBH、SCH,谐波开关管SAH、SBH、SCH均与驱动电路相连接。
所述原边线圈LAP与副边线圈LAS、原边线圈LBP与副边线圈LBS、原边线圈LCP与副边线圈LCS分别组成非接触变压器,三组非接触变压器组成三相无线平面供电网;所述原边线圈LAP、LBP、LCP呈平面分布,三相无线平面供电网为对称磁路机构的三相无线平面供电网;所述开关管SA1~SA4、SB1~SB4、SC1~SC4分别构成移相全桥软开关单相斩波电路。
本实用新型用单相全桥整流电路将三路单相交流电分别整流成单向脉动直流电,将这三个脉动直流电斩波得到高频交流电,通过原边线圈向副边线圈传递电能,三个副边线圈分别与电容并联构成电流源,三路电流源分别向倍压整流电路输出能量构成三路充电泵电路,将这三路充电泵电路的输出端并联,得到统一的直流电压,再使用副边滤波电路即可得到稳定的直流电压。采用附加功率因数校正电路进一步提高功率因数,使该系统的供电电流的谐波畸变率较小;与单相AC-DC非接触电路相比,本实用新型不需要复杂的控制算法即可使其交流电源AC侧的线电流正弦化,功率因数基本接近于1,同时直流侧输出功率保持平衡。通过仿真和电路实验验证了所提出的拓扑结构和控制方法的正确性和有效性,结果表明,本实用新型所提出的系统工作可靠,供电效率最高可达90%以上。
附图说明
图1为本实用新型的非接触供电电路原理图。
图2为本实用新型的交流电源的电压与电流波形示意图。
图3为本实用新型的全桥整流的电压示意图。
图4为本实用新型的供电电压过零检测装置原理图。
图5为本实用新型的非接触供电电路等效控制模型。
图6为本实用新型的自适应谐波检测算法。
图7为本实用新型的供电线圈三个坐标x、y、z轴布置的示意图。
图8为本实用新型的无线平面供电网。
图9为本实用新型的非接触供电系统电压矢量图。
图10为本实用新型的实验结果。
具体实施方式
下面通过附图和实施例具体描述一下本实用新型。
一种具有功率因数校正功能的三相AC-DC非接触供电系统,如图1所示,包括三路依次连接的交流电源、整流电路、原边滤波电路、斩波电路、原边线圈、副边线圈、二倍压整流电路,三路二倍压整流电路并联后与负载RO相连接,负载RO与输出电感LO串联连接,负载RO两端并联有输出电容CO。输出电感LO和输出电容CO构成副边滤波电路。交流电源上设有供电电压采样滤波检测装置1以及供电电压过零检测装置6,原边滤波电路上设有整流电路采样滤波检测装置2,斩波电路上设有驱动电路4,负载RO上设有负载电压电流采样滤波检测装置5,供电电压采样滤波检测装置1、整流电路采样滤波检测装置2、驱动电路4与控制装置3相连接,负载电压电流采样滤波检测装置5通过无线通信与控制装置3相连接。
交流电源包括uA1、uB1和uC1,整流电路包括桥式连接的整流二极管DA5~DA8、桥式连接的整流二极管DB5~DB8和桥式连接的整流二极管DC5~DC8。原边滤波电路包括滤波电感LAH、滤波电感LBH、滤波电感LCH和滤波电容CAH、滤波电容CBH、滤波电容CCH,斩波电路包括桥式连接的开关管SA1~SA4、桥式连接的开关管SB1~SB4、桥式连接的开关管SC1~SC4,原边线圈包括LAP、LBP、LCP,副边线圈包括LAS、LBS、LCS,二倍压整流电路包括桥式连接的二极管D1~D2和电容C1~C2、桥式连接的二极管D3~D4和电容C3~C4、桥式连接的二极管D5~D6和电容C5~C6
交流电源uA1与桥式连接的整流二极管DA5~DA8相连接,滤波电感LAH与整流二极管DA5~DA8串联连接,二极管DA5~DA8整流得到脉动的直流电;滤波电容CAH与整流二极管DA5~DA8并联连接,滤波电感LAH与桥式连接的开关管SA1~SA4相连接,开关管SA1~SA4斩波得到高频交流电;开关管SA1~SA4与原边线圈LAP相连接,原边线圈LAP与副边线圈LAS通过磁感应相连接,电能通过原边线圈LAP转变为磁场能量,磁场能量传输给副边线圈LAS;副边线圈LAS与桥式连接的二极管D1~D2和电容C1~C2相连接。交流电源uB1、uC1回路与uA1回路的工作原理完全相同。交流电源uB1与桥式连接的整流二极管DB5~DB8相连接,滤波电感LBH与整流二极管DB5~DB8串联连接,滤波电容CBH与整流二极管DB5~DB8并联连接,滤波电感LBH与桥式连接的开关管SB1~SB4相连接,开关管SB1~SB4与原边线圈LBP相连接,原边线圈LBP与副边线圈LBS通过磁感应相连接,副边线圈LBS与桥式连接的二极管D3~D4和电容C3~C4相连接;所述交流电源uC1与桥式连接的整流二极管DC5~DC8相连接,滤波电感LCH与整流二极管DC5~DC8串联连接,滤波电容CCH与整流二极管DC5~DC8并联连接,滤波电感LCH与桥式连接的开关管SC1~SC4相连接,开关管SC1~SC4与原边线圈LCP相连接,原边线圈LCP与副边线圈LCS通过磁感应相连接,副边线圈LCS与桥式连接的二极管D5~D6和电容C5~C6相连接;原边线圈LAP上并联有补偿电容CAP,副边线圈LAS上并联有补偿电容CAS
三路二倍压整流电路并联后输出与输出电感LO相串联连接,输出电感LO与输出电容CO相连,由输出电感LO与输出电容CO滤波后得到稳定的直流电,该直流电驱动负载RO。三路二倍压整流电路并联与负载RO连接,可以显著减小负载RO的电流的纹波系数。
交流电源uA1、uB1、uC1采用三路单相交流市电电源,供电电压为交流220V,50Hz(中国为50Hz,有些国家为60Hz),交流电源uA1、uB1、uC1的电压相位相差分别为0°、120°、240°。交流电源uA1、uB1、uC1的电压与电流波形示意图如图2所示。
滤波电容CAH、CBH、CCH上分别串联有谐波二极管DAH、DCH、DVH,谐波二极管DAH、DCH、DVH上并联有谐波开关管SAH、SBH、SCH,谐波开关管SAH、SBH、SCH均与驱动电路4相连接。谐波二极管DAH、DCH、DVH和谐波开关管SAH、SBH、SCH与滤波电容CAH、CBH、CCH分别串联构成开关电容电路,用于开关滤波电容CAH、CBH、CCH。调节谐波开关管SAH、SBH、SCH的占空比,对50Hz三相电源做有源功率因数校正。使电源侧的电流波形接近于正弦波。谐波开关管SAH、SBH、SCH的斩波频率为1kHz。
在输出负载RO固定且开关管SA1~SA4、SB1~SB4、SC1~SC4的占空比固定,且开关管SAH、SBH、SCH关闭的条件下,输出电流的值仍具有脉动成分,该成分主要是由于三相交流电源uA1、uB1、uC1分别整流后叠加输出产生的脉动成分造成的。由图1可知,副边线圈LAS与其并联的补偿电容CAS相当于电流源(另外两路以此类推),电流源与三个独立的二倍压整流电路分别构成电流型充电泵电路,其充电泵频率分别与开关管SA1~SA4、SB1~SB4、SC1~SC4的频率相同,且根据开关管的斩波方式在一个充电泵周期内分时或同时向电感LO、电容CO、负载RO供电。
由于电路中的电流谐波成分复杂,采样电流叠加分析比较复杂,而采用整流后的三相电压uA2(t)、uB2(t)、uC2(t)叠加信号判断电源电压叠加脉动比较容易,所以整流电流采样滤波检测装置2将该电源电压叠加信号代替电源电流叠加信号反馈给控制装置3。
三组单相电源电压uA1、uB1、uC1经整流后,分别通过全桥整流得到整流电压uA2(t)、uB2(t)、uC2(t),其叠加电压uA2(t)+uB2(t)+uC2(t),如图3所示。通过理论分析可知该叠加电压的脉动成分仅有6次、12、18及六次以上倍数的谐波。该相叠加电压有脉动纹波,这些纹波的波动趋势可以预见,本实用新型通过供电电压过零检测装置6得到关键相位点,用这些关键相位点预测到其它采样点的相位和电压波动趋势,用以控制开关管SA1~SA4、SB1~SB4、SC1~SC4的占空比,调节电路的瞬时功率消耗。这种先检测电压uA2(t)+uB2(t)+uC2(t)相位,再通过自适应方法控制开关管SA1~SA4、SB1~SB4、SC1~SC4的占空比的方法为先验控制算法。供电电电压过零检测装置6的原理图如图4所示。
三相整流电路叠加电压uA2(t)、uB2(t)、uC2(t)的计算表如表1所示。设uA2、uB2、uC2为峰值时的幅值系数为1。当检测到电压uA1的值过零点时(包含由正转负和由负转正的过零点),可以判断其整流后的电压uA2的相位角为0rad,以此点为参照点得到参照三相叠加电压uA2+uB2+uC2的幅值系数为1.73209,设计算点每次步进为0.1rad。当电压uA2的相位角为0.1rad时,依据计算表即可判断此时的幅值系数为1.82328,以后每增加0.1rad时查表得到一个幅值系数。当电压uA2的相位角超过1rad且尚未达到1.1rad时,电压uB1的值过零点,可以判断其整流后的电压uA2的相位角为0rad,以此点为参照点又得到参照三相叠加电压uA2+uB2+uC2的幅值系数为1.73209,当电压uB2的相位角为0.1rad时,依据计算表即可判断此时的幅值系数为1.82328,以后每增加0.1rad时查表得到一个幅值系数。当电压uB2的相位角超过1rad且尚未达到1.1rad时,电压uC1的值过零点,可以判断其整流后的电压uC2的相位角为0rad,又以此点为参照点依次得到0rad~0.9rad的10个幅值系数K。当电压uC2的相位角超过1rad且尚未达到1.1rad时,电压uA1的值再一次过零点,此后重复以上步骤。根据需要可以进一步细化步进的相位角,以实现更精确的检测与控制。
表1三相叠加电压计算表
电压uA2相位角(rad) 电压uA2幅值系数 电压uB2幅值系数 电压uC2幅值系数 幅值系数K 三相叠加电压uA2+ uB2+ uC2对应的幅值系数K的取值
0 0.00000 0.86605 0.86605 K(0) 1.73209 谷值点
0.1 0.09983 0.81181 0.91163 K(1) 1.82328
0.2 0.19867 0.74946 0.94811 K(2) 1.89624
0.3 0.29552 0.67962 0.97512 K(3) 1.95025
0.4 0.38942 0.60299 0.99238 K(4) 1.98478
0.5 0.47943 0.52033 0.99972 K(5) 1.99948 峰值4 -->
0.6 0.56464 0.43248 0.99708 K(6) 1.99420
0.7 0.64422 0.34031 0.98447 K(7) 1.96900
0.8 0.71736 0.24473 0.96203 K(8) 1.92412
0.9 0.78333 0.14671 0.92998 K(9) 1.86001
1 0.84147 0.04722 0.88863 K(10) 1.77733 谷值
非接触供电电路等效控制模型如图5所示。交流电源uA1(t)回路经二极管DA5~DA8整流后得到脉动的直流电压uA2(t),相当于该电压取绝对值(图5中用|·|表示),经开关管SA1~SA4斩波得到高频交流电压uAP(t),斩波功能用xA(t)表示,对于斩波功能的调节采用斜箭头表示。MA表示非接触变压器原边线圈LAP与副边线圈LAS的耦合系数。副边线圈LAS的电压被整流之后得到稳定的直流电压uAS(t)。交流电源uB1、uC1回路与uA1回路的工作原理完全相同。三路单相斩波电路对应的开关管的斩波时间完全相同(比如开关管SA1、SB1、SC1的斩波时间相同)。将三路电流io1、io2、io3叠加并整流滤波得到IO。图5中d(t)表示电路预期的设定值,e(t)表示电路的设定值与实际值之间的误差。采用先验控制的自适应算法改变开关管的斩波占空比,以调节输出电压和电流。
先验控制反馈值计算方法具体步骤如下:
步骤一:供电电压采样滤波检测装置1获取电路的供电电压uA1、uB1、uC1的电压采样信号,设定供电电压uA1、uB1、uC1的峰值的幅值系数为1,其过零时的幅值系数为0,采用供电电压过零检测装置6得到交流电源uA1、uB1、uC1过零点的时刻,例如:先得到uA1过零点的时刻,以此时刻为基准,则此时刻电压uA2的相位角设为0rad,设定采样间隔为0.1rad,则其后的各采样点的相位角依次为0.1rad、0.2rad、1.0rad。
在采样点的相位角经过1.0rad之后尚未到达1.1rad时,供电电压过零检测装置6得到交流电源uB1过零点的时刻,则控制装置3以此时刻为基准,再设此时刻电压uA2的相位角设为0rad,设定采样间隔为0.1rad,则其后的各采样点的相位角依次为0.1rad、0.2rad、1.0rad,
以此时刻为参照点依次获取幅值系数K,设u1d(t)为先验控制的反馈值,则:
u1d(t)=(K(t+1)-K(t))·uo(t)(1)
其中,K(t+1)表示下一次检测时三相叠加电压uA2+uB2+uC2的幅值系数,K(t)表示当前点检测点三相叠加电压uA2+uB2+uC2的幅值系数。
例如:设采样间隔为0.1rad,当电压uA2相位角为0rad时,下一次检测时三相叠加电压uA2+uB2+uC2对应的幅值系数K(t+1)=1.82328,当前点检测点三相叠加电压uA2+uB2+uC2的幅值系数K(t-1)=1.73209。则u1d(t)=(K(t+1)-K(t))·uo(t)=(1.82328-1.73209)·uo(t)=0.09119·uo(t)。
步骤二:根据输出电压uo(t)和输出电流io(t)的值计算出占空比调节系数d(t)-uo(t),其中期望输出的直流电压值为d(t)。考虑先验控制反馈值u1d(t)后,需要减去该变化趋势以适应供电电压uA1、uB1、uC1的变化给电路输出带来的影响,则反馈误差e(t)依据下式计算:
e(t)=d(t)-uo(t)-u1d(t)(2)
然后采用自适应算法调节开关管的斩波占空比。将该反馈误差考虑到闭环控制算法中用于调节开关管的斩波占空比。采样间隔时间可以根据需要设定的更细化。
对于谐波开关管的控制算法,本实用新型选择用自适应滤波器,自适应谐波电流检测算法如图6所示。
三组单相电源电压经整流后得到叠加电压uA2(t)+uB2(t)+uC2(t),该叠加电压由供电电压的uA1、uB1、uC1电压采样信号分别取绝对值叠加得到。图6中反馈的误差er为:
er=id'(t)=iA1(t)-i1p'(t)(3)
如图6所示,通过供电电压过零检测电路得到关键相位点,用这些关键相位点预测到其它采样点的相位和电压波动趋势,结合叠加电压uA2(t)+uB2(t)+uC2(t)的实际检测值,用自适应滤波器调节开关管SAH、SBH、SCH的占空比,改变滤波电容CAH、CBH、CCH的瞬时电容量,调节电路的瞬时功率消耗以减少输入电流的谐波含量。
A组为原边线圈LAP与副边线圈LAS、B组为原边线圈LBP与副边线圈LBS、C组为原边线圈LCP与副边线圈LCS分别组成非接触变压器,三组非接触变压器组成三相无线平面供电网。所述原边线圈LAP、LBP、LCP呈平面分布,三相无线平面供电网为对称磁路机构的三相无线平面供电网,供电线圈三个坐标x、y、z轴布置的示意图如图7所示。A组、B组、C组三组线圈组成一个对称磁路机构三相无线平面供电网,如图8所示。图中,*代表三相原边线圈的同名端。
图8中,三个原边线圈LAP、LBP、LCP分别采用独立的变压器原边接法,由于三组单相电源电压共用零线,实际上该电路的变压器原边属于星形接法,从而组成一个三相非接触供电变压器系统,MA,MB和MC分别代表原边线圈电感LAP、LBP、LCP与副边线圈LAS、LBS、LCS电感之间的耦合互感值。三个副边线圈LAS、LBS、LCS分别与三个电容CAS、CBS、CCS并联输出,然后经倍压整流电路升压,副边线圈LAS、LBS、LCS以及电容CAS、CBS、CCS和倍压整流电路分别构成三路充电泵电路,每路充电泵正负输出由两个二极管分别整流得到,例如副边线圈LAS的正输出由二极管D1整流得到,其负输出由二极管D2整流得到。
开关管SA1~SA4、SB1~SB4、SC1~SC4分别构成移相全桥软开关单相斩波电路,本实用新型所做样机的开关管SA1~SA4、SB1~SB4、SC1~SC4的斩波频率设定为85kHz,三路单相斩波电路对应的开关管,其斩波算法根据程序设定成同步斩波算法和异步错相斩波算法,其示意图如图8所示。为了简化控制策略,三路单相斩波电路所有开关管的斩波占空比相同,当调节占空比时也将所有占空比全部同时修改。
同步斩波算法:三路单相斩波电路对应开关管的斩波的起始时间完全相同(开关管SA1、SB1与SC1的斩波起始时间同步,以此类推,详见表2),副边线圈LAS、LBS、LCS的电流相位和二倍压整流电路的二极管泵出电流示意图如图9(1)所示。
不论是同步斩波算法还是异步错相斩波算法,随着时间的不断变化,各相输入电压的幅值也不断变化,副边线圈LAS、LBS、LCS的电流幅值也随之而变化。
同步斩波算法和异步错相斩波算法中各开关管斩波相位关系表如表2所示。表2中的θ1表示移相全桥软开关的移相角(通常小于10°)。
异步错相斩波算法:以电压uA2、uB2、uC2的幅值为判断标准,当其中一路电压的瞬时幅值高于其它两路电压的瞬时幅值时,该路开关管的斩波的起始时间与另外两路单相斩波电路对应开关管起始相位错开180°。
当电压uA2的幅值高于uB2、uC2的电压幅值时,副边线圈LAS的电流iAS的幅值也高于LBS、LCS的电流iBS、iCS的幅值,例如图2中的t1时刻uA2的瞬时幅值最大,则根据表2的判断方法,令开关管SA1的斩波起始时间为0°,令开关管SB1、SC1的斩波起始时间为180°,副边线圈的电流iAS、iBS、iCS和二倍压整流电路的二极管泵出电流iD1~iD6示意图如图9(2)所示。
当电压uB2的幅值高于uA2、uC2的电压幅值时,副边线圈LBS的电流iBS的幅值也高于LAS、LCS的电流iAS、iCS的幅值,例如图2中的t2时刻uA2的瞬时幅值最大,则根据表2的判断方法,令开关管SB1的斩波起始时间为0°,令开关管SA1、SC1的斩波起始时间为180°,副边线圈的电流iAS、iBS、iCS和二倍压整流电路的二极管泵出电流iD1~iD6示意图如图9(3)所示。
当电压uC2的幅值高于uA2、uB2的电压幅值时,副边线圈LCS的电流iCS的幅值也高于LAS、LBS的电流iAS、iBS的幅值,例如图2中的t3时刻uC2的瞬时幅值最大,则根据表2的判断方法,令开关管SC1的斩波起始时间为0°,令开关管SA1、SB1的斩波起始时间为180°,副边线圈的电流iAS、iBS、iCS和二倍压整流电路的二极管泵出电流iD1~iD6示意图如图9(4)所示。
在优先考虑减少输入端的谐波的情况下,采取同步斩波算法;在优先考虑提高充电泵电路的输出功率和效率的情况下,采取异步错相斩波算法。
表2各开关管斩波相位关系表
其工作过程为:所述控制装置3实时获取供电电压采样滤波检测装置1、整流电流采样滤波检测装置2、负载电压电流采样滤波检测装置5所检测的信号,依据电源电压和负载功率的变化规律,通过供电电压过零检测装置6得到关键相位点,控制装置3利用关键相位点预测到其它采样点的相位和电压波动趋势的波动系数表,采用相位先验控制算法产生控制信号,通过驱动电路4转换成驱动信号,调节斩波开关管SA1~SA4、SB1~SB4、SC1~SC4的占空比,从而实现对系统的输出控制。调节谐波开关管SAH、SBH、SCH的占空比,从而改善系统产生的谐波。
为了验证理论部分结果的正确性,搭建如图1所示实验验证系统,系统参数如表3所示。
表3三相非接触供电系统参数
参 数 数 值 参 数 数 值
uA1 ~220V LAP 112 μH
Uo 48~56V CAP 0.1 μF
LAH 100μH LAH 500 μH
CAH 0.1μF CAH 10 μF
SA1~SA4 25N120 线圈半径r 7.5 mm
斩波开关管的频率fs 85kHz
非接触供电电路系统采用市电电源,三路单相电源uA1、uB1、uC1的额定相电压为交流220V。非接触供电电路系统的控制装置3选用高性能低功耗的ARM微处理器(STM32F407)。实验结果如图10所示。结果表明,电源电流iA1、iB1、iC1的波形均近似于正弦波。
相比于单相AC-DC非接触供电系统,本实用新型提出的电路不需要复杂的控制算法即可使其交流电源AC侧的线电流正弦化,三相电路产生的谐波电流小,功率因数基本接近于1,同时输出电路脉动成分小,直流侧输出功率保持平衡且最大输出功率显著提高。通过仿真和电路实验验证了所提出的拓扑结构和控制方法的正确性和有效性。结果表明,所提出的系统工作可靠,供电效率最高可达90%以上。
以上所述,仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型的保护范围之内。

Claims (6)

1.一种具有功率因数校正功能的三相AC-DC非接触供电系统,其特征在于,包括三路依次连接的交流电源、整流电路、原边滤波电路、斩波电路、原边线圈、副边线圈、二倍压整流电路,三路二倍压整流电路并联后与负载RO相连接,负载RO与输出电感LO串联连接,负载RO两端并联有输出电容CO,输出电感LO和输出电容CO构成副边滤波电路;交流电源上设有供电电压采样滤波检测装置(1)以及供电电压过零检测装置(6),原边滤波电路上设有整流电路采样滤波检测装置(2),斩波电路上设有驱动电路(4),负载RO上设有负载电压电流采样滤波检测装置(5);供电电压采样滤波检测装置(1)、供电电压过零检测装置(6)、整流电路采样滤波检测装置(2)、驱动电路(4)与控制装置(3)相连接,负载电压电流采样滤波检测装置(5)通过无线通信与控制装置(3)相连接。
2.根据权利要求1所述的具有功率因数校正功能的三相AC-DC非接触供电系统,其特征在于,所述交流电源包括uA1、uB1和uC1,整流电路包括桥式连接的整流二极管DA5~DA8、DB5~DB8和DC5~DC8,原边滤波电路包括滤波电感LAH、滤波电感LBH、滤波电感LCH和滤波电容CAH、滤波电容CBH、滤波电容CCH,斩波电路包括桥式连接的开关管SA1~SA4、SB1~SB4、SC1~SC4,原边线圈包括LAP、LBP、LCP,副边线圈包括LAS、LBS、LCS,二倍压整流电路包括桥式连接的二极管D1~D2和电容C1~C2、桥式连接的二极管D3~D4和电容C3~C4、桥式连接的二极管D5~D6和电容C5~C6
3.根据权利要求2所述的具有功率因数校正功能的三相AC-DC非接触供电系统,其特征在于,所述交流电源uA1与桥式连接的整流二极管DA5~DA8相连接,滤波电感LAH与整流二极管DA5~DA8串联连接,滤波电容CAH与整流二极管DA5~DA8并联连接,滤波电感LAH与桥式连接的开关管SA1~SA4相连接,开关管SA1~SA4与原边线圈LAP相连接,原边线圈LAP与副边线圈LAS通过磁感应相连接,副边线圈LAS与桥式连接的二极管D1~D2和电容C1~C2相连接;所述交流电源uB1与桥式连接的整流二极管DB5~DB8相连接,滤波电感LBH与整流二极管DB5~DB8串联连接,滤波电容CBH与整流二极管DB5~DB8并联连接,滤波电感LBH与桥式连接的开关管SB1~SB4相连接,开关管SB1~SB4与原边线圈LBP相连接,原边线圈LBP与副边线圈LBS通过磁感应相连接,副边线圈LBS与桥式连接的二极管D3~D4和电容C3~C4相连接;所述交流电源uC1与桥式连接的整流二极管DC5~DC8相连接,滤波电感LCH与整流二极管DC5~DC8串联连接,滤波电容CCH与整流二极管DC5~DC8并联连接,滤波电感LCH与桥式连接的开关管SC1~SC4相连接,开关管SC1~SC4与原边线圈LCP相连接,原边线圈LCP与副边线圈LCS通过磁感应相连接,副边线圈LCS与桥式连接的二极管D5~D6和电容C5~C6相连接;原边线圈LAP上并联有补偿电容CAP,副边线圈LAS上并联有补偿电容CAS
4.根据权利要求2所述的具有功率因数校正功能的三相AC-DC非接触供电系统,其特征在于,所述交流电源uA1、uB1、uC1采用三路单相交流市电电源,供电电压为交流220V,交流电源uA1、uB1、uC1的电压相位相差分别为0°、120°、240°。
5.根据权利要求2所述的具有功率因数校正功能的三相AC-DC非接触供电系统,其特征在于,所述滤波电容CAH、CBH、CCH上分别串联有谐波二极管DAH、DCH、DVH,谐波二极管DAH、DCH、DVH上并联有谐波开关管SAH、SBH、SCH,谐波开关管SAH、SBH、SCH均与驱动电路(4)相连接。
6.根据权利要求2所述的具有功率因数校正功能的三相AC-DC非接触供电系统,其特征在于,所述原边线圈LAP与副边线圈LAS、原边线圈LBP与副边线圈LBS、原边线圈LCP与副边线圈LCS分别组成非接触变压器,三组非接触变压器组成三相无线平面供电网;所述原边线圈LAP、LBP、LCP呈平面分布,三相无线平面供电网为对称磁路机构的三相无线平面供电网;所述开关管SA1~SA4、SB1~SB4、SC1~SC4分别构成移相全桥软开关单相斩波电路。
CN201520963356.5U 2015-11-30 2015-11-30 具有功率因数校正功能的三相ac-dc非接触供电系统 Expired - Fee Related CN205160389U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520963356.5U CN205160389U (zh) 2015-11-30 2015-11-30 具有功率因数校正功能的三相ac-dc非接触供电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520963356.5U CN205160389U (zh) 2015-11-30 2015-11-30 具有功率因数校正功能的三相ac-dc非接触供电系统

Publications (1)

Publication Number Publication Date
CN205160389U true CN205160389U (zh) 2016-04-13

Family

ID=55696032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520963356.5U Expired - Fee Related CN205160389U (zh) 2015-11-30 2015-11-30 具有功率因数校正功能的三相ac-dc非接触供电系统

Country Status (1)

Country Link
CN (1) CN205160389U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305842A (zh) * 2015-11-30 2016-02-03 河南工程学院 具有功率因数校正功能的三相ac-dc非接触供电系统
US10516284B2 (en) 2016-09-15 2019-12-24 Qualcomm Incorporated Voltage controlled charge pump and battery charger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305842A (zh) * 2015-11-30 2016-02-03 河南工程学院 具有功率因数校正功能的三相ac-dc非接触供电系统
US10516284B2 (en) 2016-09-15 2019-12-24 Qualcomm Incorporated Voltage controlled charge pump and battery charger

Similar Documents

Publication Publication Date Title
CN105305842B (zh) 具有功率因数校正功能的三相ac‑dc非接触供电系统
Kim et al. The high-efficiency isolated AC–DC converter using the three-phase interleaved LLC resonant converter employing the Y-connected rectifier
CN110350792B (zh) 一种直流变流器的功率主从控制方法
CN102255545B (zh) 两相逆变电源系统及其综合控制方法
CN108667036A (zh) 一种电动汽车v2g变换器控制方法
CN201805362U (zh) 一种用于航空航天交流直流变换的分级限流电路
CN108736727A (zh) 电源转换器及其控制方法
CN110365205A (zh) 一种高效率图腾柱无桥pfc整流器控制方法
CN102291014A (zh) 交流斩波-全桥整流的ac-dc变换器
CN102299649A (zh) 电源变换器
CN102437752A (zh) 一种用于航空航天交流直流变换的分级限流电路
CN207460027U (zh) 隔离型双向dc/ac电源
CN108023411A (zh) 一种具有功率因数校正功能的单相非接触供电系统
CN102291035A (zh) 交流推挽逆变-矩阵整流的降压电路
CN205490225U (zh) 一种高频斩波隔离型双向ac/dc电路
CN205160389U (zh) 具有功率因数校正功能的三相ac-dc非接触供电系统
CN109951098B (zh) 一种快速隔离断路器及其控制算法
CN106230282A (zh) 单位功率因数隔离型ac‑dc变换器
Malan et al. A single phase AC-DC bidirectional converter with integrated ripple steering
CN104009478B (zh) 一种应用于新能源发电及电动汽车换电站的稳压系统及其控制方法
CN108683353A (zh) 变电站多功能节能型一体化充放电装置及控制方法
CN105071427B (zh) 特高压直流接入孤立双馈风电场的控制方法
CN210745047U (zh) 一种基于航空三相pfc的电机控制装置
Krishnamoorthy et al. 3-phase AC-DC converter topologies with higher frequency transformer isolation for utility grid interface
CN202334299U (zh) 微功耗功率因数校正器

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160413

Termination date: 20181130