CN204490981U - 基于tco薄膜材料的太阳能选择性吸收涂层 - Google Patents

基于tco薄膜材料的太阳能选择性吸收涂层 Download PDF

Info

Publication number
CN204490981U
CN204490981U CN201420803423.2U CN201420803423U CN204490981U CN 204490981 U CN204490981 U CN 204490981U CN 201420803423 U CN201420803423 U CN 201420803423U CN 204490981 U CN204490981 U CN 204490981U
Authority
CN
China
Prior art keywords
coating
reflection layer
bias
tco
stratum basale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201420803423.2U
Other languages
English (en)
Inventor
马丁
瑞纳
眭凌杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Xin Yue Metal Material Science And Technology Ltd
Original Assignee
Fujian Xin Yue Metal Material Science And Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Xin Yue Metal Material Science And Technology Ltd filed Critical Fujian Xin Yue Metal Material Science And Technology Ltd
Priority to CN201420803423.2U priority Critical patent/CN204490981U/zh
Application granted granted Critical
Publication of CN204490981U publication Critical patent/CN204490981U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

基于TCO薄膜材料的太阳能选择性吸收涂层,其特征在于:包括一具有低红外发射率的高反射基底层、一覆盖于该高反射基底层上的主吸收性涂层以及堆叠于该主吸收性涂层的减反层,所述减反层包括一作为次减反层的TCO透明导电氧化物涂层以及一作为主减反层的SiO2(SiOx)氧化物涂层,所述SiO2(SiOx)氧化物涂层覆盖于所述TCO透明导电氧化物涂层。本实用新型在选择性太阳能热吸收涂层的亚层结构中使用TCO涂层作为减反层能够使减反层具有较好的性能,而且对于大面积选择性太阳能热吸收涂层制备的生产能力来说也是相当高的。

Description

基于TCO薄膜材料的太阳能选择性吸收涂层
技术领域
本实用新型涉及太阳能热吸收涂层领域,尤其是指基于TCO薄膜材料的太阳能选择性吸收涂层。
背景技术
对于平板太阳能集热器的应用来说,最常见和普遍的一种制备技术就是在金属板材上制备选择性太阳能热吸收涂层。就目前而言,绝大多数的选择性太阳能热吸收涂层是采用真空镀膜的工艺制得。
利用真空镀膜的方法制备选择性太阳能热吸收涂层,这种方法包括了一种多层薄膜的结构,以此形成一个选择性太阳能热吸收涂层的膜系。通常情况下选择性太阳能热吸收涂层包括了一层高反射基底层,此高反射基底层拥有较低的红外发射率。在红外高反射基底层之上堆叠一层或多层的中间亚层,这种中间亚层结构构成了选择性太阳能热吸收涂层的吸收层和干涉阻挡层。顶层是一层或多层用于减少反射的膜层(减反层)。
就目前而言,选择性太阳能热吸收涂层的顶层减反层通常是由以下涂层所构成的:在主吸收层上方堆叠的是这种中间亚层结构以建立选择性太阳能热吸收涂层膜系的减反层。该减反层结构包含有:1、TiO2(TiOx)氧化物涂层,作为次减反层;2、SiO2(SiOx)氧化物涂层,作为主减反层,其中主减反层覆盖于次减反层的上方。
TiO2(TiOx)和SiO2(SiOx)涂层通常情况下是由AC磁控溅射或电子束蒸发的工艺方法制备而得。
SiO2(SiOx)和TiO2(TiOx)涂层的电子束蒸发具有高沉积率的优点并且在高沉积率的情况下,相应的生产能力也会提高。但是使用这种方法的不足之处是所沉积的涂层的致密度较低。使用这种方法制备的涂层对环境影响的抵抗能力较弱,同时所使用的制备技术也比较复杂,主要体现在大面积蒸发镀膜需要一个大尺寸的镀膜工艺腔室。
使用AC磁控溅射来沉积SiO2(SiOx)和TiO2(TiOx)薄膜的工艺相对于电子束蒸发工艺来说要简单得多,主要的特点是镀膜工艺腔室的设计比较简单并且由磁控溅射镀膜工艺所制备的薄膜的致密度较好。但是这种涂层制备方法的不足之处是对于一些材料的沉积率较低。
实用新型内容
本实用新型提供一种基于TCO薄膜材料的太阳能选择性吸收涂层,其主要目的在于克服现有TiO2(TiOx)和SiO2(SiOx)涂层结构存在的涂层对环境影响的抵抗能力较弱、制备技术也比较复杂以及沉积率较低的缺陷。
为解决上述技术问题,本实用新型采用如下技术方案:
基于TCO薄膜材料的太阳能选择性吸收涂层,包括一具有低红外发射率的高反射基底层、一覆盖于该高反射基底层上的主吸收性涂层以及堆叠于该主吸收性涂层的减反层,所述减反层包括一作为次减反层的TCO透明导电氧化物涂层以及一作为主减反层的SiO2(SiOx)氧化物涂层,所述SiO2(SiOx)氧化物涂层覆盖于所述TCO透明导电氧化物涂层。
进一步的,还包括一设于所述高反射基底层下方的金属带基材。
进一步的,所述金属带基材为铝带、不锈钢带或铜带。
进一步的,所述高反射基底层下表面覆盖有一用于提高和改善选择性太阳能热吸收涂层的附着性和/或抗腐蚀性的薄膜涂层。
进一步的,所述薄膜涂层为金属涂层、金属氧化物涂层、金属氮化物涂层或者金属氮氧化物涂层。
进一步的,所述高反射基底层为采用大面积电子束蒸发镀膜工艺制得的铝镀层、铜镀层或者银镀层。
进一步的,所述高反射基底层的厚度为50nm~1000nm。
和现有技术相比,本实用新型产生的有益效果在于:
1、本实用新型设计巧妙、实用性强,通过使用透明导电薄膜(TCO)来作为选择性太阳能热吸收涂层亚层结构中的减反层,在选择性太阳能热吸收涂层的亚层结构中使用TCO涂层作为减反层能够使减反层具有较好的性能,而且对于大面积选择性太阳能热吸收涂层制备的生产能力来说也是相当高的。
2、在本实用新型中,通过使用一种大面积电子束蒸发镀膜工艺来制备选择性太阳能热吸收涂层的红外高反射基底层,可以增厚红外高反射基底层的厚度,而这些较厚的涂层能够轻易地使选择性太阳能热吸收涂层拥有更低的红外发射比。在拥有更低红外发射比的同时,选择性太阳能热吸收涂层受基材条件的影响也更小。同时,可以在拥有相对较高的生产能力的情况下,实现对选择性太阳能热吸收涂层的红外高反射基底层质量的改善,进而能够帮助改善并提高平板太阳能集热器的使用性能。
3、在本实用新型中,通过在电子束蒸发镀制的较厚的高反射基底层之下再镀上一层较薄的薄膜可以提高和改善选择性太阳能热吸收涂层的附着性和/或抗腐蚀性。镀制这种较薄的能够提高和改善膜系附着性和/或抗腐蚀性的涂层的方法可以是DC或AC磁控溅射工艺。这种薄膜涂层的成分可以是一种金属Me或一种金属氧化物MeOx或一种金属氮化物MeNy或一种金属氮氧化物MeOxNy。在电子束蒸发镀制的较厚的高反射基底层之下再镀上一层较薄的可以提高和改善膜系附着性和/或抗腐蚀性的薄膜,这样就形成了一种具有红外高反射特性的选择性太阳能热吸收涂层膜系。
附图说明
图1为本实用新型中所述选择性太阳能热吸收涂层的结构示意图。
图2为本实用新型实施例四的中间亚层结构AZO/SiO2减反层和单层SiO2减反层选择性太阳能热吸收涂层膜系反射率光谱的对比示意图。
图3为本实用新型实施例五的中间亚层结构AZO/SiO2减反层和单层SiO2减反层选择性太阳能热吸收涂层膜系反射率光谱的对比示意图。
具体实施方式
参照图1。基于TCO薄膜材料的太阳能选择性吸收涂层,包括一具有低红外发射率的高反射基底层4、一覆盖于该高反射基底层4上的主吸收性涂层3以及堆叠于该主吸收性涂层3的减反层,所述减反层包括一作为次减反层的TCO透明导电氧化物涂层2以及一作为主减反层的SiO2(SiOx)氧化物涂层1,所述SiO2(SiOx)氧化物涂层1覆盖于所述TCO透明导电氧化物涂层2。
进一步的,该选择性太阳能热吸收涂层被镀制于金属带基材5上。
进一步的,所述金属带基材5为铝带、不锈钢带或铜带。
基于TCO薄膜材料的太阳能选择性吸收涂层的制备方法,包括以下步骤:
步骤1、使用电子束蒸发或者AC磁控溅射工艺,以铝带、不锈钢带或铜带为金属带基材5,在该金属带基材5上镀上一层具有低红外发射率的高反射基底层4。
步骤2、使用电子束蒸发或者AC磁控溅射工艺,在步骤1获得的高反射基底层4上镀上一到多个涂层来建立选择性太阳能热吸收涂层膜系的主吸收性涂层3。
步骤3、通过使用DC磁控溅射工艺,以ZnO:Al2O3 (AZO)、ZnO:Ga2O3 (GZO)或In2O3:SnO2 (ITO)作为所述复合TCO靶材,在步骤2获得的主吸收性涂层3上镀上一 TCO透明导电氧化物涂层2。
步骤4、通过使用电子束蒸发或者AC磁控溅射工艺,在步骤3获得的TCO透明导电氧化物涂层2上镀上一SiO2(SiOx)氧化物涂层1。
本实用新型设计巧妙、实用性强,通过使用透明导电薄膜(TCO)来作为选择性太阳能热吸收涂层亚层结构中的减反层,在选择性太阳能热吸收涂层的亚层结构中使用TCO涂层作为减反层能够使减反层具有较好的性能,而且对于大面积选择性太阳能热吸收涂层制备的生产能力来说也是相当高的。
以下提供几个本实用新型中上述减反层的优选实施例
实施例一
一种基于TCO材料的减反层,包括一作为次减反层的TCO透明导电氧化物涂层2以及一作为主减反层的SiO2(SiOx)氧化物涂层1,所述SiO2(SiOx)氧化物涂层1覆盖于所述TCO透明导电氧化物涂层2。所述TCO透明导电氧化物涂层2是通过使用复合TCO靶材的DC磁控溅射工艺来制备的。所述SiO2(SiOx)涂层是通过使用电子束蒸发或者AC磁控溅射工艺来进行制备的。所述复合TCO靶材为金属氧化物或金属氧化物的混合体。所述复合TCO靶材为ZnO:Al2O3 (AZO)。
本实施例采用AZO这种半导体性质的涂层材料具有较高的折射率,可以替代传统选择性太阳能热吸收涂层膜系中间亚层结构中的次减反层材料。对比传统选择性太阳能热吸收涂层膜系中间亚层结构使用的次减反层材料(通常是陶瓷绝缘材料),一般情况下要使用MF中频或RF射频溅射工艺来制备这些涂层。而AZO(氧化锌铝)这种半导体性质的涂层材料可以通过DC直流溅射或DC脉冲直流溅射工艺进行涂层的制备,并且在DC直流溅射或DC脉冲直流溅射工艺条件下制备AZO半导体涂层能够获得比使用MF中频或RF射频溅射工艺制备陶瓷绝缘材料更高的沉积率。
本实施例使用AZO这种半导体性质的涂层材料作为选择性太阳能热吸收涂层膜系中间亚层结构的一部分,能够通过降低选择性太阳能热吸收涂层产品光谱某些波长区域上的光谱反射率,来提高产品光谱在对应波长区域上的光谱吸收率。和传统的选择性太阳能热吸收涂层膜系使用陶瓷绝缘材料作为中间亚层结构的减反层效果相同,能够获得相似的光学指标参数。除了上面提到的使用AZO半导体材料的优点外,AZO靶材相对于ITO靶材(氧化铟锡靶材)来说,制造成本和价格相对较便宜。
实施例二
一种基于TCO材料的减反层,包括一作为次减反层的TCO透明导电氧化物涂层2以及一作为主减反层的SiO2(SiOx)氧化物涂层1,所述SiO2(SiOx)氧化物涂层1覆盖于所述TCO透明导电氧化物涂层2。所述TCO透明导电氧化物涂层2是通过使用复合TCO靶材的DC磁控溅射工艺来制备的。所述SiO2(SiOx)涂层是通过使用电子束蒸发或者AC磁控溅射工艺来进行制备的。所述复合TCO靶材为金属氧化物或金属氧化物的混合体。所述复合TCO靶材为ZnO:Ga2O3 (GZO)。
本实施例使用GZO这种半导体性质的涂层材料具有较高的折射率,可以替代传统选择性太阳能热吸收涂层膜系中间亚层结构中的次减反层材料。对比传统选择性太阳能热吸收涂层膜系中间亚层结构使用的次减反层材料(通常是陶瓷绝缘材料),一般情况下要使用MF中频或RF射频溅射工艺来制备这些涂层。而GZO(氧化锌镓)这种半导体性质的涂层材料可以通过DC直流溅射或DC脉冲直流溅射工艺进行涂层的制备,并且在DC直流溅射或DC脉冲直流溅射工艺条件下制备GZO半导体涂层能够获得比使用MF中频或RF射频溅射工艺制备陶瓷绝缘材料更高的沉积率。GZO半导体涂层材料相对于AZO半导体涂层材料来说,具有更高的化学稳定性。
本实施例使用GZO这种半导体性质的涂层材料作为选择性太阳能热吸收涂层膜系中间亚层结构的一部分,能够通过降低选择性太阳能热吸收涂层产品光谱某些波长区域上的光谱反射率,来提高产品光谱在对应波长区域上的光谱吸收率。和传统的选择性太阳能热吸收涂层膜系使用陶瓷绝缘材料作为中间亚层结构的减反层效果相同,能够获得相似的光学指标参数。
实施例三
一种基于TCO材料的减反层,包括一作为次减反层的TCO透明导电氧化物涂层2以及一作为主减反层的SiO2(SiOx)氧化物涂层1,所述SiO2(SiOx)氧化物涂层1覆盖于所述TCO透明导电氧化物涂层2。所述TCO透明导电氧化物涂层2是通过使用复合TCO靶材的DC磁控溅射工艺来制备的。所述SiO2(SiOx)涂层是通过使用电子束蒸发或者AC磁控溅射工艺来进行制备的。所述复合TCO靶材为金属氧化物或金属氧化物的混合体。所述复合TCO靶材为In2O3:SnO2 (ITO)。
本实施例使用ITO这种半导体性质的涂层材料具有较高的折射率,可以替代传统选择性太阳能热吸收涂层膜系中间亚层结构中的次减反层材料。对比传统选择性太阳能热吸收涂层膜系中间亚层结构使用的次减反层材料(通常是陶瓷绝缘材料),一般情况下要使用MF中频或RF射频溅射工艺来制备这些涂层。而ITO(氧化铟锡)这种半导体性质的涂层材料可以通过DC直流溅射或DC脉冲直流溅射工艺进行涂层的制备,并且在DC直流溅射或DC脉冲直流溅射工艺条件下制备ITO半导体涂层能够获得比使用MF中频或RF射频溅射工艺制备陶瓷绝缘材料更高的沉积率。在所有的TCO(透明导电氧化物)涂层材料之中,ITO这种半导体涂层材料是最主要的一种制备选择性太阳能热吸收涂层次减反层的材料,因为它具有相对较高的光学(及电学)性能。
实施例四:本实用新型实施例一的相关实验数据及图表
图2为中间亚层结构AZO/SiO2减反层和单层SiO2减反层选择性太阳能热吸收涂层膜系反射率光谱的对比示意图。
在示意图中可以很明显地看到,具有AZO/SiO2中间亚层结构减反层的选择性太阳能热吸收涂层膜系的反射率光谱在某些波长区域上的反射率较低。通过这种现象,能够使选择性太阳能热吸收产品在可见光与近红外波长区域上的整体热吸收率变得更高。这种可见光与近红外波长区域上的整体热吸收率是根据相关的ISO 9050国际标准进行计算获得的。在示意图中的光谱曲线对比中,主要的差异是:单层SiO2减反层的相对热吸收率为94.32%,而中间亚层结构AZO/SiO2减反层的相对热吸收率高达95.5%。这就意味着使用中间亚层结构AZO/SiO2作为选择性太阳能热吸收涂层膜系的减反层能够为热吸收产品的整体热吸收率带来超过1%的指标提升。
实施例5本实用新型实施例一的相关实验数据及图表
图3(光谱曲线图在可见光及近红外波长区域上的细节显示):中间亚层结构AZO/SiO2减反层和单层SiO2减反层选择性太阳能热吸收涂层膜系反射率光谱的对比示意图。
在该图中能够更加详细地显示出使用中间亚层结构AZO/SiO2减反层对比单层SiO2减反层,在太阳光谱可见光及近红外波长区域上热吸收率光学参数指标的提升。这将给选择性太阳能热吸收产品的光学指标和性能带来质的飞跃!
以下提供几个本实用新型中上述高反射基底层4的优选实施例
实施例六
一种高反射基底层4,该高反射基底层4采用大面积电子束蒸发镀膜工艺制备而成,这种镀膜工艺所使用的蒸发材料为铝。所述高反射基底层4的厚度大于或等于50nm并且小于或等于1000nm。
本实施例采用铝作为蒸发材料的优点是:铝较轻且具有良好的导电和导热性能,作为蒸发材料能够获得较高的蒸发率。用铝作为红外高反射基底层4,配合其他涂层结构所制备的选择性太阳能热吸收涂层产品具有一定的生产能力。作为红外反射层在红外光谱区域能够提供较高的反射率,以获得更低的太阳能热吸收涂层发射比,进一步提高太阳能热吸收涂层的光热转换效率。铝比较便宜,对于制备性能优良的低发射比太阳能热吸收涂层的红外反射层来说,成本更低。
实施例七
一种高反射基底层4,该高反射基底层4采用大面积电子束蒸发镀膜工艺制备而成,这种镀膜工艺所使用的蒸发材料为银。所述高反射基底层4的厚度大于或等于50nm并且小于或等于1000nm。
本实施例采用银作为蒸发材料的优点是:银作为蒸发材料,具有所有金属中最高的导电和导热性。相比铝蒸发材料来说,在相同的蒸发沉积条件下具有较高的蒸发率。用银作为红外高反射基底层4,配合其他涂层结构所制备的选择性太阳能热吸收涂层产品具有一定的生产能力。作为红外反射层在红外光谱区域能够提供比铝更高的反射率,以获得更低的太阳能热吸收涂层发射比,进一步提高太阳能热吸收涂层的光热转换效率。
实施例八
一种高反射基底层4,该高反射基底层4采用大面积电子束蒸发镀膜工艺制备而成,这种镀膜工艺所使用的蒸发材料为铜。所述高反射基底层4的厚度大于或等于50nm并且小于或等于1000nm。
本实施例采用铜作为蒸发材料的优点是:铜是不太活泼的重金属,在常温下不与干燥空气中的氧化合,提高了太阳能热吸收涂层的耐候性和抗腐蚀性。铜对比铝作为蒸发材料来说,具有更好的导电和导热性。铜在这三种蒸发材料中,在相同的蒸发沉积条件下具有最高的蒸发率,这就意味着在一定程度上以较快的带材运行速度也能够获得一定厚度的铜涂层,进一步提高了选择性太阳能热吸收涂层产品的生产能力。作为红外反射层在红外光谱区域能够提供较高的反射率,以获得更低的太阳能热吸收涂层发射比,进一步提高太阳能热吸收涂层的光热转换效率。
综上所述,铝、银和铜这三种蒸发材料都非常适合在本实用新型中用作选择性太阳能热吸收涂层的红外高反射基底层4的蒸发材料。
另外,在本实用新型中,电子束蒸发和磁控溅射一样都是物理气象沉积技术并且它们可以被使用在各种各样不同的应用领域中。使用磁控溅射进行大面积镀膜是一种广泛分布及使用的真空镀膜技术。大面积电子束蒸发镀膜技术的分布和使用具有一定的范围性限制,因为较大规模的电子束蒸发系统的专利权问题给国内的其它厂家带来了一定的技术难度。目前国内制造的电子束蒸发系统多半是在一些科研机构及大学实验室中应用,而且这些电子束蒸发系统的规模较小,只能被用来执行一些小面积的电子束蒸发镀膜工艺,例如:半导体硅晶片的镀膜。所以,如果国内的其它厂家想要应用电子束蒸发工艺进行大面积镀膜必须克服以下技术壁垒:
1、大规模电子束蒸发系统具有较高的系统复杂性和对电子束进行控制的高要求性;
2、需要较大的真空腔体以及对所配置的真空抽气系统有较高的要求。
以上便是为什么对于大多数的国内厂家来说,他们的首选是使用磁控溅射工艺来制备相关的选择性太阳能热吸收涂层。并且由于如果使用磁控溅射工艺制备选择性太阳能热吸收涂层中较厚的红外高反射基底层4需要大大增加磁控溅射设备的数量,才能将相应的涂层堆叠到一定的厚度。这样将会间接地提高设备及生产的成本,同时应用磁控溅射工艺制备较薄的红外高反射基底层4而获得的选择性太阳能热吸收膜系对所使用金属带基材5材料的质量有更高的要求。因为较薄的红外高反射基底层4无法弥补金属带基材5材料(例如:基材表面粗糙度和基材表面的纯度)给选择性太阳能热吸收涂层膜系所带来的影响。例如:如果金属带基材5的表面粗糙度不理想的话,意味着在基材表面上存在着一定的凸起、凹坑及表面高低参差不齐的现象,所以有些时候在金属带基材5表面镀上的涂层无法覆盖这些凸起或凹坑的部位。或者从严格的意义上说,即使制备的涂层厚度足以覆盖这些缺陷,但是这会造成选择性太阳能热吸收涂层表面的界面上出现一些类似表面弛豫、表面重构、晶体结构的层错、位错及台阶化的界面问题,继而导致被镀涂层出现针孔现象。而且较薄的红外高反射基底层4在经过镀膜工艺并接触大气环境后,更容易与大气环境中的一些活泼性气体(例如:N2、O2或CO2等)产生化学反应形成相应的金属氧化物或金属氮化物,进而降低红外高反射基底层4的反射率。随着红外高反射基底层4反射率的降低,对选择性太阳能热吸收涂层膜系的整体发射比将会产生严重影响。通过将选择性太阳能热吸收涂层膜系中的红外高反射基底层4镀制地更厚的办法能够在一定程度上解决这些问题。
在大面积PVD镀膜生产中使用电子束蒸发工艺具有一定的优势,应用电子束蒸发工艺能够在一定程度上缩减设备及生产的成本并且利用该工艺可以更容易地制备出较厚的红外高反射基底层4。而较厚的红外高反射基底层4对于选择性太阳能热吸收涂层膜系来说,在保证膜系吸收比的前提下,可以进一步降低选择性太阳能热吸收膜系整体的发射比,从而提高选择性太阳能热吸收产品的光热转换效率。所以,这里最重要的是从光学指标“发射比”的角度来提高选择性太阳能热吸收产品的质量,同时也能够降低金属带基材5材料质量对选择性太阳能热吸收产品的影响。本申请人声明该专利中涉及的镀膜工艺方法具有以下特点:在大面积PVD镀膜制备选择性太阳能热吸收产品的应用中,可以成功地利用一组高功率电子枪制备出一层较厚的红外高反射基底层4。该较厚的红外高反射基底层4能够被应用到选择性太阳能热吸收涂层膜系中以降低膜系整体的发射比参数,进一步提高选择性太阳能热吸收产品的质量。而同时这种镀膜工艺方法所制备的较厚的红外高反射基底层4也能够在一定程度上降低选择性太阳能热吸收产品对金属带基材5材料质量的依赖性。
这种镀膜工艺方法使得将较厚的红外高反射基底层4应用于大面积PVD镀膜制备选择性太阳能热吸收产品成为一种可行的生产手段。同时,考虑到节约设备及生产成本的因素,使用电子束蒸发镀膜工艺制备选择性太阳能热吸收涂层膜系的红外高反射基底层4是一种切实有效的方法。
上述仅为本实用新型的具体实施方式,但本实用新型的设计构思并不局限于此,凡利用此构思对本实用新型进行非实质性的改动,均应属于侵犯本实用新型保护范围的行为。

Claims (7)

1.基于TCO薄膜材料的太阳能选择性吸收涂层,其特征在于:包括一具有低红外发射率的高反射基底层、一覆盖于该高反射基底层上的主吸收性涂层以及堆叠于该主吸收性涂层的减反层,所述减反层包括一作为次减反层的TCO透明导电氧化物涂层以及一作为主减反层的SiO2氧化物涂层,所述SiO2氧化物涂层覆盖于所述TCO透明导电氧化物涂层。
2.如权利要求1所述基于TCO薄膜材料的太阳能选择性吸收涂层,其特征在于:还包括一设于所述高反射基底层下方的金属带基材。
3.如权利要求2所述基于TCO薄膜材料的太阳能选择性吸收涂层,其特征在于:所述金属带基材为铝带、不锈钢带或铜带。
4.如权利要求3所述基于TCO薄膜材料的太阳能选择性吸收涂层,其特征在于:所述高反射基底层下表面覆盖有一用于提高和改善选择性太阳能热吸收涂层的附着性和/或抗腐蚀性的薄膜涂层。
5.如权利要求4所述基于TCO薄膜材料的太阳能选择性吸收涂层,其特征在于:所述薄膜涂层为金属涂层、金属氧化物涂层、金属氮化物涂层或者金属氮氧化物涂层。
6.如权利要求5所述基于TCO薄膜材料的太阳能选择性吸收涂层,其特征在于:所述高反射基底层为采用大面积电子束蒸发镀膜工艺制得的铝镀层、铜镀层或者银镀层。
7.如权利要求6所述基于TCO薄膜材料的太阳能选择性吸收涂层,其特征在于:所述高反射基底层的厚度为50nm~1000nm。
CN201420803423.2U 2014-12-18 2014-12-18 基于tco薄膜材料的太阳能选择性吸收涂层 Active CN204490981U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420803423.2U CN204490981U (zh) 2014-12-18 2014-12-18 基于tco薄膜材料的太阳能选择性吸收涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420803423.2U CN204490981U (zh) 2014-12-18 2014-12-18 基于tco薄膜材料的太阳能选择性吸收涂层

Publications (1)

Publication Number Publication Date
CN204490981U true CN204490981U (zh) 2015-07-22

Family

ID=53570276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420803423.2U Active CN204490981U (zh) 2014-12-18 2014-12-18 基于tco薄膜材料的太阳能选择性吸收涂层

Country Status (1)

Country Link
CN (1) CN204490981U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498875A (zh) * 2014-12-18 2015-04-08 福建新越金属材料科技有限公司 基于tco材料的减反层、太阳能热吸收涂层及其制法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498875A (zh) * 2014-12-18 2015-04-08 福建新越金属材料科技有限公司 基于tco材料的减反层、太阳能热吸收涂层及其制法

Similar Documents

Publication Publication Date Title
CN104532188A (zh) 选择性太阳能热吸收涂层的复合薄膜材料及其制备方法
CN105449010B (zh) 不锈钢衬底柔性铜铟镓硒薄膜太阳电池阻挡层制备方法
CN101666557B (zh) 一种非真空太阳光谱选择性吸收膜层及其制备方法
CN204230256U (zh) 低发射比的选择性太阳能热吸收涂层
KR101194257B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
CN101752454A (zh) 具有陷光结构的超薄铜铟镓硒薄膜太阳电池的制备方法
CN102157575A (zh) 新型多层膜结构的透明导电氧化物薄膜及其制备方法
CN1302148C (zh) 一种TiOxNy太阳能光热转换薄膜的制备方法
CN102569433A (zh) 薄膜太阳电池用复合背反射金属电极及其制备方法和应用
CN104975262A (zh) 相变型二氧化钒薄膜及其制备方法
CN101654331A (zh) 一种制备绒面ZnO透明导电镀膜玻璃的方法
CN103884122A (zh) 一种太阳能光热转换集热器透明热镜及其制备方法
CN104377261B (zh) 一种制备CdTe薄膜太阳能电池板方法
CN103928576B (zh) SnS/ZnS叠层薄膜太阳能电池制备方法
CN103066161B (zh) 一种太阳电池复合减反射膜的制备工艺
CN108183141A (zh) 一种新型结构的碲化镉薄膜电池及其制备方法
CN107217232A (zh) 一种提高氧化锌透明导电薄膜化学稳定性的方法
CN204490981U (zh) 基于tco薄膜材料的太阳能选择性吸收涂层
CN102126831B (zh) 太阳能接收器盖板玻璃的制备方法
CN1584445A (zh) NiCrOXNY太阳光谱选择性吸收薄膜及制备方法
CN104505436A (zh) 低发射比的选择性太阳能热吸收涂层及其制备方法
CN103137717A (zh) 铜掺杂氧化锡透明导电薄膜及其制备方法
KR20130114483A (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
Perkins et al. Amorphous transparent conductors for PV applications
CN103727693A (zh) 一种金属-介质多层结构颜色可调的太阳光热吸收涂层

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant