CN104505436A - 低发射比的选择性太阳能热吸收涂层及其制备方法 - Google Patents

低发射比的选择性太阳能热吸收涂层及其制备方法 Download PDF

Info

Publication number
CN104505436A
CN104505436A CN201410785936.XA CN201410785936A CN104505436A CN 104505436 A CN104505436 A CN 104505436A CN 201410785936 A CN201410785936 A CN 201410785936A CN 104505436 A CN104505436 A CN 104505436A
Authority
CN
China
Prior art keywords
coating
solar heat
heat absorption
selective solar
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410785936.XA
Other languages
English (en)
Inventor
马丁
瑞纳
眭凌杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Xin Yue Metal Material Science And Technology Ltd
Original Assignee
Fujian Xin Yue Metal Material Science And Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Xin Yue Metal Material Science And Technology Ltd filed Critical Fujian Xin Yue Metal Material Science And Technology Ltd
Priority to CN201410785936.XA priority Critical patent/CN104505436A/zh
Publication of CN104505436A publication Critical patent/CN104505436A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种低发射比的选择性太阳能热吸收涂层,由上往下依次包括减反层、主吸收性涂层以及高反射基底层,该高反射基底层采用大面积电子束蒸发镀膜工艺制备而成,这种镀膜工艺所使用的蒸发材料为铝、铜或者银。本发明还包括一种上述低发射比的选择性太阳能热吸收涂层的制备方法。本发明通过使用一种大面积电子束蒸发镀膜工艺来制备选择性太阳能热吸收涂层的红外高反射基底层,可以增厚红外高反射基底层的厚度,而这些较厚的涂层能够轻易地使选择性太阳能热吸收涂层拥有更低的红外发射比。在拥有更低红外发射比的同时,选择性太阳能热吸收涂层受基材条件的影响也更小。

Description

低发射比的选择性太阳能热吸收涂层及其制备方法
技术领域
本发明涉及一种用于平板太阳能集热器的选择性太阳能热吸收涂层,尤其是指一种低发射比的选择性太阳能热吸收涂层及其制备方法。
背景技术
对于平板太阳能集热器的应用来说,最常见和普遍的一种制备技术就是在金属板材上制备选择性太阳能热吸收涂层。就目前而言,绝大多数的选择性太阳能热吸收涂层是采用真空镀膜的工艺制得。
利用真空镀膜的方法制备选择性太阳能热吸收涂层,这种方法包括了一种多层薄膜的结构,以此形成一个选择性太阳能热吸收涂层的膜系。通常情况下选择性太阳能热吸收涂层包括了一层高反射基底层,此高反射基底层拥有较低的红外发射率。在红外高反射基底层之上堆叠一层或多层的中间亚层,这种中间亚层结构构成了选择性太阳能热吸收涂层的吸收层和干涉阻挡层。顶层是一层或多层用于减少反射的膜层(减反层)。
就目前而言,红外高反射层通常是由直流或中频磁控溅射进行镀制,经过直流或中频磁控溅射所镀的红外高反射层能够帮助降低整个选择性太阳能热吸收涂层的红外发射比。但是为了让沉积率和生产能力能够达到最优的情况,磁控溅射所镀的涂层的厚度是受到限制的。较薄的涂层厚度下涂层的红外发射比相对于较厚的涂层将会受到基材条件更多的限制(例如:基材表面粗糙度和基材表面的纯度),不利于在拥有相对较高的生产能力的情况下进行大规模生产。
发明内容
本发明提供一种低发射比的选择性太阳能热吸收涂层及其制备方法,其主要目的在于克服现有直流或中频磁控溅射所镀的红外高反射层存在的镀膜厚度受限、不利于大规模生产的缺陷。
为解决上述技术问题,本发明采用如下技术方案:
一种低发射比的选择性太阳能热吸收涂层,由上往下依次包括减反层、主吸收性涂层以及高反射基底层,该高反射基底层采用大面积电子束蒸发镀膜工艺制备而成,这种镀膜工艺所使用的蒸发材料为铝、铜或者银。
进一步的,所述高反射基底层的下表面覆盖有一用于提高和改善选择性太阳能热吸收涂层的附着性和/或抗腐蚀性的薄膜涂层。
进一步的,所述薄膜涂层的成分为至少一种金属、至少一种金属氧化物、至少一种金属氮化物、至少一种金属氮氧化物或者以上金属、金属氧化物、金属氮化物和金属氮氧化物的任意组合。
进一步的,所述薄膜涂层采用DC磁控溅射工艺或者AC磁控溅射工艺镀制于所高反射基底层的下表面。
进一步的,该选择性太阳能热吸收涂层被镀制于一金属带基材上。
进一步的,所述金属带基材为铝带、不锈钢带或者铜带。
进一步的,所述高反射基底层的厚度为50nm~1000nm。
一种选择性太阳能热吸收涂层的制备方法,包括以下步骤:步骤1、使用DC磁控溅射工艺或者AC磁控溅射工艺,以铝带、不锈钢带或铜带为金属带基材,在该金属带基材上镀上一层用于提高和改善选择性太阳能热吸收涂层的附着性和/或抗腐蚀性的薄膜涂层,其中该薄膜涂层的成分为至少一种金属、至少一种金属氧化物、至少一种金属氮化物、至少一种金属氮氧化物或者以上金属、金属氧化物、金属氮化物和金属氮氧化物的任意组合;步骤2、采用大面积电子束蒸发镀膜工艺,以铝、铜或者银作为蒸发材料,在步骤1制得的薄膜涂层上镀上一层高反射基底层;步骤3、使用电子束蒸发或者AC磁控溅射工艺,在步骤2获得的高反射基底层上镀上一到多个涂层来建立选择性太阳能热吸收涂层膜系的主吸收性涂层;步骤4、在步骤3获得的主吸收性涂层上镀上一减反层。
进一步的,步骤4包括有步骤4a和步骤4b,其中所述步骤4a为:通过使用DC磁控溅射工艺,以ZnO:Al2O3 (AZO)、ZnO:Ga2O3 (GZO)或In2O3:SnO2 (ITO)作为所述复合TCO靶材,在步骤3获得的主吸收性涂层上镀上一 TCO透明导电氧化物涂层;所述步骤4b为:通过使用电子束蒸发或者AC磁控溅射工艺,在步骤4a获得的TCO透明导电氧化物涂层上镀上一SiO2(SiOx)氧化物涂层。
进一步的,所述高反射基底层的厚度为50nm~1000nm。
和现有技术相比,本发明产生的有益效果在于:
1、本发明设计巧妙、实用性强,通过使用一种大面积电子束蒸发镀膜工艺来制备选择性太阳能热吸收涂层的红外高反射基底层,可以增厚红外高反射基底层的厚度,而这些较厚的涂层能够轻易地使选择性太阳能热吸收涂层拥有更低的红外发射比。在拥有更低红外发射比的同时,选择性太阳能热吸收涂层受基材条件的影响也更小。同时,可以在拥有相对较高的生产能力的情况下,实现对选择性太阳能热吸收涂层的红外高反射基底层质量的改善,进而能够帮助改善并提高平板太阳能集热器的使用性能。
2、在本发明中,通过在电子束蒸发镀制的较厚的高反射基底层之下再镀上一层较薄的薄膜可以提高和改善选择性太阳能热吸收涂层的附着性和/或抗腐蚀性。镀制这种较薄的能够提高和改善膜系附着性和/或抗腐蚀性的涂层的方法可以是DC或AC磁控溅射工艺。这种薄膜涂层的成分可以是一种金属Me或一种金属氧化物MeOx或一种金属氮化物MeNy或一种金属氮氧化物MeOxNy。在电子束蒸发镀制的较厚的高反射基底层之下再镀上一层较薄的可以提高和改善膜系附着性和/或抗腐蚀性的薄膜,这样就形成了一种具有红外高反射特性的选择性太阳能热吸收涂层膜系。
附图说明
图1为本发明中所述选择性太阳能热吸收涂层的结构示意图。
图2为本发明实施例四的中间亚层结构AZO/SiO2减反层和单层SiO2减反层选择性太阳能热吸收涂层膜系反射率光谱的对比示意图。
图3为本发明实施例五的中间亚层结构AZO/SiO2减反层和单层SiO2减反层选择性太阳能热吸收涂层膜系反射率光谱的对比示意图。
具体实施方式
本发明公开了一种选择性太阳能热吸收涂层的制备方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
参照图1。一种低发射比的选择性太阳能热吸收涂层,由上往下依次包括减反层、主吸收性涂层3以及高反射基底层4,该高反射基底层4采用大面积电子束蒸发镀膜工艺制备而成,这种镀膜工艺所使用的蒸发材料为铝、铜或者银。所述减反层包括一作为次减反层的TCO透明导电氧化物涂层2以及一作为主减反层的SiO2(SiOx)氧化物涂层1,所述SiO2(SiOx)氧化物涂层1覆盖于所述TCO透明导电氧化物涂层2。
进一步的,所述高反射基底层4的下表面覆盖有一用于提高和改善选择性太阳能热吸收涂层的附着性和/或抗腐蚀性的薄膜涂层6。
进一步的,所述薄膜涂层6的成分为至少一种金属、至少一种金属氧化物、至少一种金属氮化物、至少一种金属氮氧化物或者以上金属、金属氧化物、金属氮化物和金属氮氧化物的任意组合。
进一步的,所述薄膜涂层6采用DC磁控溅射工艺或者AC磁控溅射工艺镀制于所高反射基底层4的下表面。
进一步的,该选择性太阳能热吸收涂层被镀制于一金属带基材5上。
进一步的,所述金属带基材5为铝带、不锈钢带或者铜带。
进一步的,所述高反射基底层4的厚度为50nm~1000nm。
一种选择性太阳能热吸收涂层的制备方法,包括以下步骤:
步骤1、使用DC磁控溅射工艺或者AC磁控溅射工艺,以铝带、不锈钢带或铜带为金属带基材5,在该金属带基材5上镀上一层用于提高和改善选择性太阳能热吸收涂层的附着性和/或抗腐蚀性的薄膜涂层6,其中该薄膜涂层6的成分为至少一种金属、至少一种金属氧化物、至少一种金属氮化物、至少一种金属氮氧化物或者以上金属、金属氧化物、金属氮化物和金属氮氧化物的任意组合。
步骤2、采用大面积电子束蒸发镀膜工艺,以铝、铜或者银作为蒸发材料,在步骤1制得的薄膜涂层6上镀上一层高反射基底层4。
步骤3、使用电子束蒸发或者AC磁控溅射工艺,在步骤2获得的高反射基底层4上镀上一到多个涂层来建立选择性太阳能热吸收涂层膜系的主吸收性涂层。
步骤4、通过使用DC磁控溅射工艺,以ZnO:Al2O3 (AZO)、ZnO:Ga2O3 (GZO)或In2O3:SnO2 (ITO)作为所述复合TCO靶材,在步骤3获得的主吸收性涂层上镀上一 TCO透明导电氧化物涂层2。
步骤5、通过使用电子束蒸发或者AC磁控溅射工艺,在步骤4a获得的TCO透明导电氧化物涂层2上镀上一SiO2(SiOx)氧化物涂层1。
本发明设计巧妙、实用性强,通过使用一种大面积电子束蒸发镀膜工艺来制备选择性太阳能热吸收涂层的红外高反射基底层4,可以增厚红外高反射基底层4的厚度,而这些较厚的涂层能够轻易地使选择性太阳能热吸收涂层拥有更低的红外发射比。在拥有更低红外发射比的同时,选择性太阳能热吸收涂层受基材条件的影响也更小。同时,可以在拥有相对较高的生产能力的情况下,实现对选择性太阳能热吸收涂层的红外高反射基底层4质量的改善,进而能够帮助改善并提高平板太阳能集热器的使用性能。
在本发明中,通过在电子束蒸发镀制的较厚的高反射基底层4之下再镀上一层较薄的薄膜可以提高和改善选择性太阳能热吸收涂层的附着性和/或抗腐蚀性。镀制这种较薄的能够提高和改善膜系附着性和/或抗腐蚀性的涂层的方法可以是DC或AC磁控溅射工艺。这种薄膜涂层6的成分可以是一种金属Me或一种金属氧化物MeOx或一种金属氮化物MeNy或一种金属氮氧化物MeOxNy。在电子束蒸发镀制的较厚的高反射基底层4之下再镀上一层较薄的可以提高和改善膜系附着性和/或抗腐蚀性的薄膜,这样就形成了一种具有红外高反射特性的选择性太阳能热吸收涂层膜系。
以下提供几个本发明中上述减反层的优选实施例
实施例一
一种基于TCO材料的减反层,包括一作为次减反层的TCO透明导电氧化物涂层2以及一作为主减反层的SiO2(SiOx)氧化物涂层1,所述SiO2(SiOx)氧化物涂层1覆盖于所述TCO透明导电氧化物涂层2。所述TCO透明导电氧化物涂层2是通过使用复合TCO靶材的DC磁控溅射工艺来制备的。所述SiO2(SiOx)涂层是通过使用电子束蒸发或者AC磁控溅射工艺来进行制备的。所述复合TCO靶材为金属氧化物或金属氧化物的混合体。所述复合TCO靶材为ZnO:Al2O3 (AZO)。
本实施例采用AZO这种半导体性质的涂层材料具有较高的折射率,可以替代传统选择性太阳能热吸收涂层膜系中间亚层结构中的次减反层材料。对比传统选择性太阳能热吸收涂层膜系中间亚层结构使用的次减反层材料(通常是陶瓷绝缘材料),一般情况下要使用MF中频或RF射频溅射工艺来制备这些涂层。而AZO(氧化锌铝)这种半导体性质的涂层材料可以通过DC直流溅射或DC脉冲直流溅射工艺进行涂层的制备,并且在DC直流溅射或DC脉冲直流溅射工艺条件下制备AZO半导体涂层能够获得比使用MF中频或RF射频溅射工艺制备陶瓷绝缘材料更高的沉积率。
本实施例使用AZO这种半导体性质的涂层材料作为选择性太阳能热吸收涂层膜系中间亚层结构的一部分,能够通过降低选择性太阳能热吸收涂层产品光谱某些波长区域上的光谱反射率,来提高产品光谱在对应波长区域上的光谱吸收率。和传统的选择性太阳能热吸收涂层膜系使用陶瓷绝缘材料作为中间亚层结构的减反层效果相同,能够获得相似的光学指标参数。除了上面提到的使用AZO半导体材料的优点外,AZO靶材相对于ITO靶材(氧化铟锡靶材)来说,制造成本和价格相对较便宜。
实施例二
一种基于TCO材料的减反层,包括一作为次减反层的TCO透明导电氧化物涂层2以及一作为主减反层的SiO2(SiOx)氧化物涂层1,所述SiO2(SiOx)氧化物涂层1覆盖于所述TCO透明导电氧化物涂层2。所述TCO透明导电氧化物涂层2是通过使用复合TCO靶材的DC磁控溅射工艺来制备的。所述SiO2(SiOx)涂层是通过使用电子束蒸发或者AC磁控溅射工艺来进行制备的。所述复合TCO靶材为金属氧化物或金属氧化物的混合体。所述复合TCO靶材为ZnO:Ga2O3 (GZO)。
本实施例使用GZO这种半导体性质的涂层材料具有较高的折射率,可以替代传统选择性太阳能热吸收涂层膜系中间亚层结构中的次减反层材料。对比传统选择性太阳能热吸收涂层膜系中间亚层结构使用的次减反层材料(通常是陶瓷绝缘材料),一般情况下要使用MF中频或RF射频溅射工艺来制备这些涂层。而GZO(氧化锌镓)这种半导体性质的涂层材料可以通过DC直流溅射或DC脉冲直流溅射工艺进行涂层的制备,并且在DC直流溅射或DC脉冲直流溅射工艺条件下制备GZO半导体涂层能够获得比使用MF中频或RF射频溅射工艺制备陶瓷绝缘材料更高的沉积率。GZO半导体涂层材料相对于AZO半导体涂层材料来说,具有更高的化学稳定性。
本实施例使用GZO这种半导体性质的涂层材料作为选择性太阳能热吸收涂层膜系中间亚层结构的一部分,能够通过降低选择性太阳能热吸收涂层产品光谱某些波长区域上的光谱反射率,来提高产品光谱在对应波长区域上的光谱吸收率。和传统的选择性太阳能热吸收涂层膜系使用陶瓷绝缘材料作为中间亚层结构的减反层效果相同,能够获得相似的光学指标参数。
实施例三
一种基于TCO材料的减反层,包括一作为次减反层的TCO透明导电氧化物涂层2以及一作为主减反层的SiO2(SiOx)氧化物涂层1,所述SiO2(SiOx)氧化物涂层1覆盖于所述TCO透明导电氧化物涂层2。所述TCO透明导电氧化物涂层2是通过使用复合TCO靶材的DC磁控溅射工艺来制备的。所述SiO2(SiOx)涂层是通过使用电子束蒸发或者AC磁控溅射工艺来进行制备的。所述复合TCO靶材为金属氧化物或金属氧化物的混合体。所述复合TCO靶材为In2O3:SnO2 (ITO)。
本实施例使用ITO这种半导体性质的涂层材料具有较高的折射率,可以替代传统选择性太阳能热吸收涂层膜系中间亚层结构中的次减反层材料。对比传统选择性太阳能热吸收涂层膜系中间亚层结构使用的次减反层材料(通常是陶瓷绝缘材料),一般情况下要使用MF中频或RF射频溅射工艺来制备这些涂层。而ITO(氧化铟锡)这种半导体性质的涂层材料可以通过DC直流溅射或DC脉冲直流溅射工艺进行涂层的制备,并且在DC直流溅射或DC脉冲直流溅射工艺条件下制备ITO半导体涂层能够获得比使用MF中频或RF射频溅射工艺制备陶瓷绝缘材料更高的沉积率。在所有的TCO(透明导电氧化物)涂层材料之中,ITO这种半导体涂层材料是最主要的一种制备选择性太阳能热吸收涂层次减反层的材料,因为它具有相对较高的光学(及电学)性能。
实施例四:本发明实施例一的相关实验数据及图表
图2为中间亚层结构AZO/SiO2减反层和单层SiO2减反层选择性太阳能热吸收涂层膜系反射率光谱的对比示意图。
在示意图中可以很明显地看到,具有AZO/SiO2中间亚层结构减反层的选择性太阳能热吸收涂层膜系的反射率光谱在某些波长区域上的反射率较低。通过这种现象,能够使选择性太阳能热吸收产品在可见光与近红外波长区域上的整体热吸收率变得更高。这种可见光与近红外波长区域上的整体热吸收率是根据相关的ISO 9050国际标准进行计算获得的。在示意图中的光谱曲线对比中,主要的差异是:单层SiO2减反层的相对热吸收率为94.32%,而中间亚层结构AZO/SiO2减反层的相对热吸收率高达95.5%。这就意味着使用中间亚层结构AZO/SiO2作为选择性太阳能热吸收涂层膜系的减反层能够为热吸收产品的整体热吸收率带来超过1%的指标提升。
实施例五 本发明实施例一的相关实验数据及图表
图3(光谱曲线图在可见光及近红外波长区域上的细节显示):中间亚层结构AZO/SiO2减反层和单层SiO2减反层选择性太阳能热吸收涂层膜系反射率光谱的对比示意图。
在该图中能够更加详细地显示出使用中间亚层结构AZO/SiO2减反层对比单层SiO2减反层,在太阳光谱可见光及近红外波长区域上热吸收率光学参数指标的提升。这将给选择性太阳能热吸收产品的光学指标和性能带来质的飞跃!
以下提供几个本发明中上述高反射基底层4的优选实施例
实施例六
一种高反射基底层4,该高反射基底层4采用大面积电子束蒸发镀膜工艺制备而成,这种镀膜工艺所使用的蒸发材料为铝。所述高反射基底层4的厚度大于或等于50nm并且小于或等于1000nm。
本实施例采用铝作为蒸发材料的优点是:铝较轻且具有良好的导电和导热性能,作为蒸发材料能够获得较高的蒸发率。用铝作为红外高反射基底层4,配合其他涂层结构所制备的选择性太阳能热吸收涂层产品具有一定的生产能力。作为红外反射层在红外光谱区域能够提供较高的反射率,以获得更低的太阳能热吸收涂层发射比,进一步提高太阳能热吸收涂层的光热转换效率。铝比较便宜,对于制备性能优良的低发射比太阳能热吸收涂层的红外反射层来说,成本更低。
实施例七
一种高反射基底层4,该高反射基底层4采用大面积电子束蒸发镀膜工艺制备而成,这种镀膜工艺所使用的蒸发材料为银。所述高反射基底层4的厚度大于或等于50nm并且小于或等于1000nm。
本实施例采用银作为蒸发材料的优点是:银作为蒸发材料,具有所有金属中最高的导电和导热性。相比铝蒸发材料来说,在相同的蒸发沉积条件下具有较高的蒸发率。用银作为红外高反射基底层4,配合其他涂层结构所制备的选择性太阳能热吸收涂层产品具有一定的生产能力。作为红外反射层在红外光谱区域能够提供比铝更高的反射率,以获得更低的太阳能热吸收涂层发射比,进一步提高太阳能热吸收涂层的光热转换效率。
实施例八
一种高反射基底层4,该高反射基底层4采用大面积电子束蒸发镀膜工艺制备而成,这种镀膜工艺所使用的蒸发材料为铜。所述高反射基底层4的厚度大于或等于50nm并且小于或等于1000nm。
本实施例采用铜作为蒸发材料的优点是:铜是不太活泼的重金属,在常温下不与干燥空气中的氧化合,提高了太阳能热吸收涂层的耐候性和抗腐蚀性。铜对比铝作为蒸发材料来说,具有更好的导电和导热性。铜在这三种蒸发材料中,在相同的蒸发沉积条件下具有最高的蒸发率,这就意味着在一定程度上以较快的带材运行速度也能够获得一定厚度的铜涂层,进一步提高了选择性太阳能热吸收涂层产品的生产能力。作为红外反射层在红外光谱区域能够提供较高的反射率,以获得更低的太阳能热吸收涂层发射比,进一步提高太阳能热吸收涂层的光热转换效率。
综上所述,铝、银和铜这三种蒸发材料都非常适合在本发明中用作选择性太阳能热吸收涂层的红外高反射基底层4的蒸发材料。
另外,在本发明中,电子束蒸发和磁控溅射一样都是物理气象沉积技术并且它们可以被使用在各种各样不同的应用领域中。使用磁控溅射进行大面积镀膜是一种广泛分布及使用的真空镀膜技术。大面积电子束蒸发镀膜技术的分布和使用具有一定的范围性限制,因为较大规模的电子束蒸发系统的专利权问题给国内的其它厂家带来了一定的技术难度。目前国内制造的电子束蒸发系统多半是在一些科研机构及大学实验室中应用,而且这些电子束蒸发系统的规模较小,只能被用来执行一些小面积的电子束蒸发镀膜工艺,例如:半导体硅晶片的镀膜。所以,如果国内的其它厂家想要应用电子束蒸发工艺进行大面积镀膜必须克服以下技术壁垒:
1、大规模电子束蒸发系统具有较高的系统复杂性和对电子束进行控制的高要求性;
2、需要较大的真空腔体以及对所配置的真空抽气系统有较高的要求。
以上便是为什么对于大多数的国内厂家来说,他们的首选是使用磁控溅射工艺来制备相关的选择性太阳能热吸收涂层。并且由于如果使用磁控溅射工艺制备选择性太阳能热吸收涂层中较厚的红外高反射基底层4需要大大增加磁控溅射设备的数量,才能将相应的涂层堆叠到一定的厚度。这样将会间接地提高设备及生产的成本,同时应用磁控溅射工艺制备较薄的红外高反射基底层4而获得的选择性太阳能热吸收膜系对所使用金属带基材5材料的质量有更高的要求。因为较薄的红外高反射基底层4无法弥补金属带基材5材料(例如:基材表面粗糙度和基材表面的纯度)给选择性太阳能热吸收涂层膜系所带来的影响。例如:如果金属带基材5的表面粗糙度不理想的话,意味着在基材表面上存在着一定的凸起、凹坑及表面高低参差不齐的现象,所以有些时候在金属带基材5表面镀上的涂层无法覆盖这些凸起或凹坑的部位。或者从严格的意义上说,即使制备的涂层厚度足以覆盖这些缺陷,但是这会造成选择性太阳能热吸收涂层表面的界面上出现一些类似表面弛豫、表面重构、晶体结构的层错、位错及台阶化的界面问题,继而导致被镀涂层出现针孔现象。而且较薄的红外高反射基底层4在经过镀膜工艺并接触大气环境后,更容易与大气环境中的一些活泼性气体(例如:N2、O2或CO2等)产生化学反应形成相应的金属氧化物或金属氮化物,进而降低红外高反射基底层4的反射率。随着红外高反射基底层4反射率的降低,对选择性太阳能热吸收涂层膜系的整体发射比将会产生严重影响。通过将选择性太阳能热吸收涂层膜系中的红外高反射基底层4镀制地更厚的办法能够在一定程度上解决这些问题。
在大面积PVD镀膜生产中使用电子束蒸发工艺具有一定的优势,应用电子束蒸发工艺能够在一定程度上缩减设备及生产的成本并且利用该工艺可以更容易地制备出较厚的红外高反射基底层4。而较厚的红外高反射基底层4对于选择性太阳能热吸收涂层膜系来说,在保证膜系吸收比的前提下,可以进一步降低选择性太阳能热吸收膜系整体的发射比,从而提高选择性太阳能热吸收产品的光热转换效率。所以,这里最重要的是从光学指标“发射比”的角度来提高选择性太阳能热吸收产品的质量,同时也能够降低金属带基材5材料质量对选择性太阳能热吸收产品的影响。本申请人声明该专利中涉及的镀膜工艺方法具有以下特点:在大面积PVD镀膜制备选择性太阳能热吸收产品的应用中,可以成功地利用一组高功率电子枪制备出一层较厚的红外高反射基底层4。该较厚的红外高反射基底层4能够被应用到选择性太阳能热吸收涂层膜系中以降低膜系整体的发射比参数,进一步提高选择性太阳能热吸收产品的质量。而同时这种镀膜工艺方法所制备的较厚的红外高反射基底层4也能够在一定程度上降低选择性太阳能热吸收产品对金属带基材5材料质量的依赖性。
这种镀膜工艺方法使得将较厚的红外高反射基底层4应用于大面积PVD镀膜制备选择性太阳能热吸收产品成为一种可行的生产手段。同时,考虑到节约设备及生产成本的因素,使用电子束蒸发镀膜工艺制备选择性太阳能热吸收涂层膜系的红外高反射基底层4是一种切实有效的方法。
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。

Claims (10)

1.一种低发射比的选择性太阳能热吸收涂层,由上往下依次包括减反层、主吸收性涂层以及高反射基底层,其特征在于:该高反射基底层采用大面积电子束蒸发镀膜工艺制备而成,这种镀膜工艺所使用的蒸发材料为铝、铜或者银。
2.如权利要求1所述一种低发射比的选择性太阳能热吸收涂层,其特征在于:所述高反射基底层的下表面覆盖有一用于提高和改善选择性太阳能热吸收涂层的附着性和/或抗腐蚀性的薄膜涂层。
3.如权利要求2所述一种低发射比的选择性太阳能热吸收涂层,其特征在于:所述薄膜涂层的成分为至少一种金属、至少一种金属氧化物、至少一种金属氮化物、至少一种金属氮氧化物或者以上金属、金属氧化物、金属氮化物和金属氮氧化物的任意组合。
4.如权利要求3所述一种低发射比的选择性太阳能热吸收涂层,其特征在于:所述薄膜涂层采用DC磁控溅射工艺或者AC磁控溅射工艺镀制于所高反射基底层的下表面。
5.如权利要求1所述一种低发射比的选择性太阳能热吸收涂层,其特征在于:该选择性太阳能热吸收涂层被镀制于一金属带基材上。
6.如权利要求5所述一种低发射比的选择性太阳能热吸收涂层,其特征在于:所述金属带基材为铝带、不锈钢带或者铜带。
7.如权利要求1所述一种低发射比的选择性太阳能热吸收涂层,其特征在于:所述高反射基底层的厚度为50nm~1000nm。
8.一种选择性太阳能热吸收涂层的制备方法,其特征在于,包括以下步骤:步骤1、使用DC磁控溅射工艺或者AC磁控溅射工艺,以铝带、不锈钢带或铜带为金属带基材,在该金属带基材上镀上一层用于提高和改善选择性太阳能热吸收涂层的附着性和/或抗腐蚀性的薄膜涂层,其中该薄膜涂层的成分为至少一种金属、至少一种金属氧化物、至少一种金属氮化物、至少一种金属氮氧化物或者以上金属、金属氧化物、金属氮化物和金属氮氧化物的任意组合;步骤2、采用大面积电子束蒸发镀膜工艺,以铝、铜或者银作为蒸发材料,在步骤1制得的薄膜涂层上镀上一层高反射基底层;步骤3、使用电子束蒸发或者AC磁控溅射工艺,在步骤2获得的高反射基底层上镀上一到多个涂层来建立选择性太阳能热吸收涂层膜系的主吸收性涂层;步骤4、在步骤3获得的主吸收性涂层上镀上一减反层。
9.如权利要求8所述一种选择性太阳能热吸收涂层的制备方法,其特征在于:步骤4包括有步骤4a和步骤4b,其中所述步骤4a为:通过使用DC磁控溅射工艺,以ZnO:Al2O3 (AZO)、ZnO:Ga2O3 (GZO)或In2O3:SnO2 (ITO)作为所述复合TCO靶材,在步骤3获得的主吸收性涂层上镀上一 TCO透明导电氧化物涂层;所述步骤4b为:通过使用电子束蒸发或者AC磁控溅射工艺,在步骤4a获得的TCO透明导电氧化物涂层上镀上一SiO2(SiOx)氧化物涂层。
10.如权利要求8或9所述一种选择性太阳能热吸收涂层的制备方法,其特征在于:所述高反射基底层的厚度为50nm~1000nm。
CN201410785936.XA 2014-12-18 2014-12-18 低发射比的选择性太阳能热吸收涂层及其制备方法 Pending CN104505436A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410785936.XA CN104505436A (zh) 2014-12-18 2014-12-18 低发射比的选择性太阳能热吸收涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410785936.XA CN104505436A (zh) 2014-12-18 2014-12-18 低发射比的选择性太阳能热吸收涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN104505436A true CN104505436A (zh) 2015-04-08

Family

ID=52947172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410785936.XA Pending CN104505436A (zh) 2014-12-18 2014-12-18 低发射比的选择性太阳能热吸收涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN104505436A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091442A (zh) * 2016-06-06 2016-11-09 南宁可煜能源科技有限公司 一种具有双陶瓷结构的选择性太阳能吸收涂层
CN108615778A (zh) * 2018-05-05 2018-10-02 宁波山迪光能技术有限公司 一种透光太阳能模组及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523132A (en) * 1991-07-19 1996-06-04 The University Of Sydney Thin film solar selective surface coating
US20030165694A1 (en) * 2002-03-01 2003-09-04 Klaus Hartig Thin film coating having niobium-titanium layer
CN103032978A (zh) * 2012-12-27 2013-04-10 北京市太阳能研究所集团有限公司 一种菲涅尔式太阳能热发电用选择性吸收涂层及其制备方法
CN103032977A (zh) * 2012-12-27 2013-04-10 北京市太阳能研究所集团有限公司 一种中温太阳能选择性吸收涂层及其制备方法
CN103302917A (zh) * 2013-05-27 2013-09-18 欧阳俊 一种双吸收层TiON耐候性光热涂层及其制备方法
CN204230256U (zh) * 2014-12-18 2015-03-25 福建新越金属材料科技有限公司 低发射比的选择性太阳能热吸收涂层

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523132A (en) * 1991-07-19 1996-06-04 The University Of Sydney Thin film solar selective surface coating
US20030165694A1 (en) * 2002-03-01 2003-09-04 Klaus Hartig Thin film coating having niobium-titanium layer
CN103032978A (zh) * 2012-12-27 2013-04-10 北京市太阳能研究所集团有限公司 一种菲涅尔式太阳能热发电用选择性吸收涂层及其制备方法
CN103032977A (zh) * 2012-12-27 2013-04-10 北京市太阳能研究所集团有限公司 一种中温太阳能选择性吸收涂层及其制备方法
CN103302917A (zh) * 2013-05-27 2013-09-18 欧阳俊 一种双吸收层TiON耐候性光热涂层及其制备方法
CN204230256U (zh) * 2014-12-18 2015-03-25 福建新越金属材料科技有限公司 低发射比的选择性太阳能热吸收涂层

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘静等: "氧化铟锡透明热镜减反膜系光学设计与制备", 《2013年全国玻璃科学技术年会论文集》 *
叶志镇等: "《氧化锌半导体材料掺杂技术与应用》", 31 January 2009 *
段光复: "《高效晶硅太阳电池技术:设计、制造、测试、发电》", 28 February 2014, 机械工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091442A (zh) * 2016-06-06 2016-11-09 南宁可煜能源科技有限公司 一种具有双陶瓷结构的选择性太阳能吸收涂层
CN108615778A (zh) * 2018-05-05 2018-10-02 宁波山迪光能技术有限公司 一种透光太阳能模组及其制造方法

Similar Documents

Publication Publication Date Title
CN104532188A (zh) 选择性太阳能热吸收涂层的复合薄膜材料及其制备方法
CN204230256U (zh) 低发射比的选择性太阳能热吸收涂层
JP4565105B2 (ja) 太陽電池用の光学薄膜およびその製造方法
JP2011501455A (ja) 改良された抵抗率を有する層で被覆したガラス基板
US8927322B2 (en) Combinatorial methods for making CIGS solar cells
JP2013529251A (ja) 熱吸収材を提供する方法
CN105355676A (zh) 一种柔性cigs薄膜太阳电池的背电极结构
CN101886848A (zh) 一种太阳光谱选择性吸收膜及其制备方法
CN101752453A (zh) 玻璃衬底双面铜铟镓硒薄膜太阳电池组件的制备方法
CN104681662A (zh) 一种高反射率太阳能薄膜的制备方法
CN103928576B (zh) SnS/ZnS叠层薄膜太阳能电池制备方法
CN202782003U (zh) 太阳选择性吸收涂层
CN108183141A (zh) 一种新型结构的碲化镉薄膜电池及其制备方法
CN104137272B (zh) Cigs系化合物太阳能电池
CN103066161B (zh) 一种太阳电池复合减反射膜的制备工艺
CN104505436A (zh) 低发射比的选择性太阳能热吸收涂层及其制备方法
CN204478557U (zh) 一种双吸收层太阳光谱选择性吸收涂层
CN204490981U (zh) 基于tco薄膜材料的太阳能选择性吸收涂层
CN102837467A (zh) 一种透明导电膜玻璃及其制备方法
CN204494880U (zh) 一种提高热吸收效率的太阳能选择性吸收涂层
CN104654639B (zh) 具有渐变性复合涂层形式的亚吸收层及其制法
CN204513832U (zh) 用于平板太阳能集热器的选择太阳能吸收涂层
CN202119152U (zh) 具有太阳能选择性吸收性能的涂层
CN108511535A (zh) 一种太阳能电池片及其制备方法
CN104498875A (zh) 基于tco材料的减反层、太阳能热吸收涂层及其制法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150408

RJ01 Rejection of invention patent application after publication