CN204202459U - 内螺旋外交叉隧道双面强化沸腾传热管 - Google Patents

内螺旋外交叉隧道双面强化沸腾传热管 Download PDF

Info

Publication number
CN204202459U
CN204202459U CN201420527104.3U CN201420527104U CN204202459U CN 204202459 U CN204202459 U CN 204202459U CN 201420527104 U CN201420527104 U CN 201420527104U CN 204202459 U CN204202459 U CN 204202459U
Authority
CN
China
Prior art keywords
heat
transfer pipe
pipe
heat transfer
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420527104.3U
Other languages
English (en)
Inventor
龙新峰
陈莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201420527104.3U priority Critical patent/CN204202459U/zh
Application granted granted Critical
Publication of CN204202459U publication Critical patent/CN204202459U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本实用新型提供一种内螺旋外交叉隧道双面强化沸腾传热管,包括传热管基体,传热管基体内表面设有内螺旋沟槽,内螺旋沟槽沿内表面呈螺旋状分布,螺旋轴线与传热管轴线同轴;热管基体外表面设有沿管轴成螺旋分布的多个肋片;所述的肋片彼此独立,构成整个传热管壁外表面的三维扩展曲面。本实用新型可以可较大地增加传热面积,肋片还可破坏滞流边界层,提高沸腾传热膜系数;管内分布的螺旋沟槽可诱发二次分离流,提升管内液体湍动程度,提高管内对流传热膜系数,且具有一定抗结垢能力。本实用新型适用于强化管内为低粘度且含一定杂质的液体和管外为高粘度、高沸点液体,尤其是液体有机化合物的换热。

Description

内螺旋外交叉隧道双面强化沸腾传热管
技术领域
本发明涉及一种强化传热管,具体涉及一种可同时大幅度提高管外沸腾传热和管内对流传热膜系数,且具有一定抗结垢能力的内螺旋外交叉隧道双面强化沸腾传热管。
背景技术
管壳式换热器是目前应用最为广泛的一种换热器,普遍应用于能源动力、石油化工、制药、冶金等工业领域,其投资占总设备投资的比率可达到35%以上,因而采用强化传热原理对管壳式换热器进行设计、改进就成为节能、提高设备利用率和可用率的关键。其中,设计出高效的传热管——管壳式换热器的基本换热元件,是实现换热器高效换热的主要途径。
强化管外沸腾传热可以针对影响沸腾传热效率的各种因素采取不同的措施,其中较为普遍的是改变传热管加热面的粗糙状态(程立新,陈听宽.沸腾传热强化技术及方法[J].化工装备技术,1999,20(1):30-34),以形成更多的汽化核心,增加气泡产生的概率,达到强化沸腾传热的效果。基于这一理念,一批新型高效的强化传热管被开发了出来,有的也申请了专利,如现在较常见的有多孔表面换热管、T形翅片管和低肋管。每种强化传热管都有与之相对应的强化传热机理,并有其相应的应用范围。多孔表面换热管(廖丽华,董清波,申传文,白尔义,汪志娟.铝多孔表面换热管强化沸腾换热的研究及其工业应用[J].化工装备技术,2003,24(1):27-30)是在加热面表面覆盖金属粉末多孔层,与光滑管相比,其沸腾传热膜系数可增大5~6倍,但是此类换热管加工工艺复杂,成本较高,换热器的投资比起光滑管也大幅度地提高了。T形翅片管(罗国钦,陆应生,庄礼贤,邓颂九.T形翅片管沸腾传热特性的研究[J].高校化学工程学报,1989,3(2):56-62)与光滑管相比较,其沸腾传热系数和临界热负荷有了显著提高,且加工极为简便,但是T形翅片管起始沸腾阶段存在严重的沸腾滞后现象,该滞后现象的存在大大影响了其强化性能的发挥。低肋管结构简单,易加工,其沸 腾传热膜系数高于光滑管但低于T形翅片管[3],且不同条件下达到最佳强化效果的管的几何参数往往不同(董靓,张洪济,程俊国.低助管几何参数对沸腾传热的影响及其优化[J].重庆大学学报,1990,13(1):35-41),这给实际应用带来了很大不便。上述几种传热管对提高管外沸腾传热系数均有一定的效果,尤其是T形翅片管,其传热性能可接近或甚至超过E管的水平。但是它们仅能作到管外侧单侧的强化传热,存在不能强化管内对流传热系数方面的不足,这在一定程度上也限制了它们在某些方面的工业应用,如管内为低粘度液体、管外为高粘度、高沸点液体间的换热场所。
发明内容
本发明的目的在于避免上述背景技术中提及的在某些场所,现有传热管的不足,而提供一种内螺旋外交叉隧道双面强化沸腾传热管,可同时大幅度提高管外沸腾传热和管内对流传热膜系数,且具有一定抗结垢能力的双面强化传热管,直接满足当今及未来设计对于高粘性、高沸点换热器中传热管的设计要求。
本发明的目的至少通过如下技术方案之一实现。
一种内螺旋外交叉隧道双面强化沸腾传热管,包括传热管基体,传热管基体内表面设有内螺旋沟槽,内螺旋沟槽沿内表面呈螺旋状分布,螺旋轴线与传热管轴线同轴;热管基体外表面设有沿管轴成螺旋分布的多个肋片;所述的肋片彼此独立,构成整个传热管壁外表面的三维扩展曲面;所述的内螺旋沟槽、肋片与传热管基体为一体化结构,无接触热阻。
进一步优化实施的,所述的传热管基体外表面的肋片是由从管端面开始,左旋弓形截面螺旋沟槽与右旋弓形截面螺旋沟槽相互交叉自然成型的,肋片的轴向间距为30~50mm,肋片高度为3.0~8.0mm。
进一步优化实施的,所述传热管基体内表面的内螺旋沟槽为左旋或右旋,沟槽的螺旋角θ的取值为65°~85°,其导程即螺距d为15~25mm,槽深b=1.5mm~4.5mm。
进一步优化实施的,形成所述肋片的左旋弓形截面螺旋沟槽的螺距与右旋弓形截面螺旋沟槽的螺距相等或不相等,弓形截面螺旋沟槽的螺距c=30~50mm,
弓形截面的直径Φ=4.0~10mm,弓形截面螺旋沟槽深e=3.0~8mm。
进一步优化实施的,所述的肋片外形体积相等或不相等,但是肋片的高度 相等,肋片的高度h与弓形截面螺旋沟槽深e相同。
进一步优化实施的,所述的传热管基体内螺旋沟槽的轴向截面形状是半圆形、倒三角形中的一种。
进一步优化实施的,所述的肋片与管外壁面垂直,与管轴线的夹角为75°~88°,并沿轴线方向成螺旋状排列。
进一步优化实施的,传热管的材质包括黄铜、紫铜、软质铝或软合金材料。
较优的,所述的管外肋片与管基体为一体化结构,无接触热阻。并且管外肋片之间相互独立,沿基体外表面成螺旋状分布,并与管外壁面垂直,与管轴线的夹角为75°~88°,从而在管壁外表面形成完整的三维扩展曲面。相互独立的肋片之间留有的间隙形成交叉隧道空间,每个肋片的高度与弓形截面螺旋沟槽深相同,为3.0mm~8.0mm。这种结构可大幅度提高沸腾传热表面积,并且所述的肋片的高度越高,肋片外表面积越大,沸腾传热性能越佳。另外,所述的肋片之间的间隙距可调,可针对不同的工况,以及不同的传热流体黏度调节设置参数,更大程度地发挥出液体表面张力作用,加强气液相剪切力对传热管上流体液膜的湍动作用,强化传热效果。这种结构的螺旋沟槽可诱发螺旋流和边界层分离流等二次流,在大幅度提高管内对流传热膜系数的同时,还具有一定抗结垢的能力。
所述的管内螺旋沟槽,其旋向可以是左旋抑或是右旋,沟槽的螺旋角θ的取值为65°~85°,其导程(或螺距)d为15~25mm,槽深b=1.5mm~4.5mm。
传热管主体材质可选用黄铜、紫铜、软质铝等其他有色金属或软合金材料。
本发明主要的较优实施参数如下:
传热管外管径D:100~200mm
管壁厚度δ:10~20mm
内凹弓形左旋螺纹螺旋角α:75°~88°
内凹弓形右旋螺纹螺旋角β:95°~110°
螺旋沟槽的螺旋角θ:65°~85°
内表面螺旋沟槽的导程(或螺距)d:15~25mm
弓形截面的直径Φ:4.0~10mm
弓形截面螺旋沟槽深e:3.0~8mm。
肋片的高度h:与弓形截面螺旋沟槽深e相同
弓形截面螺旋沟槽的螺距c:30~50mm
内表面螺旋沟槽的槽深b:1.5~4.5mm。
本发明的原理及作用如下:
本发明强化管外沸腾传热的机理是:管外液体受管内液体加热,在沸腾过程中,在所述的肋片的曲面方向上存在一定温差,该温差将引起两肋片间内的液体形成自然对流。同时肋片的曲面提供汽泡成核中心,促进汽泡成核并长大,当肋片的曲面上产生的汽泡长大到一定程度后,就会脱离加热曲面,自内向外浮动,而后破裂。汽泡的这类行为不仅扰动了紧贴曲面的薄层液体,同时加剧了液体的整体对流湍动。另外,本发明管外沿轴向成螺旋状分布的肋片结构也限制了管外隧道内产生的汽泡的逸出,使得汽泡沿着隧道壁曲面作环向运动。汽泡与隧道内壁曲面接触的机会就在这一环向流动过程中得到了强化,从而提高了沸腾传热膜系数。
本发明强化管内对流传热的机理是:管内壁的螺旋沟槽会使靠近壁面的一部分液体产生附加螺旋流动,提高液体流速的同时也使液体作螺旋状运动,进而使热阻减小,管内对流传热膜系数得到增大。同时,壁面附近另一部分液体受螺旋沟槽凸肋作用,在肋的下流面产生逆向压力梯度,引发二次分离流。该分离流将促使管内液体发生径向混合,增大主流体和边界层流的混合程度,从而加快液体至壁面的传热速率。
本发明的管内抗结垢机理是:管内壁设有半圆形、倒三角形截面的螺旋沟槽,该螺旋沟槽可使管内低粘度液体在低速或低雷诺数(Re)下,产生沿管轴方向的螺旋流动,从而引发附加分离流,这对管内壁具有较好的冲刷作用,介质沉积的可能性会有一定程度的减少,充分延长液体中细颗粒物结垢的诱发期。另一方面,半圆形或倒三角形截面的螺旋沟槽在管轴方向有较大的局部曲率梯度,也能迫使已经形成的垢层重新开裂,从管内壁面脱落下来,配合附加分离流的作用,可达到一定的抗结垢效果。
与现有技术相比,本发明的优点和有益效果是:
1、管壁外侧的肋片、管内螺旋沟槽采用无切削辊轧分多次成型加工而成,使肋片连续分布,并与管基体一体化相连,完全无接触热阻。管外利用相互独立的肋片强化沸腾传热,管内利用螺旋沟槽强化对流换热,这样可充分兼顾管 内和管外对强化换热的要求。
2、本发明管内特殊的螺旋沟槽结构可使管内液体流动过程中产生附加分离流和纵向涡流,起到洗刷壁面的效果,使管内壁面不易结垢,从而确保持久良好的管内对流换热性能,有一定的抗垢和防垢效能。
3、本发明与管径参数相同的光滑管相比,在沸腾传热工况下,单管管外沸腾传热膜系数可提高200%以上、管内对流传热膜系数可提高125%以上,总传热系数可提高85%以上,而管内压降的增加小于5%,并不十分明显。
4、同样换热条件下,采用本发明可使换热面积减少,管材及管板、筒体的材料、整个加工组装工时相应地也可减少,从而使换热器的结构紧凑、制造成本降低。
本发明作为一种高效能双面强化沸腾传热管,可广泛应用于高粘度、高沸点液体沸腾传热的场合。例如,管内采用低粘度且含一定杂质的液体,对管外高粘度、高沸点液体(尤其是液体有机化合物)进行加热的再沸器的换热元件就十分适合采用本发明。
附图说明
图1为实施例传热管的三维结构图。
图2为实施例传热管的局部三维结构图。
图3为实施例传热管的正视方向的局部剖视图。
图4为实施例传热管的俯视方向的局部剖视图。
图5为实施例传热管一种轴向剖面示意图。
图6为实施例传热管在与图5视角成90°的方向上的轴向剖面示意图。
图7为实施例传热管的轴向视图。
图中:1-肋片;2-传热管基体;3-半圆形截面内螺旋沟槽;D-传热管外径;δ-管壁厚度;α-管外内凹弓形左旋螺纹螺旋角;β-管外内凹弓形右旋螺纹螺旋角;θ-管内螺旋沟槽的螺旋角;b-内表面螺旋沟槽的槽深;c-弓形截面螺旋沟槽的螺距;d-内表面螺旋沟槽的导程(或螺距);Φ-弓形截面的直径。e-弓形截面螺旋沟槽深度。h-肋片的高度。
具体实施方式
下面结合附图和实施例对发明的实施作进一步说明,但本发明的实施和保护不限于此。以下未特别详细说明的过程均是本领域技术人员可参照现有技术进行的。
如图1实施传热管的三维结构图,图2本局部三维结构图所示,一种内螺旋外交叉隧道双面强化沸腾传热管,包括传热管基体2、沿基体外表面成螺旋状分布的肋片1、沿基体内表面分布的半圆形截面内螺旋沟槽3。其中,所述的管外肋片1是由从管端面开始,左旋弓形截面螺旋沟槽与右旋弓形截面螺旋沟槽相互交叉自然成型的;所述的管内螺旋沟槽是由左旋或右旋内凹单头或多头螺旋沟槽形成。
如图1所示,管壁的外侧面为本发明所述的肋片,内侧面为螺旋沟槽,为表示清晰起见,图2给出了本发明的局部三维结构图,图3给出了本发明正视方向的局部剖视图,图4给出了本发明俯视方向的局部剖视图,图5、图6给出了不同视角方向下本发明的轴向剖面示意图,图7给出了本发明的轴向视图。本发明结合了多孔表面换热管、T形翅片管和低肋管等在沸腾传热和对流传热方面的优点,并避免了它们的不足。
本发明实施例在传热管外表面设有两条交叉分布的、螺距相同、旋向相反的内凹弓形螺纹,内凹弓形螺纹把管外表面切割成许多成螺旋状分布的肋片,这些肋片构成了管外三维扩展内凹曲面。每个肋片与传热管外管壁为一体化结构,且与周围4个肋片在沟槽底部相连接,每个肋片均与管壁相互垂直(参见图1~6)。管外肋片的高度越高,三维扩展表面的比表面积就越大,其管外沸腾换热强化系数也就越高,但同时也增加了管外流体的阻力。因此,每个肋片高度可以取为3.0mm~8.0mm(略小于弓形截面直径Φ),轴向间距c=30~50mm。
在传热管的内侧面设有单头或多头左旋螺旋沟槽或右旋螺旋沟槽(详见图1~6)。管内螺旋沟槽的深度越深,导程(或螺距)越小,其管内强化对流传热系数也越大,但同时也增加了管内流体的压降。因此,每条螺旋沟槽的螺旋角θ可以取为65°~85°,导程(或螺距)d可以取为15~25mm,槽深b=1.5mm~4.5mm。
本发明的实施可用光滑管为毛坯,采用专用轧管机并用挤压和少或无切削加工的方式进行,管内螺旋沟槽3和管外肋片1分开加工成型。
一种可行的加工方法是,将铜质或铝质光滑管置于专用轧管机上,并将光滑管套入成正三角形排列的特制模具内,沿管子径向夹紧模具,启动轧管机, 3套模具同步左旋旋转,渐渐收紧的模具可使管壁金属产生塑性变形并使管子产生左旋和轴向运动,从而形成下凹的左旋弓形截面螺旋沟槽。此工序完工后,再重新将经该道工序加工后的管子套入同一模具内(也可更换成另一套模具),夹紧模具,启动轧管机,此时使3套模具同步右旋,可形成与前一步加工成型的弓形截面螺旋沟槽交叉且旋向相反的右旋弓形截面螺旋沟槽,两条螺旋沟槽截面的直径为Φ。此工序完工后,将模具更换为外表面为圆柱面的滚轮,将经前2道工序加工后的管子套入,夹紧并旋转滚轮,沿轴向慢慢拉出管子,随着挤压量的增加,金属沿径向和轴向流动。通过这3步加工,便可成形管外侧成螺旋状分布的肋片(1)。最后,将一种半圆形或三角形的特制滚槽刀插入管内,进行挤压和少切削加工,滚槽刀通过挤压管内侧壁的材料可形成左旋螺旋沟槽,若反向旋转管件,通过滚槽刀挤压管内侧壁的材料可形成右旋螺旋沟槽,即可成形管内壁的螺旋沟槽表面。经过以上几道加工工序,便可将光滑管毛坯加工成本发明。
下面是一个本发明的具体例子,传热管的具体参数见表1。
表1
上述本发明的管外三维扩展内凹曲面,可提供沸腾时汽泡的成核中心,促进汽泡成核并长大。同时,也有利于扰动液体的流动流型,减小层流底层厚度和热阻,因而具有高的管外沸腾传热膜系数。再者,应用轧管方法生产,可保证管外肋片表面、管内沟槽表面和管基体的结构完整性,完全消除了因在加热面表面覆盖金属粉末而引起的热阻增大等质量问题及形状错位等弊端。本发明具有换热系数高、比传热表面大和抗结垢的特点,适用于强化管内为低粘度且 含一定杂质的液体,管外为高粘度、高沸点液体的换热,可广泛应用于动力能源、石油化工等领域中各种高粘度油品的换热,以代替光滑管或低翅片螺纹管、多孔表面换热管等。
应用举例
现以化工厂乙醇蒸馏用再沸器改造为例:
某化工厂铜光滑管再沸器的传热效率低,导致无法将乙醇加热到设定的温度,影响乙醇蒸馏的正常生产。现用光滑铜管制造本发明,结构参数如上述本发明的具体例子,以替代再沸器中原有的光滑管,进行技术改造。
技术改造后,在相同工况下,采用本发明的再沸器比原光滑管再沸器的总传热系数高50%~75%。这表明:其他条件相同时,本发明的总传热效率高于光滑管。这是由于本发明传热管外的肋片是沿管壁成螺旋状分布,这种肋片形成的三维扩展内凹表面提供了乙醇沸腾时的汽泡成核中心,同时这种特殊的内凹表面易诱发分离流,从而能降低乙醇层流底层的厚度和与管外壁的接触热阻,且比表面积是光滑管的3.5倍。对于乙醇来说,这种形式的三维扩展内凹表面强化沸腾传热效能比低翅片螺纹管、多孔表面换热管等更佳。

Claims (9)

1.一种内螺旋外交叉隧道双面强化沸腾传热管,包括传热管基体,其特征在于传热管基体内表面设有内螺旋沟槽,内螺旋沟槽沿内表面呈螺旋状分布,螺旋轴线与传热管轴线同轴;热管基体外表面设有沿管轴成螺旋分布的多个肋片;所述的肋片彼此独立,构成整个传热管壁外表面的三维扩展曲面。
2.根据权利要求1所述的内螺旋外交叉隧道双面强化沸腾传热管,其特征在于:所述的传热管基体外表面的肋片是由从管端面开始,左旋弓形截面螺旋沟槽与右旋弓形截面螺旋沟槽相互交叉自然成型的,肋片的轴向间距为30~50mm,肋片高度为3.0~8.0mm。
3.根据权利要求1或2所述的内螺旋外交叉隧道双面强化沸腾传热管,其特征在于:所述传热管基体内表面的内螺旋沟槽为左旋或右旋,沟槽的螺旋角θ的取值为65°~85°,其导程即螺距d为15~25mm,槽深b=1.5mm~4.5mm。
4.根据权利要求2所述的内螺旋外交叉隧道双面强化沸腾传热管,其特征在于:形成所述肋片的左旋弓形截面螺旋沟槽的螺距与右旋弓形截面螺旋沟槽的螺距相等或不相等,弓形截面螺旋沟槽的螺距c=30~50mm,    弓形截面的直径Φ=4.0~10mm,弓形截面螺旋沟槽深e=3.0~8mm。
5.根据权利要求2所述的内螺旋外交叉隧道双面强化沸腾传热管,其特征在于:所述的肋片外形体积相等或不相等,但是肋片的高度相等,肋片的高度h与弓形截面螺旋沟槽深e相同。
6.根据权利要求1所述的内螺旋外交叉隧道双面强化沸腾传热管,其特征在于:所述的传热管基体内螺旋沟槽的轴向截面形状是半圆形、倒三角形中的一种。
7.根据权利要求1所述的内螺旋外交叉隧道双面强化沸腾传热管,其特征是,所述的肋片与管外壁面垂直,与管轴线的夹角为75°~88°,并沿轴线方向成螺旋状排列。
8.根据权利要求1所述的内螺旋外交叉隧道双面强化沸腾传热管,其特征在于传热管的材质为黄铜、紫铜、软质铝或软合金材料。
9.根据权利要求1所述的内螺旋外交叉隧道双面强化沸腾传热管,其特征在于所述的内螺旋沟槽、肋片与传热管基体为一体化结构,无接触热阻。
CN201420527104.3U 2014-09-12 2014-09-12 内螺旋外交叉隧道双面强化沸腾传热管 Expired - Fee Related CN204202459U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420527104.3U CN204202459U (zh) 2014-09-12 2014-09-12 内螺旋外交叉隧道双面强化沸腾传热管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420527104.3U CN204202459U (zh) 2014-09-12 2014-09-12 内螺旋外交叉隧道双面强化沸腾传热管

Publications (1)

Publication Number Publication Date
CN204202459U true CN204202459U (zh) 2015-03-11

Family

ID=52660406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420527104.3U Expired - Fee Related CN204202459U (zh) 2014-09-12 2014-09-12 内螺旋外交叉隧道双面强化沸腾传热管

Country Status (1)

Country Link
CN (1) CN204202459U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236369A (zh) * 2014-09-12 2014-12-24 华南理工大学 内螺旋外交叉隧道双面强化沸腾传热管
RU2591376C1 (ru) * 2015-07-27 2016-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Теплообменная труба

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236369A (zh) * 2014-09-12 2014-12-24 华南理工大学 内螺旋外交叉隧道双面强化沸腾传热管
CN104236369B (zh) * 2014-09-12 2017-02-15 华南理工大学 内螺旋外交叉隧道双面强化沸腾传热管
RU2591376C1 (ru) * 2015-07-27 2016-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Теплообменная труба

Similar Documents

Publication Publication Date Title
CN101182977A (zh) 内交叉螺旋外三维菱形肋双侧强化传热管
CN201145509Y (zh) 内交叉螺旋外三维菱形肋双侧强化传热管
US5311661A (en) Method of pointing and corrugating heat exchange tubing
CN103175429B (zh) 多向波纹内翅片管
CN1451937A (zh) 不连续双斜内肋强化换热管
CN102679790B (zh) 强化冷凝传热管
CN204202459U (zh) 内螺旋外交叉隧道双面强化沸腾传热管
CN210400120U (zh) 管外具有螺旋t形翅片的螺旋扁管
CN201034432Y (zh) 高翅片热交换管
CN106767097A (zh) 换热管及套管式换热器
CN2738192Y (zh) 异型换热管套管换热器
CN101813433B (zh) 冷凝用强化传热管
CN202630770U (zh) 强化冷凝传热管
CN100386162C (zh) 高齿翅片铜管的制作工艺
CN104236369B (zh) 内螺旋外交叉隧道双面强化沸腾传热管
CN2436257Y (zh) 多头螺旋槽换热管
CN204115543U (zh) 一种组合式换热管
CN105277021A (zh) 同轴缠绕式换热器
CN2385294Y (zh) 一种热交换管
CN102564172A (zh) 多孔管式换热器
CN212747457U (zh) 一种螺旋纵槽换热管
CN102679789A (zh) 一种螺旋波纹管
CN2410610Y (zh) 整体式高效传热管
CN202109787U (zh) 应用扁平形螺旋换热管的热交换设备
CN2773595Y (zh) 一种多边形板式换热器片

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150311

Termination date: 20170912

CF01 Termination of patent right due to non-payment of annual fee