CN202713190U - Piezoelectric/electromagnetic combined-type micro energy device - Google Patents
Piezoelectric/electromagnetic combined-type micro energy device Download PDFInfo
- Publication number
- CN202713190U CN202713190U CN 201220426332 CN201220426332U CN202713190U CN 202713190 U CN202713190 U CN 202713190U CN 201220426332 CN201220426332 CN 201220426332 CN 201220426332 U CN201220426332 U CN 201220426332U CN 202713190 U CN202713190 U CN 202713190U
- Authority
- CN
- China
- Prior art keywords
- piezoelectric
- generating set
- substrate
- energy device
- iron core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims abstract description 41
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 28
- 239000002131 composite material Substances 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 229910000906 Bronze Inorganic materials 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- 239000010974 bronze Substances 0.000 claims description 4
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 4
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 4
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims description 4
- 239000002033 PVDF binder Substances 0.000 claims description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 2
- 238000005452 bending Methods 0.000 abstract description 4
- 230000005611 electricity Effects 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
Images
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
技术领域 technical field
本实用新型属于压电技术领域,涉及一种压电电磁复合式微能源装置,具体是一种给传感系统、致动系统、智能系统等各种嵌入式微系统提供能源的装置。 The utility model belongs to the field of piezoelectric technology, and relates to a piezoelectric-electromagnetic composite micro-energy device, in particular to a device for providing energy to various embedded micro-systems such as a sensing system, an actuating system, and an intelligent system.
背景技术 Background technique
微能源装置是一种通过自动采集环境中的振动能量,供给电子电路能量的装置,可用于植入人体的生物传感器、置于汽车轮胎内部的胎压监测系统、工厂电机中的分布式传感器系统等。利用环境的振动能来给系统供电的微能源装置,相对于传统的锂电池具有输出功率密度不随时间变化的特点,如:使用一年,压电式微能源装置的输出功率密度为250μW/ cm3,电磁式微能源装置的输出功率密度为10μW/cm3,不可充电锂离子电池的输出功率密度为45μW/ cm3;使用十年,压电微能源装置的输出功率密度依然为250μW/ cm3,电磁式微能源装置的输出功率密度依然为10μW/cm3,不可充电Li离子电池的输出功率密度则为35μW/ cm3。从中可以看出,锂离子电池的输出功率密度随时间的推移,会降低。而采集环境振动能的微能源装置则不会,同时以压电式微能源装置的输出功率密度为最高。目前压电式微能源装置多为悬梁结构,通常在悬梁顶端设置质量块,以降低其频率。但质量块本身并不发电,会降低输出功率密度。 A micro-energy device is a device that automatically collects vibration energy in the environment and supplies energy to electronic circuits. It can be used for biosensors implanted in the human body, tire pressure monitoring systems placed inside car tires, and distributed sensor systems in factory motors. wait. Compared with traditional lithium batteries, the micro-energy device that uses the vibration energy of the environment to power the system has the characteristic that the output power density does not change with time. For example, after one year of use, the output power density of the piezoelectric micro-energy device is 250 μW/cm 3 , the output power density of the electromagnetic micro-energy device is 10μW/cm 3 , and the output power density of the non-rechargeable lithium-ion battery is 45μW/cm 3 ; after ten years of use, the output power density of the piezoelectric micro-energy device is still 250μW/cm 3 , The output power density of the electromagnetic micro-energy device is still 10μW/cm 3 , and the output power density of the non-rechargeable Li-ion battery is 35μW/cm 3 . It can be seen that the output power density of lithium-ion batteries will decrease over time. However, micro-energy devices that collect environmental vibration energy will not, and the output power density of piezoelectric micro-energy devices is the highest. At present, most piezoelectric micro-energy devices are cantilevered beam structures, and mass blocks are usually placed on the top of the cantilevered beam to reduce its frequency. However, the mass block itself does not generate electricity, which will reduce the output power density.
发明内容 Contents of the invention
本实用新型的目的就是克服现有技术的不足,提供一种高输出功率密度的压电电磁复合式微能源装置,适合在生物传感器、胎压监测、电机检测等系统中使用。 The purpose of the utility model is to overcome the deficiencies of the prior art and provide a piezoelectric-electromagnetic composite micro-energy device with high output power density, which is suitable for use in systems such as biosensors, tire pressure monitoring, and motor detection.
本实用新型包括基座、压电发电组和磁性发电组。 The utility model comprises a base, a piezoelectric generating set and a magnetic generating set.
所述的基座的截面为L形,包括水平底座和竖直设置在水平底座上的压电发电组安装座。 The base has an L-shaped cross-section and includes a horizontal base and a piezoelectric generating set mounting seat vertically arranged on the horizontal base.
所述的压电发电组包括基板、压电片和金属电极层,基板的固定端固定设置在压电发电组安装座上、自由端悬空;所述的基板为长条形的金属片,采用弹性金属材料;基板的两面分别设置有压电片,压电片的一面与基板固定连接,另一面覆有金属电极层;金属电极层上连接有压电发电组正极引线,基板上连接有压电发电组负极引线。 The piezoelectric generating set includes a substrate, a piezoelectric sheet and a metal electrode layer, the fixed end of the substrate is fixed on the mounting seat of the piezoelectric generating set, and the free end is suspended in the air; the substrate is a strip-shaped metal sheet, and Elastic metal material; the two sides of the substrate are respectively provided with piezoelectric sheets, one side of the piezoelectric sheet is fixedly connected with the substrate, and the other side is covered with a metal electrode layer; Electric generating set negative lead.
所述的磁性发电组包括铁芯和磁铁,铁芯外缠有漆包线,漆包线的两头分别连接有磁性发电组正极引线和磁性发电组负极引线;磁性发电组正极引线与压电发电组正极引线连接,作为微能源装置的正极引线;磁性发电组负极引线与压电发电组负极引线连接,作为微能源装置的负极引线。 The magnetic generating set includes an iron core and a magnet, the iron core is wrapped with an enameled wire, and the two ends of the enameled wire are respectively connected with a positive lead wire of the magnetic generating set and a negative lead wire of the magnetic generating set; , as the positive lead wire of the micro-energy device; the negative lead wire of the magnetic generating set is connected with the negative lead wire of the piezoelectric generating set, and used as the negative lead wire of the micro-energy device.
所述的铁芯或磁铁固定设置在基板自由端的下表面;如果铁芯固定在基板上,两个磁铁固定设置在水平底座上,且两个磁铁分设在铁芯在水平底座投影上的两边,当铁芯运行到最低时,铁芯上的线圈完全处于两个磁铁之间;如果磁铁固定在基板上,两个铁芯固定设置在水平底座上,且两个铁芯分设在磁铁在水平底座投影上的两边,当磁铁运行到最低时,磁铁完全处于两个铁芯上的线圈之间。 The iron core or magnet is fixedly arranged on the lower surface of the free end of the substrate; if the iron core is fixed on the substrate, the two magnets are fixedly arranged on the horizontal base, and the two magnets are respectively arranged on both sides of the iron core on the projection of the horizontal base, When the iron core runs to the lowest position, the coil on the iron core is completely between the two magnets; if the magnet is fixed on the base plate, the two iron cores are fixed on the horizontal base, and the two iron cores are separately arranged on the horizontal base of the magnet. Both sides on the projection, when the magnet runs to its lowest position, the magnet is completely between the coils on the two cores.
所述基板的材料为磷青铜,所述压电片的材料为掺杂锆钛酸铅陶瓷、或ZnO、或AlN、或PVDF。 The material of the substrate is phosphor bronze, and the material of the piezoelectric sheet is doped lead zirconate titanate ceramics, or ZnO, or AlN, or PVDF.
工作时,基板的自由端在受力或者共振的情况下上下移动,压电发电组的压电片发生弯曲形变,产生电荷;同时磁性发电组通过切割磁力线进行发电;设置在基板自由端的铁芯或磁铁作为压电发电组的质量块,增加了压电片弯曲程度。 When working, the free end of the substrate moves up and down under the condition of force or resonance, and the piezoelectric sheet of the piezoelectric generating set bends and deforms to generate electric charge; at the same time, the magnetic generating set generates electricity by cutting the magnetic force lines; the iron core set at the free end of the substrate Or the magnet is used as the mass block of the piezoelectric generating set, which increases the bending degree of the piezoelectric sheet.
本实用新型在充分考虑压电式微能源装置结构的基础上,提出在压电式微能源装置上复合电磁式微能源装置,使质量块本身也发电的微能源装置,提高了装置的输出功率密度。 On the basis of fully considering the structure of the piezoelectric micro-energy device, the utility model proposes a micro-energy device in which the piezoelectric micro-energy device is combined with an electromagnetic micro-energy device so that the mass block itself can also generate electricity, and the output power density of the device is improved.
附图说明 Description of drawings
图1为本实用新型一个实施例的侧面结构示意图; Fig. 1 is the side structural representation of an embodiment of the utility model;
图2为图1的正面结构示意图; Fig. 2 is a schematic diagram of the front structure of Fig. 1;
图3为本实用新型另一实施例的侧面结构示意图; Fig. 3 is a side structural schematic diagram of another embodiment of the utility model;
图4为图2的正面结构示意图。 FIG. 4 is a schematic view of the front structure of FIG. 2 .
具体实施方式 Detailed ways
实施例1. Example 1.
如图1和2所示,压电电磁复合式微能源装置包括基座、压电发电组和磁性发电组。 As shown in Figures 1 and 2, the piezoelectric-electromagnetic composite micro-energy device includes a base, a piezoelectric generator set and a magnetic generator set.
基座的截面为L形,包括水平底座1-1和竖直设置在水平底座上1-1的压电发电组安装座1-2。 The section of the base is L-shaped, including a horizontal base 1-1 and a piezoelectric generating set mounting base 1-2 vertically arranged on the horizontal base 1-1.
压电发电组包括基板2、压电片和金属电极层,基板2的固定端固定设置在压电发电组安装座1-2上、自由端悬空。基板为长条形的金属片,采用弹性金属材料,如磷青铜材料。基板的两面分别设置有压电片3-1和3-2,压电片采用采用掺杂锆钛酸铅材料,一面与基板2固定连接,另一面分别覆有金属电极层4-1和4-2。金属电极层4-1和4-2上连接有压电发电组正极引线,基板2上连接有压电发电组负极引线。
The piezoelectric generating set includes a
磁性发电组包括铁芯5和磁铁7,铁芯5外缠有漆包线6,漆包线的两头分别连接有磁性发电组正极引线和磁性发电组负极引线;磁性发电组正极引线与压电发电组正极引线连接,作为微能源装置的正极引线;磁性发电组负极引线与压电发电组负极引线连接,作为微能源装置的负极引线。
The magnetic generating set includes an
铁芯5采用一块,固定设置在基板2自由端的下表面;磁铁采用两个,分别固定设置在水平底座1-1上,且两个磁铁7-1和7-2分设在铁芯5在水平底座1-1投影上的两边,当铁芯运行到最低时,铁芯5上的漆包线6构成的线圈完全处于两个磁铁7-1和7-2之间。
One piece of
实施例2. Example 2.
如图3和4所示,压电电磁复合式微能源装置包括基座、压电发电组和磁性发电组。 As shown in Figures 3 and 4, the piezoelectric-electromagnetic composite micro-energy device includes a base, a piezoelectric generator set and a magnetic generator set.
基座的截面为L形,包括水平底座1-1和竖直设置在水平底座上1-1的压电发电组安装座1-2。 The section of the base is L-shaped, including a horizontal base 1-1 and a piezoelectric generating set mounting base 1-2 vertically arranged on the horizontal base 1-1.
压电发电组包括基板2、压电片和金属电极层,基板2的固定端固定设置在压电发电组安装座1-2上、自由端悬空。基板为长条形的金属片,采用弹性金属材料,如磷青铜材料。基板的两面分别设置有压电片3-1和3-2,压电片采用采用掺杂锆钛酸铅材料,一面与基板2固定连接,另一面分别覆有金属电极层4-1和4-2。金属电极层4-1和4-2上连接有压电发电组正极引线,基板2上连接有压电发电组负极引线。
The piezoelectric generating set includes a
磁性发电组包括铁芯5和磁铁7,铁芯5外缠有漆包线6,漆包线的两头分别连接有磁性发电组正极引线和磁性发电组负极引线;磁性发电组正极引线与压电发电组正极引线连接,作为微能源装置的正极引线;磁性发电组负极引线与压电发电组负极引线连接,作为微能源装置的负极引线。
The magnetic generating set includes an
磁铁7采用一个,固定设置在基板2自由端的下表面;铁芯采用两块,分别固定设置在水平底座1-1上,且两个铁芯5-1和5-2分设在磁铁7在水平底座1-1投影上的两边,当磁铁7运行到最低时,磁铁7完全处于两个铁芯5-1和5-2上的漆包线6-1和6-2构成的线圈之间。
One
实施例1和2中,基板的长度、宽度、厚度之比为a:b:c=20~40:5:1;压电片同基板的长度比为d:e=2:2.2~3.5,厚度比为f:g=2~4:1;磁铁对(或铁芯对)的距离同铁芯线圈(或磁铁)的宽度之比为x:y=1:0.98。磁铁的高度与铁芯线圈的高度比为z:w=1:1。 In Examples 1 and 2, the ratio of the length, width and thickness of the substrate is a:b:c=20~40:5:1; the length ratio of the piezoelectric sheet to the substrate is d:e=2:2.2~3.5, The thickness ratio is f:g=2~4:1; the ratio of the distance between the magnet pair (or iron core pair) and the width of the iron core coil (or magnet) is x:y=1:0.98. The ratio of the height of the magnet to the height of the core coil is z:w=1:1.
本实用新型的工作原理与工作过程: Working principle and working process of the utility model:
对于本实用新型中的压电电磁式复合微能源装置来说,其自由端的挠度W同自由端所施加的力F之间应该满足如下关系式: For the piezoelectric electromagnetic composite micro-energy device in the utility model, the deflection W of the free end and the force F applied by the free end should satisfy the following relationship:
其中EI为等效抗弯刚度。 where EI is the equivalent bending stiffness.
定义刚度系数Ku Define the stiffness coefficient Ku
考虑到等效抗弯刚度EI为: Considering that the equivalent bending stiffness EI is:
其中Ep为压电层弹性模量,Em为基板弹性模量,b为宽度,tp为压电层厚度,tm为基板厚度。 Where Ep is the elastic modulus of the piezoelectric layer, Em is the elastic modulus of the substrate, b is the width, tp is the thickness of the piezoelectric layer, and tm is the thickness of the substrate.
由以上三式可以得出刚度系数同尺寸的函数关系式为: From the above three formulas, it can be concluded that the functional relationship between the stiffness coefficient and the same size is:
考虑到频率的表达式为: The expression considering the frequency is:
则在考虑频率以及刚度的情况下,可以确定压电层以及基板的尺寸。 Then, the dimensions of the piezoelectric layer and the substrate can be determined in consideration of frequency and stiffness.
同时,考虑压电微能源发电装置具有基于d31和d33两种模式,其发电时产生的电荷同电压之间由如下关系式描述: At the same time, considering that the piezoelectric micro-energy power generation device has two modes based on d31 and d33, the relationship between the charge and voltage generated during power generation is described by the following relationship:
Q=CtotalV Q=C total V
总电容Ctotal包含有压电层本征电容C0和压电响应电容Ce; The total capacitance C total includes the intrinsic capacitance C 0 of the piezoelectric layer and the piezoelectric response capacitance C e ;
压电微能源发电装置的最大输出功率为: The maximum output power of the piezoelectric micro-energy generating device is:
R0为本征电阻; R 0 is the intrinsic resistance;
对于基于d33模式的压电微能源发电装置来说,其压电层的本征电容C0可表达为: For a piezoelectric micro-energy generating device based on the d33 mode, the intrinsic capacitance C 0 of the piezoelectric layer can be expressed as:
其中为压电层的厚度,为电学电容的介电常数。 in is the thickness of the piezoelectric layer, is the dielectric constant of the electrical capacitor.
对于电极对数为n的基于d33模式得压电微能源发电装置来说,其压电响应电容的表达式为: For a piezoelectric micro-energy generating device based on the d33 mode with the number of electrode pairs n, the expression of the piezoelectric response capacitance is:
同样,对于基于d33模式得压电微能源发电装置来说,其本征电阻的表达式为: Similarly, for the piezoelectric micro-energy generating device based on the d33 mode, the expression of its intrinsic resistance is:
而同样,对于基于d31模式的压电微能源发电装置来说,其压电层的本征电容C0可表达为: And similarly, for the piezoelectric micro-energy generating device based on the d31 mode, the intrinsic capacitance C 0 of the piezoelectric layer can be expressed as:
其压电响应电容的表达式为: The expression of its piezoelectric response capacitance is:
其本征电阻的表达式为: The expression of its intrinsic resistance is:
在考虑一定刚度系数的条件下,可以获得基板以及压电层的具体尺寸。 Under the condition of considering a certain stiffness coefficient, the specific dimensions of the substrate and the piezoelectric layer can be obtained.
工作时,基板自由端在受力或者共振的情况下上下移动,绕有漆包线的铁芯通过磁铁对的磁场,切割磁力线,漆包线中将有交流电输出;同时压电陶瓷层弯曲形变,导致压电陶瓷表面束缚电荷的改变。压电陶瓷表面束缚电荷变化,会引起电场的变化,推动自由电子的移动,此时压电陶瓷两端会有峰值不定的交流电输出。将输出的交流电流经整流、滤波后存储起来可供给电子装置。 When working, the free end of the substrate moves up and down under the condition of force or resonance, and the iron core wound with enameled wire passes through the magnetic field of the magnet pair, cutting the magnetic field line, and there will be alternating current output in the enameled wire; at the same time, the piezoelectric ceramic layer is bent and deformed, resulting in piezoelectric Changes in the bound charge on the ceramic surface. The change of the bound charge on the surface of the piezoelectric ceramic will cause the change of the electric field and promote the movement of free electrons. At this time, there will be an alternating current output with an indeterminate peak value at both ends of the piezoelectric ceramic. The output AC current is rectified and filtered and then stored for supply to electronic devices.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201220426332 CN202713190U (en) | 2012-08-27 | 2012-08-27 | Piezoelectric/electromagnetic combined-type micro energy device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201220426332 CN202713190U (en) | 2012-08-27 | 2012-08-27 | Piezoelectric/electromagnetic combined-type micro energy device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202713190U true CN202713190U (en) | 2013-01-30 |
Family
ID=47593452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201220426332 Expired - Lifetime CN202713190U (en) | 2012-08-27 | 2012-08-27 | Piezoelectric/electromagnetic combined-type micro energy device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202713190U (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102820805A (en) * | 2012-08-27 | 2012-12-12 | 杭州电子科技大学 | Piezoelectric and electromagnetic combined micro-energy resource device |
CN103178744A (en) * | 2013-03-26 | 2013-06-26 | 北京大学 | A Composite Nanogenerator Based on Piezoelectric Triboelectromagnetic |
CN103343725A (en) * | 2013-07-22 | 2013-10-09 | 哈尔滨工业大学 | Composite rainwater power generation device based on mini water bucket and PVDF film piezoelectric technology |
CN103795149A (en) * | 2014-03-04 | 2014-05-14 | 镇江博联电子科技有限公司 | Energy accumulation method and device based on piezoelectric materials for wearable electronic product |
CN105634205A (en) * | 2016-03-25 | 2016-06-01 | 吉林大学 | Micro piezoelectric-electromagnetic composite power generation device |
TWI566511B (en) * | 2015-12-03 | 2017-01-11 | 財團法人工業技術研究院 | Piezoelectric generator |
CN108023501A (en) * | 2017-12-28 | 2018-05-11 | 西华师范大学 | A kind of combined-type magnetic suspension wideband vibration energy collector using structure for amplifying |
CN108540014A (en) * | 2018-05-14 | 2018-09-14 | 中国科学院上海微系统与信息技术研究所 | A low-frequency flexible energy harvester and self-powered motion counter |
-
2012
- 2012-08-27 CN CN 201220426332 patent/CN202713190U/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102820805A (en) * | 2012-08-27 | 2012-12-12 | 杭州电子科技大学 | Piezoelectric and electromagnetic combined micro-energy resource device |
CN102820805B (en) * | 2012-08-27 | 2015-05-20 | 杭州电子科技大学 | Piezoelectric and electromagnetic combined micro-energy resource device |
CN103178744A (en) * | 2013-03-26 | 2013-06-26 | 北京大学 | A Composite Nanogenerator Based on Piezoelectric Triboelectromagnetic |
CN103343725A (en) * | 2013-07-22 | 2013-10-09 | 哈尔滨工业大学 | Composite rainwater power generation device based on mini water bucket and PVDF film piezoelectric technology |
CN103343725B (en) * | 2013-07-22 | 2015-08-19 | 哈尔滨工业大学 | Based on the compound power generation apparatus by rainwater of miniature bucket and pvdf membrane piezo technology |
CN103795149A (en) * | 2014-03-04 | 2014-05-14 | 镇江博联电子科技有限公司 | Energy accumulation method and device based on piezoelectric materials for wearable electronic product |
CN103795149B (en) * | 2014-03-04 | 2016-11-02 | 镇江博联电子科技有限公司 | Energy storage method based on piezoelectric and device for Wearable electronic product |
TWI566511B (en) * | 2015-12-03 | 2017-01-11 | 財團法人工業技術研究院 | Piezoelectric generator |
CN105634205A (en) * | 2016-03-25 | 2016-06-01 | 吉林大学 | Micro piezoelectric-electromagnetic composite power generation device |
CN108023501A (en) * | 2017-12-28 | 2018-05-11 | 西华师范大学 | A kind of combined-type magnetic suspension wideband vibration energy collector using structure for amplifying |
CN108540014A (en) * | 2018-05-14 | 2018-09-14 | 中国科学院上海微系统与信息技术研究所 | A low-frequency flexible energy harvester and self-powered motion counter |
CN108540014B (en) * | 2018-05-14 | 2020-03-24 | 中国科学院上海微系统与信息技术研究所 | Low-frequency flexible energy collector and self-powered motion counter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202713190U (en) | Piezoelectric/electromagnetic combined-type micro energy device | |
CN102684550B (en) | Y-type composite vibration generator | |
CN102185523A (en) | Minitype composite vibration power generator | |
CN102820805B (en) | Piezoelectric and electromagnetic combined micro-energy resource device | |
CN202111635U (en) | Micro Compound Vibration Generator | |
JP4663035B2 (en) | Vibration power generator, vibration power generation device, and communication device equipped with vibration power generation device | |
US8723398B2 (en) | Piezoelectric energy harvesting apparatus | |
CN105680720B (en) | The multi-direction wideband kinetic energy collector of multiple degrees of freedom piezoelectricity electromagnetism combined type | |
CN104836478A (en) | Piezoelectric-electromagnetic composite low-frequency broadband energy harvester | |
CN105958858B (en) | A kind of double-layer wave shape hybridized nanometer generator | |
CN102820423A (en) | Combined piezoelectric micro-power generator | |
CN107302323A (en) | Three-dimensional piezoelectric cantilever beam vibrational energy acquisition system | |
CN103346696A (en) | Array-type compound energy collector | |
JP2011097661A (en) | Piezoelectric vibration power generator and power generating equipment using the same | |
CN104038102B (en) | A kind of device of collecting energy from wire magnetic fields based on compound magneto-coupling effect | |
CN202221970U (en) | Piezoelectric generator having variable-width bend or spiral structure | |
CN101262189A (en) | Piezoelectric Generator Harvesting Bending Vibration Energy | |
CN102611351A (en) | Piezoelectricity-magnetic electricity mixed energy collection device | |
CN106921310A (en) | A kind of electric field energy collection device | |
CN102820806B (en) | Piezoelectric micro-energy resource generator with double interdigital electrodes | |
CN110460262A (en) | A spherical electret wave energy generating device | |
CN102170247A (en) | Energy acquisition circuit of micro-power device driven by piezoelectricity-magnetoelectricity combined vibration | |
CN203608112U (en) | Miniature piezoelectric-type energy collector based on low-frequency environment vibration and driving | |
KR20150134677A (en) | Power generation apparatus using piezoelectric element stacked by multilayer structure | |
CN113113672A (en) | Winding type battery and TWS Bluetooth headset |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20130130 Effective date of abandoning: 20150520 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20130130 Effective date of abandoning: 20150520 |
|
RGAV | Abandon patent right to avoid regrant |