CN202405260U - Active matrix display - Google Patents
Active matrix display Download PDFInfo
- Publication number
- CN202405260U CN202405260U CN201120577247.1U CN201120577247U CN202405260U CN 202405260 U CN202405260 U CN 202405260U CN 201120577247 U CN201120577247 U CN 201120577247U CN 202405260 U CN202405260 U CN 202405260U
- Authority
- CN
- China
- Prior art keywords
- tft
- grain
- polysilicon
- thin film
- lines
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011159 matrix material Substances 0.000 title claims abstract description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 103
- 239000010409 thin film Substances 0.000 claims abstract description 37
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 229920005591 polysilicon Polymers 0.000 claims description 96
- 239000010408 film Substances 0.000 claims description 47
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 45
- 238000000034 method Methods 0.000 description 24
- 229910021417 amorphous silicon Inorganic materials 0.000 description 18
- 238000002425 crystallisation Methods 0.000 description 18
- 230000008025 crystallization Effects 0.000 description 18
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 18
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 16
- 229910052759 nickel Inorganic materials 0.000 description 16
- 229920002120 photoresistant polymer Polymers 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 230000037230 mobility Effects 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 6
- 229910000480 nickel oxide Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 238000005036 potential barrier Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 229910021484 silicon-nickel alloy Inorganic materials 0.000 description 3
- 239000013077 target material Substances 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002052 molecular layer Substances 0.000 description 2
- 239000002103 nanocoating Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229920001621 AMOLED Polymers 0.000 description 1
- RPELOZWDWZQYDV-UHFFFAOYSA-N [Si]=O.[Ni] Chemical compound [Si]=O.[Ni] RPELOZWDWZQYDV-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000007715 excimer laser crystallization Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000000025 interference lithography Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000001127 nanoimprint lithography Methods 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/40—Crystalline structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02595—Microstructure polycrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02689—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/266—Bombardment with radiation with high-energy radiation producing ion implantation using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28229—Making the insulator by deposition of a layer, e.g. metal, metal compound or poysilicon, followed by transformation thereof into an insulating layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
- H10D30/0312—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] characterised by the gate electrodes
- H10D30/0314—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] characterised by the gate electrodes of lateral top-gate TFTs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
- H10D30/0321—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6731—Top-gate only TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
- H10D30/6745—Polycrystalline or microcrystalline silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Recrystallisation Techniques (AREA)
- Thin Film Transistor (AREA)
- Liquid Crystal (AREA)
Abstract
Description
技术领域 technical field
本实用新型涉及多晶硅技术,更具体地涉及一种有源矩阵显示器。The utility model relates to polysilicon technology, in particular to an active matrix display.
背景技术 Background technique
在传统的有源矩阵显示领域,TFT通常是用非晶硅(a-Si)材料做成的。这主要是因为其在大面积玻璃底板上的低处理温度和低制造成本。最近多晶硅用于高分辨率的液晶显示器(LCD)和有源有机电致发光显示器(AMOLED)。多晶硅还有着在玻璃基板上集成电路的优点。此外,多晶硅具有较大像素开口率的可能性,提高了光能利用效率并且减少了LC和底部发光OLED显示器的功耗。众所周知,多晶硅TFT更适合用于驱动OLED像素,不仅因为OLED是电流驱动设备,a-Si TFT有驱动OLED的长期可靠性问题,而且也是因为非晶硅电子迁移率较小,需要大的W/L的比例,以提供足够的OLED像素驱动电流。因此,对于高清晰度显示器,高品质多晶硅TFT是必不可少的。In the field of traditional active matrix display, TFT is usually made of amorphous silicon (a-Si) material. This is mainly due to its low processing temperature and low manufacturing cost on large-area glass substrates. More recently polysilicon is used in high resolution liquid crystal displays (LCDs) and active organic electroluminescent displays (AMOLEDs). Polysilicon also has the advantage of integrating circuits on glass substrates. In addition, polysilicon has the possibility of a larger pixel aperture ratio, improving light energy utilization efficiency and reducing power consumption in LC and bottom-emitting OLED displays. It is well known that polysilicon TFTs are more suitable for driving OLED pixels, not only because OLEDs are current-driven devices, and a-Si TFTs have long-term reliability issues in driving OLEDs, but also because amorphous silicon has a smaller electron mobility and requires a large W/ L ratio to provide sufficient OLED pixel drive current. Therefore, for high-definition displays, high-quality polysilicon TFTs are essential.
为了实现有源矩阵TFT显示板的工业化生产,需要非常高的多晶硅薄膜的质量。它需要满足在大面积的玻璃基板上低温处理,低成本的制造,制造工艺稳定,高性能,器件性能的高均匀性和高可靠性。In order to realize the industrial production of active matrix TFT display panels, a very high quality polysilicon film is required. It needs to meet the requirements of low-temperature processing on a large-area glass substrate, low-cost manufacturing, stable manufacturing process, high performance, high uniformity and high reliability of device performance.
高温多晶硅技术可以用来实现高性能的TFT,但它不能被应用在商业面板中使用的普通玻璃基板。在这种情况下,必须使用低温多晶硅(LTPS)。有三个主要的LTPS技术:(1)在600℃下退火很长一段时间的固相结晶(SPC);(2)准分子激光结晶、退火(ELC/ELA)或快速加热退火;(3)金属诱导结晶(MIC)。ELC可以产生最佳效果,但受限于高的设备投资和维护成本,而且玻璃基板的尺寸也难以进一步增加。SPC是最便宜的技术,但需要在600℃下退火24小时左右才结晶。MIC的缺点是金属污染和TFT器件的非均匀性。从而,还没有任何一种技术能够满足所有上述的低成本和高性能的要求。High-temperature polysilicon technology can be used to realize high-performance TFTs, but it cannot be applied to common glass substrates used in commercial panels. In this case, low temperature polysilicon (LTPS) must be used. There are three main LTPS techniques: (1) solid-phase crystallization (SPC) annealed at 600 °C for a long period of time; (2) excimer laser crystallization, annealing (ELC/ELA) or rapid thermal annealing; (3) metal Induced Crystallization (MIC). ELC can produce the best results, but is limited by high equipment investment and maintenance costs, and it is difficult to further increase the size of the glass substrate. SPC is the cheapest technique, but requires about 24 hours of annealing at 600°C to crystallize. The disadvantages of MIC are metal contamination and non-uniformity of TFT devices. Thus, there is no single technology that can satisfy all the above-mentioned low-cost and high-performance requirements.
所有的多晶硅薄膜材料的共同点是,薄膜上的晶粒的结晶方向的大小和形状在本质上是随机分布。当这种多晶硅薄膜被用做TFT的有源层,TFT的电学特性受限于沟道中出现的晶界。晶粒的分布是随机的,使得整个基板的TFT的电学特性不均匀。正是这种电学特性分布离散的问题,使得最终的显示出现如mura的缺陷和非均匀的亮度。Common to all polysilicon thin film materials is that the size and shape of the crystallographic directions of the grains on the film are randomly distributed in nature. When such a polysilicon thin film is used as an active layer of a TFT, the electrical characteristics of the TFT are limited by the grain boundaries present in the channel. The distribution of crystal grains is random, making the electrical characteristics of the TFTs across the substrate non-uniform. It is this discrete distribution of electrical characteristics that causes defects such as mura and non-uniform brightness in the final display.
实用新型内容 Utility model content
为克服上述缺陷,本申请提出一种有源矩阵显示器,包括多个薄膜晶体管,其中每个薄膜晶体管包括:有源层,由多晶硅薄膜构成,该多晶硅薄膜中具有平行的导电带或导电线,所述导电带或导电线连接多个晶粒;有源层上的源极和漏极;栅极绝缘层;栅极;所述导电带或导电线由掺杂的线条构成;平行的导电带或导电线的方向垂直于电流方向。In order to overcome the above defects, the present application proposes an active matrix display comprising a plurality of thin film transistors, wherein each thin film transistor comprises: an active layer made of a polysilicon film with parallel conductive strips or conductive lines in the polysilicon film, The conductive strips or conductive lines connect a plurality of crystal grains; the source and drain electrodes on the active layer; the gate insulating layer; the gate; the conductive strips or conductive lines are composed of doped lines; parallel conductive strips Or the direction of the conductive line is perpendicular to the direction of current flow.
包括的多个薄膜晶体管中包括P型薄膜晶体管和N型薄膜晶体管,其中P型薄膜晶体管的构成有源层的多晶硅薄膜中的导电带或导电线由掺硼的线条构成,N型薄膜晶体管的构成有源层的多晶硅薄膜中的导电带或导电线由掺磷的线条构成。The plurality of thin film transistors included include P-type thin film transistors and N-type thin film transistors, wherein the conductive strips or conductive lines in the polysilicon film that constitutes the active layer of the P-type thin film transistors are composed of boron-doped lines, and the N-type thin film transistors The conductive bands or lines in the polysilicon thin film constituting the active layer consist of lines doped with phosphorous.
多个导电带或导电线的宽度和间距与晶粒大小类似。The width and spacing of the plurality of conductive strips or lines is similar to the grain size.
构成有源层的多晶硅薄膜中,掺杂的线条中,多晶硅薄膜厚度方向上的掺杂高峰位于多晶硅薄膜厚度的中心。In the polysilicon film constituting the active layer, in the doped lines, the doping peak in the thickness direction of the polysilicon film is located at the center of the polysilicon film thickness.
使用这种BG多晶硅层作为有源层,保证电流垂直流过平行线TFT设计,晶界的影响可以减少。阈值电压,开关比率,器件迁移率,整个基板的均匀性,亚阈值斜率和器件的可靠性这些重要的特性都可以使用现在的这种技术得到改进。这些改进,同时也可以使得成本较低,价格更为低廉,使高性能的LTPS TFT成为现实。Using this BG polysilicon layer as the active layer ensures that the current flows vertically through the parallel-line TFT design, and the influence of grain boundaries can be reduced. Important properties such as threshold voltage, switching ratio, device mobility, uniformity across the substrate, subthreshold slope, and device reliability can all be improved using this technology today. These improvements can also make the cost lower and the price lower, making high-performance LTPS TFT a reality.
附图说明 Description of drawings
以下参照附图对本实用新型实施例作进一步说明,其中:The utility model embodiment is described further below with reference to accompanying drawing, wherein:
图1a和图1b分别为低温多晶硅薄膜和对应的势垒分布的示意图;Figure 1a and Figure 1b are schematic diagrams of low-temperature polysilicon thin films and corresponding potential barrier distributions, respectively;
图2a和图2b分别为搭桥晶粒多晶硅薄膜和对应的势垒分布的示意图;Figure 2a and Figure 2b are schematic diagrams of the bridge grain polysilicon film and the corresponding potential barrier distribution;
图3为形成BG线结构的横截面示意图;3 is a schematic cross-sectional view of forming a BG line structure;
图4为以PR1075形成的周期为1μm的BG线图案的SEM图片;Figure 4 is a SEM picture of a BG line pattern with a period of 1 μm formed by PR1075;
图5a、5b和5c分别为样品A、样品B和样品C结晶的横截面示意图;Figures 5a, 5b and 5c are schematic cross-sectional views of sample A, sample B and sample C crystallization, respectively;
图6为所有样品通过光刻胶和离子注入形成BG线后的横截面示意图;Figure 6 is a schematic cross-sectional view of all samples after forming BG lines through photoresist and ion implantation;
图7a、7b和7c为TMAH刻蚀大晶粒多晶硅、小晶粒多晶硅和SR-MILC多晶硅的显微照片;Figures 7a, 7b and 7c are photomicrographs of large-grain polysilicon, small-grain polysilicon and SR-MILC polysilicon etched by TMAH;
图8为BG TFT结构横截面示意图;Figure 8 is a schematic cross-sectional view of the BG TFT structure;
图9a为以Vgs作为函数的有BG和无BG的P沟道大晶粒MIC TFT的转移特征曲线,图9b为以Vgs作为函数的有BG和无BG的P沟道大晶粒MIC TFT的输出电流比图;Figure 9a shows the transfer characteristic curves of P-channel large-grain MIC TFTs with and without BG as a function of V gs , and Figure 9b shows the transfer characteristics of P-channel large-grain MIC TFTs with and without BG as a function of V gs TFT output current ratio diagram;
图10a和10b为在Vds=-0.1V和Vds=-5V情况下BG大晶粒MIC TFT和非BG大晶粒MIC TFT的跨导;Figures 10a and 10b show the transconductance of BG large-grain MIC TFT and non-BG large-grain MIC TFT under the conditions of V ds =-0.1V and V ds =-5V;
图11a和11b分别为均匀分布的50个大晶粒MIC TFTs和50个BG大晶粒MIC TFTs的TFT的Vth和GIDL性能差异;Figures 11a and 11b show the V th and GIDL performance differences of TFTs of uniformly distributed 50 large-grain MIC TFTs and 50 BG large-grain MIC TFTs, respectively;
图12a和12b分别为以Vgs作为函数的,有着BG结构和没有BG结构的P型小晶粒MIC多晶硅TFT的转移特性曲线,和以Vgs作为函数的,有着BG结构和没有BG结构的P型小晶粒MIC多晶硅TFT的输出电流比;Figures 12a and 12b are the transfer characteristic curves of P-type small-grain MIC polysilicon TFTs with and without BG structure as a function of V gs, and with and without BG structure as a function of V gs , respectively. The output current ratio of P-type small-grain MIC polysilicon TFT;
图13a和13b分别为在Vds=-0.1V和Vds=-5V时BG小晶粒MIC TFT和非BG小晶粒MIC TFT的跨导;Figures 13a and 13b show the transconductance of BG small-grain MIC TFT and non-BG small-grain MIC TFT at V ds =-0.1V and V ds =-5V, respectively;
图14a和14b分别为均匀分布的小晶粒MIC TFTs and BG小晶粒MICTFTs的Vth和GIDL性能的差异;Figures 14a and 14b show the differences in Vth and GIDL performance of uniformly distributed small-grain MIC TFTs and BG small-grain MICTFTs, respectively;
图15a和15b分别为以Vgs为函数,有BG和无BG结构的P型沟道SR-MILCTFTs的转移特征曲线,和以Vgs为函数,有BG和无BG结构的P型沟道SR-MILCTFTs的输出电流比;Figures 15a and 15b show the transfer characteristic curves of P-channel SR-MILCTFTs with and without BG structure as a function of Vgs , and the P-channel SR with and without BG structure as a function of Vgs , respectively. - output current ratio of MILCTFTs;
图16为TMAH的蚀刻后的SR-MILC多晶硅的区域微观图.可以看到晶粒及其低角度晶界与MILC方向基本平行,已用点线圈标出A型和B型TFTs的电流方向平行和垂直于MILC方向;Figure 16 is the regional microscopic view of SR-MILC polysilicon after TMAH etching. It can be seen that the crystal grains and their low-angle grain boundaries are basically parallel to the MILC direction, and the current directions of A-type and B-type TFTs have been marked with dot coils. and perpendicular to the MILC direction;
图17为一般的A型和B型SR-MILC TFTs的特有的对数比例曲线,主要的差异在于亚阈值区域;Figure 17 shows the characteristic logarithmic ratio curves of general A-type and B-type SR-MILC TFTs, the main difference lies in the subthreshold region;
图18为以沟道长度作为函数,萃取A型和B型TFTs的Vth平均值和标准偏差(S.D.);Figure 18 is the average value and standard deviation (S.D.) of Vth extracted from Type A and Type B TFTs as a function of channel length;
图19为A和B型的常规SR-MILC TFT的特有线性刻度的I-V曲线,可以看出在开态领域有最大的差别;Figure 19 is the I-V curve of the characteristic linear scale of the conventional SR-MILC TFT of type A and B, and it can be seen that there is the largest difference in the open state;
图20为当Vds=-0.1V和Vgs=-18V时,A型和B型poly-Si TFTs的萃取电阻率;Figure 20 is when Vds=-0.1V and Vgs=-18V, the extraction resistivity of type A and type B poly-Si TFTs;
图21为BG结构的A型和B型TFTs的Vth;Figure 21 is the Vth of A-type and B-type TFTs of BG structure;
图22为BG结构的A型和B型TFTs的电阻率。Fig. 22 is the resistivity of A-type and B-type TFTs of BG structure.
具体实施方式 Detailed ways
通常情况下,多晶硅由两个部分组成,一种是单一的晶粒区域,另一种是晶界。晶粒内的导电特性几乎是相同的,而跨晶界的传导较差,这会导致整体的迁移率的损失和阈值电压的增加。多晶硅薄膜的薄膜晶体管(TFT)的有源通道通常由这样的多晶硅薄膜组成。随意性和变化的导电特性不利于显示性能和画面质量。典型的多晶硅结构图如图1a所示,低温多晶硅薄膜包括晶粒和晶粒的边界。相邻的晶粒之间有明显的晶界。通常情况下,晶粒的长度是在几十纳米,到几微米大小之间,被认为是一个单一的晶体。晶界处通常分布有很多错位,堆栈故障和悬挂键缺陷。由于不同的制备方法,低温多晶硅薄膜内的晶粒可能是随机分布或呈方向性分布的。Typically, polysilicon consists of two parts, a single grain region and a grain boundary. The conduction characteristics within the grains are almost the same, while the conduction across grain boundaries is poor, which leads to a loss of overall mobility and an increase in threshold voltage. The active channel of a thin film transistor (TFT) of polysilicon film usually consists of such a polysilicon film. Random and varying conductivity characteristics are detrimental to display performance and picture quality. A typical polysilicon structure diagram is shown in Figure 1a. The low-temperature polysilicon film includes grains and grain boundaries. There are obvious grain boundaries between adjacent grains. Usually, the length of the grain is between tens of nanometers and several micrometers in size, and it is considered as a single crystal. Grain boundaries are usually distributed with many dislocations, stacking failures and dangling bond defects. Due to different preparation methods, the grains in the low-temperature polysilicon film may be randomly distributed or directional.
在晶界存在严重缺陷,将引起高势垒,如在图1b所示。势垒(或斜势垒的垂直分量)垂直方向的载流子传输会影响到初始状态和载流能力。这种低温多晶硅薄膜制备的薄膜晶体管阈值电压,场效应迁移率都受限于晶界势垒。起连结作用的晶粒边界应用于TFT时,也会在高的反向栅极电压下,造成较大的漏电流。The presence of severe defects at grain boundaries will cause high potential barriers, as shown in Fig. 1b. The carrier transport in the vertical direction of the barrier (or the vertical component of the sloped barrier) will affect the initial state and current carrying capacity. The threshold voltage and field effect mobility of thin film transistors prepared by the low-temperature polysilicon film are limited by the grain boundary barrier. When the grain boundary that acts as a connection is applied to a TFT, it will also cause a large leakage current under a high back gate voltage.
搭桥晶粒(BG)的多晶硅技术是在TFT的有源层,通过使用平行导电带或线连接晶粒的技术。形成导电带或垂直方向的电流流过的晶粒的跨越线,可以大大提高TFT的性能。这些跨越线可以减少结晶晶界的影响,如在图2(b)项所示。这种结构被定义为搭桥晶粒(BG)的结构。Bridging grain (BG) polysilicon technology is a technology that connects the grains by using parallel conductive strips or lines in the active layer of the TFT. Forming conductive bands or crossing lines of crystal grains through which current flows in a vertical direction can greatly improve the performance of TFTs. These crossing lines can reduce the effect of crystal grain boundaries, as shown in Fig. 2(b). This structure is defined as the bridge grain (BG) structure.
所述“搭桥”是由平行的高掺杂的线条组成,我们称之为BG线。多晶硅薄膜上形成的BG线应狭窄,彼此非常接近。该线的宽度和间距应与晶粒的大小类似。导电线不应互相接触,并应涵盖整个多晶硅薄膜以便以后处理。BG线的主要功能是在晶粒之间垂直于电流的流动方向架桥。因此,电流沿着这些线路流动不再是一个重要问题。The "bridge" is composed of parallel highly doped lines, which we call BG lines. The BG lines formed on the polysilicon film should be narrow and very close to each other. The line width and spacing should be similar to the grain size. Conductive lines should not touch each other and should cover the entire polysilicon film for later processing. The main function of the BG wire is to bridge between the grains perpendicular to the direction of current flow. Therefore, the flow of current along these lines is no longer a significant issue.
图2a为所示的搭桥晶粒结构的多晶硅薄膜示意图。导电线垂直于电流的流动方向。这些导电线可用p或n型掺杂半导体掺杂离子形成。掺杂量可以调整,以创建导电通道,通常在1012/cm2到1016/cm2范围。掺杂的模式可以用各种的方法进行,如简单的光刻,激光干涉,或纳米压印光刻技术等。FIG. 2a is a schematic diagram of a polysilicon thin film with a bridging grain structure shown. Conductive wires are perpendicular to the direction of current flow. These conductive lines can be formed with p- or n-type doped semiconductor dopant ions. The amount of doping can be adjusted to create conductive channels, typically in the range of 10 12 /cm 2 to 10 16 /cm 2 . Doping patterns can be performed by various methods, such as simple photolithography, laser interference, or nanoimprint lithography.
实施例1Example 1
本实施例提供一种形成具有搭桥晶粒(BG)线的多晶硅薄膜的方法,包括:This embodiment provides a method for forming a polysilicon film with bridging grain (BG) lines, including:
1)在多晶硅薄膜表面旋涂一层PR 1075光刻胶,PR光刻胶旋涂之后,样品被加热到90度进行软烤,加热时间为1分钟,软烤的目的是为了减少光刻胶的溶剂,从~20%到~5%,同时释放诱导旋涂薄膜的应力,软烤后,使用ASM PAS5000步进光刻机在波长为365nm光下对光刻胶进行曝光,在110℃烧烤1分钟之后,然后样品被浸泡到FHD-530秒进行显影处理,显露在光下的光刻胶溶解在溶解液里,并没有接触到光的部分是保持原样,从而使BG线图形转移到光刻胶上(如图3所示),形成周期为1μm的BG线图案(其SEM照片如图4所示);1) A layer of PR 1075 photoresist is spin-coated on the surface of the polysilicon film. After the PR photoresist is spin-coated, the sample is heated to 90 degrees for soft baking. The heating time is 1 minute. The purpose of soft baking is to reduce the amount of photoresist. Solvent, from ~20% to ~5%, release the stress that induces the spin-coated film at the same time, after soft baking, use ASM PAS5000 stepper photolithography machine to expose the photoresist under the light with a wavelength of 365nm, and bake at 110°C After 1 minute, the sample was soaked in FHD-5 for 30 seconds for developing treatment. The photoresist exposed to the light was dissolved in the solution, and the part that was not exposed to the light remained as it was, so that the BG line pattern was transferred to the light. On the resist (as shown in Figure 3), a BG line pattern with a period of 1 μm is formed (the SEM photo of which is shown in Figure 4);
2)在120℃硬烤后,样品被送到CF3000里进行离子注入。2) After hard baking at 120°C, the samples were sent to CF3000 for ion implantation.
NFF(The Nanoelectronics Fabrication Facility纳米电子制造工厂)的ASML 5000型的步进光刻机,比率为5比1,这保证了最小线宽和最小间隔为0.5μm。因此,最低的线周期限制在1μm。The ASML 5000 stepper of NFF (The Nanoelectronics Fabrication Facility) has a ratio of 5 to 1, which ensures a minimum line width and a minimum spacing of 0.5 μm. Therefore, the lowest line period is limited to 1 μm.
本实施例通过光刻生成BG图案和离子注入两个步骤,得到了由单个重复周期为1μm的掺杂多晶硅平行线组成的BG线。In this embodiment, BG lines composed of doped polysilicon parallel lines with a single repetition period of 1 μm are obtained through two steps of generating BG patterns by photolithography and ion implantation.
在其他实施例中,也可以在非晶硅上先形成BG线后再将非晶硅结晶成多晶硅,即BG线可以形成在结晶前或后。In other embodiments, the BG lines may also be formed on the amorphous silicon first and then the amorphous silicon is crystallized into polysilicon, that is, the BG lines may be formed before or after the crystallization.
这种先在非晶硅上掺杂形成BG线再结晶的方法,与先把非晶硅结晶,再在多晶硅上形成BG线的方法相比,至少具有以下优点:当在非晶硅上进行P型掺杂,退火时更能促进非晶硅的结晶;由于掺杂物质在非晶硅结晶时会进行扩散,利用这点,可以更好地控制掺杂区与非掺杂区的比例,进一步地缩小存在于非掺杂区的晶界的几率,同时降低短路的风险;再有,由于退火工艺是在掺杂之后,在把非晶硅结晶化的同时也把掺杂物激活了。Compared with the method of first crystallizing amorphous silicon and then forming BG lines on polysilicon, this method of doping amorphous silicon to form BG lines and recrystallization has at least the following advantages: P-type doping can promote the crystallization of amorphous silicon during annealing; since the dopant substance will diffuse during the crystallization of amorphous silicon, this can be used to better control the ratio of the doped region to the non-doped region, Further reduce the probability of the grain boundary existing in the non-doped region, and at the same time reduce the risk of short circuit; moreover, since the annealing process is after doping, the dopant is also activated while crystallizing the amorphous silicon.
实施例2Example 2
本实施例提供一种形成具有搭桥晶粒(BG)线的多晶硅薄膜的方法,包括:This embodiment provides a method for forming a polysilicon film with bridging grain (BG) lines, including:
1)在Eagel2000玻璃基板上,使用等离子体增强化学气相沉积(PEVCD)沉积300nm的氧化硅(SiO2)。然后用低压化学气相沉积(LPCVD)方法在550℃环境下沉积45纳米的a-Si;1) On an Eagel2000 glass substrate, 300 nm of silicon oxide (SiO 2 ) was deposited using plasma enhanced chemical vapor deposition (PEVCD). Then use low-pressure chemical vapor deposition (LPCVD) to deposit 45 nanometers of a-Si at 550 ° C;
2)在1%的氢氟酸容液(HF)里浸渍1分钟到去除的自然氧化层后,放进温度为550度的氧化环境15分钟,使a-Si表面形成一层SiO2纳米氧化层;2) After immersing in 1% hydrofluoric acid solution (HF) for 1 minute to remove the natural oxide layer, put it into an oxidizing environment with a temperature of 550 degrees for 15 minutes to form a layer of SiO 2 nano-oxidation on the surface of a-Si layer;
3)在该纳米层上溅射一层缓释(SR)镍/硅氧化源层进行金属诱导结晶,采用镍硅合金作为靶材,镍硅比为:Ni∶Si=1∶9,溅射是在氩气与氧气200∶1的比例混合环境中进行,溅射直流电源是7W,溅射时间为90秒;3) Sputter a layer of slow-release (SR) nickel/silicon oxide source layer on the nano-layer for metal-induced crystallization, using nickel-silicon alloy as the target material, the ratio of nickel to silicon is: Ni:Si=1:9, sputtering It is carried out in a mixed environment of argon and oxygen at a ratio of 200:1, the sputtering DC power supply is 7W, and the sputtering time is 90 seconds;
4)在590℃N2气氛下加热6个小时,到a-Si完全结晶为止,图5a为该结晶方案的截面示意图;4) Heating at 590°C for 6 hours under N2 atmosphere until a-Si is completely crystallized. Figure 5a is a schematic cross-sectional view of the crystallization scheme;
5)浸泡120℃混合溶液H2SO4+H2O2中10分钟,以去除表面上残留的镍。然后放到1%的氟氢酸(HF)浸泡1分钟,以去除纳米涂层,再沉积100nm的LTO;5) Soak in the mixed solution H 2 SO 4 +H 2 O 2 at 120° C. for 10 minutes to remove residual nickel on the surface. Then soak in 1% hydrofluoric acid (HF) for 1 minute to remove the nano-coating, and then deposit 100nm of LTO;
6)使用实施例1中所述的波长为365nm的ASM PAS5000步进光刻机形成BG图案,BG线周期是1微米。6) Use the ASM PAS5000 stepper photolithography machine with a wavelength of 365nm described in Example 1 to form a BG pattern, and the BG line period is 1 micron.
7)在120℃烘烤30分钟后,对于所有的P沟道TFT,在40KeV的能量和2E15/cm2剂量下使用硼为BG掺杂,对于所有的N型TFT,用磷为BG掺杂,这里的BG掺杂是通过两个步骤进行,在每一步的剂量为1E15/cm2,注入能量分别为80KeV和130KeV,得到如图6所示的结构;7) After baking at 120°C for 30 minutes, use boron as BG doping at 40KeV energy and 2E15/ cm2 dose for all P-channel TFTs, and phosphorus as BG doping for all N-type TFTs , the BG doping here is carried out through two steps, the dose in each step is 1E15/cm 2 , the implantation energy is 80KeV and 130KeV respectively, and the structure shown in Figure 6 is obtained;
8)使用氧等离子体在100摄氏度下30分钟剥离光刻胶,去除PR光刻胶之后,100nm的LTO也使用777的湿刻去除。在BG这一步完成后,整个部分掺杂多晶硅薄膜可以称为BG-poly-Si,可用于TFT有源层。8) Use oxygen plasma to strip the photoresist at 100 degrees Celsius for 30 minutes. After removing the PR photoresist, 100nm of LTO is also removed using 777 wet etching. After the BG step is completed, the entire partially doped polysilicon film can be called BG-poly-Si, which can be used for the TFT active layer.
利用缓释镍/硅氧化源层进行金属诱导结晶的过程中,缓释镍/硅氧化源在一个相对较慢的速度中只作为镍的补充源。这种镍诱导源的镍由硅和镍硅氧化物反应中慢慢提供,这跟纯镍源提供大量的纯镍原子有很大的不同。因此,镍氧化物提供的镍量小于纯镍源,这种缓释放反应镍在多晶硅中会减少残留镍的含量。During metal-induced crystallization using the slow-release nickel/silicon oxide source layer, the slow-release nickel/silicon oxide source serves only as a supplementary source of nickel at a relatively slow rate. The nickel in this nickel-inducing source is slowly provided by the reaction of silicon and nickel-silicon oxide, which is very different from the pure nickel source that provides a large number of pure nickel atoms. Therefore, the amount of nickel provided by nickel oxide is less than that of pure nickel source, and this slow release of nickel in polysilicon will reduce the residual nickel content.
本实施例中提供的方法的步骤4)所得到的多晶硅薄膜被四甲基氢氧化铵(TMAH)蚀刻液在室温蚀刻后表现出的薄膜的内部结构如图7a所示,本实施例得到的多晶硅为大型晶粒多晶硅,有着高迁移率、低成本和低温退火的特征。The internal structure of the film shown in Figure 7a after the polysilicon film obtained in step 4) of the method provided in this embodiment is etched by tetramethylammonium hydroxide (TMAH) etching solution at room temperature is shown in Figure 7a. Polysilicon is large-grain polysilicon characterized by high mobility, low cost, and low-temperature annealing.
实施例3Example 3
本实施例提供一种形成具有搭桥晶粒(BG)线的多晶硅薄膜的方法,包括:This embodiment provides a method for forming a polysilicon film with bridging grain (BG) lines, including:
1)在Eagel2000玻璃基板上,使用等离子体增强化学气相沉积(PEVCD)沉积300nm的氧化硅(SiO2)。然后用低压化学气相沉积(LPCVD)方法在550℃环境下沉积45纳米的a-Si;1) On an Eagel2000 glass substrate, 300 nm of silicon oxide (SiO 2 ) was deposited using plasma enhanced chemical vapor deposition (PEVCD). Then use low-pressure chemical vapor deposition (LPCVD) to deposit 45 nanometers of a-Si at 550 ° C;
2)在1%的氢氟酸容液(HF)里浸渍1分钟到去除的自然氧化层后,浸入温度为120度的H2SO4+H2O2混合溶液10分钟,使a-Si表面形成一层SiO2纳米层;2) Immerse in 1% hydrofluoric acid solution (HF) for 1 minute to remove the natural oxide layer, then immerse in a mixed solution of H 2 SO 4 +H 2 O 2 at a temperature of 120 degrees for 10 minutes to make a-Si A layer of SiO2 nanometer layer is formed on the surface;
3)在该纳米层上溅射一层缓释(SR)镍/硅氧化源层进行金属诱导结晶,采用镍硅合金作为靶材,镍硅比为:Ni∶Si=1∶9,溅射是在氩气与氧气200∶1的比例混合环境中进行,溅射直流电源是7W,溅射时间为2分钟;3) Sputter a layer of slow-release (SR) nickel/silicon oxide source layer on the nano-layer for metal-induced crystallization, using nickel-silicon alloy as the target material, the ratio of nickel to silicon is: Ni:Si=1:9, sputtering It is carried out in a mixed environment of argon and oxygen at a ratio of 200:1, the sputtering DC power supply is 7W, and the sputtering time is 2 minutes;
4)在590℃N2气氛下加热6个小时,到a-Si完全结晶为止,图5b为该结晶方案的截面示意图;4) Heating at 590°C for 6 hours under N2 atmosphere until the a-Si is completely crystallized. Figure 5b is a schematic cross-sectional view of the crystallization scheme;
5)浸泡120℃混合溶液H2SO4+H2O2中10分钟,以去除表面上残留的镍。然后放到1%的氟氢酸(HF)浸泡1分钟,以去除纳米涂层,再沉积100nm的LTO(低温氧化物);5) Soak in the mixed solution H 2 SO 4 +H 2 O 2 at 120° C. for 10 minutes to remove residual nickel on the surface. Then soak in 1% hydrofluoric acid (HF) for 1 minute to remove the nano-coating, and then deposit 100nm of LTO (low temperature oxide);
6)使用实施例1中所述的波长为365nm的ASM PAS5000步进光刻机形成BG图案,BG线周期是1微米;6) Use the ASM PAS5000 stepping photolithography machine with a wavelength of 365nm described in Example 1 to form a BG pattern, and the BG line period is 1 micron;
7)在120℃烘烤30分钟后,对于所有的P沟道TFT,在40KeV的能量和2E15/cm2剂量下使用硼为BG掺杂,对于所有的N型TFT,用磷为BG掺杂,这里的BG掺杂是通过两个步骤进行,在每一步的剂量为1E15/cm2,注入能量分别为80KeV和130KeV,得到如图6所示的结构;7) After baking at 120°C for 30 minutes, use boron as BG doping at 40KeV energy and 2E15/ cm2 dose for all P-channel TFTs, and phosphorus as BG doping for all N-type TFTs , the BG doping here is carried out through two steps, the dose in each step is 1E15/cm 2 , the implantation energy is 80KeV and 130KeV respectively, and the structure shown in Figure 6 is obtained;
8)使用氧等离子体在100℃温度下30分钟剥离光刻胶,去除PR光刻胶之后,100nm的LTO也使用777的湿刻去除。在BG这一步完成后,整个部分掺杂多晶硅薄膜可以称为BG-poly-Si,可用于TFT有源层。8) Use oxygen plasma to strip the photoresist at a temperature of 100° C. for 30 minutes. After removing the PR photoresist, 100 nm of LTO is also removed using 777 wet etching. After the BG step is completed, the entire partially doped polysilicon film can be called BG-poly-Si, which can be used for the TFT active layer.
本实施例中提供的方法的步骤4)所得到的多晶硅薄膜被四甲基氢氧化铵(TMAH)蚀刻液在室温蚀刻后表现出的薄膜的内部结构如图7b所示,本实施例得到的多晶硅为小晶粒(絮状结构)的多晶硅薄膜,有着较小的迁移率和较高的镍残留量,然而这项技术具有均匀性好,成本低,退火时间短,更宽的工艺处理窗口等优点。The internal structure of the film shown in Figure 7b after the polysilicon film obtained in step 4) of the method provided in this embodiment is etched by tetramethylammonium hydroxide (TMAH) etching solution at room temperature is shown in Figure 7b. Polysilicon is a polysilicon film with small crystal grains (flocculent structure), which has a small mobility and a high residual nickel content. However, this technology has good uniformity, low cost, short annealing time, and a wider process window. Etc.
实施例4Example 4
本实施例提供一种形成具有搭桥晶粒(BG)线的多晶硅薄膜的方法,包括:This embodiment provides a method for forming a polysilicon film with bridging grain (BG) lines, including:
1)在Eagel2000玻璃基板上,使用等离子体增强化学气相沉积(PEVCD)沉积300nm的氧化硅(SiO2)。然后用低压化学气相沉积(LPCVD)方法在550℃环境下沉积45纳米的a-Si;1) On an Eagel2000 glass substrate, 300 nm of silicon oxide (SiO 2 ) was deposited using plasma enhanced chemical vapor deposition (PEVCD). Then use low-pressure chemical vapor deposition (LPCVD) to deposit 45 nanometers of a-Si at 550 ° C;
2)在1%的氢氟酸容液(HF)里浸渍1分钟到去除的自然氧化层后,沉积一层100纳米厚的低温氧化物(LTO);2) After dipping in 1% hydrofluoric acid solution (HF) for 1 minute to remove the natural oxide layer, deposit a layer of low-temperature oxide (LTO) with a thickness of 100 nanometers;
3)通过光刻和蚀刻工艺,在LTO层上形成宽度为8微米间隔为100μm的凹槽作为诱导线(IL),如图5C所示,浸泡到120度的H2SO4+H2O2混合溶液里10分钟以去除光刻胶,溅射一层缓释(SR)镍/硅氧化源层进行金属诱导结晶,采用镍硅合金作为靶材,镍硅比为:Ni∶Si=1∶9,溅射是在氩气与氧气200∶1的比例混合环境中进行,溅射直流电源是7W,溅射时间为6分钟;3) Through photolithography and etching processes, grooves with a width of 8 microns and an interval of 100 μm are formed on the LTO layer as induction lines (IL), as shown in Figure 5C, soaked in H 2 SO 4 +H 2 O at 120 degrees 2 In the mixed solution for 10 minutes to remove the photoresist, sputter a layer of slow-release (SR) nickel/silicon oxide source layer for metal-induced crystallization, using nickel-silicon alloy as the target material, the ratio of nickel to silicon is: Ni:Si=1 :9, the sputtering is carried out in a mixed environment of argon and oxygen in a ratio of 200:1, the sputtering DC power supply is 7W, and the sputtering time is 6 minutes;
4)在590℃下,N2气氛加热2小时进行结晶,图5c为该结晶方案的截面示意图;4) Crystallization was carried out by heating at 590° C. in N atmosphere for 2 hours, and Figure 5c is a schematic cross-sectional view of the crystallization scheme;
5)沉浸到120度的H2SO4+H2O2混合溶液10分钟,以去除表面上残留的镍;5) Immerse in a mixed solution of H 2 SO 4 +H 2 O 2 at 120 degrees for 10 minutes to remove residual nickel on the surface;
6)使用实施例1中所述的波长为365nm的ASM PAS5000步进光刻机形成BG图案,BG线周期是1微米;6) Use the ASM PAS5000 stepping photolithography machine with a wavelength of 365nm described in Example 1 to form a BG pattern, and the BG line period is 1 micron;
7)在120℃烘烤30分钟后,对于所有的P沟道TFT,在40KeV的能量和2E15/cm2剂量下使用硼为BG掺杂,对于所有的N型TFT,用磷为BG掺杂,这里的BG掺杂是通过两个步骤进行,在每一步的剂量为1E15/cm2,注入能量分别为80KeV和130KeV,得到如图6所示的结构;7) After baking at 120°C for 30 minutes, use boron as BG doping at 40KeV energy and 2E15/ cm2 dose for all P-channel TFTs, and phosphorus as BG doping for all N-type TFTs , the BG doping here is carried out through two steps, the dose in each step is 1E15/cm 2 , the implantation energy is 80KeV and 130KeV respectively, and the structure shown in Figure 6 is obtained;
8)使用氧等离子体在100℃温度下30分钟剥离光刻胶,去除PR光刻胶之后,100nm的LTO也使用777的湿刻去除。在BG这一步完成后,整个部分掺杂多晶硅薄膜可以称为BG-poly-Si,可用于TFT有源层。8) Use oxygen plasma to strip the photoresist at a temperature of 100° C. for 30 minutes. After removing the PR photoresist, 100 nm of LTO is also removed using 777 wet etching. After the BG step is completed, the entire partially doped polysilicon film can be called BG-poly-Si, which can be used for the TFT active layer.
本实施例中提供的方法的步骤4)所得到的多晶硅薄膜被四甲基氢氧化铵(TMAH)蚀刻液在室温蚀刻后表现出的薄膜的内部结构如图7c所示,本实施例得到的多晶硅为缓释镍诱导横向结晶(SR-MILC)多晶硅薄膜,提供了一个更广泛的工艺窗口,可以防止分批处理对多晶硅薄膜晶体管之间的工艺参数变化的影响。The internal structure of the polysilicon film obtained in step 4) of the method provided in this embodiment is shown in Figure 7c after being etched by tetramethylammonium hydroxide (TMAH) etching solution at room temperature. Polysilicon provides a wider process window for slow-release nickel-induced lateral crystallization (SR-MILC) polysilicon thin films, which prevents batch processing from affecting process parameter variations between polysilicon TFTs.
实施例5Example 5
本实施例提供一种薄膜晶体管的制造方法,包括:This embodiment provides a method for manufacturing a thin film transistor, including:
1)利用上述实施例4提供的方法形成具有搭桥晶粒(BG)线的多晶硅薄膜;1) Forming a polysilicon film with bridging grain (BG) lines by the method provided in the
2)用AME8110活性离子蚀刻机把这些部分掺杂的BG-poly-Si薄膜图案化成有源岛;2) Pattern these partially doped BG-poly-Si films into active islands with an AME8110 reactive ion etcher;
3)经过干式蚀刻,光刻胶被氧离子去除;3) After dry etching, the photoresist is removed by oxygen ions;
4)用1%HF去除自然氧化层之后,在425℃经LPCVD沉积100nm的低温氧化物(LTO)作为栅极绝缘层;4) After removing the natural oxide layer with 1% HF, deposit a 100nm low-temperature oxide (LTO) as a gate insulating layer by LPCVD at 425° C.;
5)沉积300nm的铝(或280nm的多晶硅)并图案化成栅电极,对P型和N型TFT的源漏极分别进行剂量为4×1015/cm2的硼和磷掺杂;5) Deposit 300nm aluminum (or 280nm polysilicon) and pattern it into a gate electrode, doping the source and drain electrodes of P-type and N-type TFTs with boron and phosphorus at a dose of 4×10 15 /cm 2 respectively;
6)沉积一层500nm的LTO隔离层并同时激活掺杂物;6) Depositing a 500nm LTO isolation layer and simultaneously activating the dopant;
7)刻蚀接触孔,然后溅射一层700nm的铝-1%硅的接触导线并图案化,形成BG-poly-TFT,其横截面示意图如图8所示。7) Etching the contact hole, and then sputtering a layer of 700nm aluminum-1% silicon contact wire and patterning to form a BG-poly-TFT, the cross-sectional schematic diagram of which is shown in FIG. 8 .
在其他实施例中,上述步骤1)还可替换成利用上述实施例5或实施例6提供的方法或者其他方法形成具有搭桥晶粒(BG)线的多晶硅薄膜。为了下文描述方便,将由实施例4形成的多晶硅薄膜(大晶粒)制成的薄膜晶体管命名为样品A,将由实施例5形成的多晶硅薄膜(小晶粒)制成的薄膜晶体管命名为样品B,将由实施例6形成的多晶硅薄膜制成的薄膜晶体管命名为样品C(SR-MILC-TFT)。In other embodiments, the above step 1) can also be replaced by using the method provided in the
为了说明根据本实用新型的薄膜晶体管的性能的有异性,用HP4156半导体参数分析仪分别对3种BG多晶硅TFT和无BG的TFT进行电学特性的测量以进行性能比较。Vds=-0.1V和Vds=-5V,通过TFT场效应迁移率(μFE)的Vgs的函数来测量转移特性曲线。阈值电压(Vth)被定义为当Vds=-5V时,使得Id=W/L×10-7A的VG电压。场效应迁移率(μFE)在低漏极电压(Vds=-0.1V)时,其次方程:In order to illustrate the heterogeneity of the performance of the thin film transistor according to the utility model, the electrical characteristics of three kinds of BG polysilicon TFTs and TFTs without BG were measured by HP4156 semiconductor parameter analyzer for performance comparison. V ds = -0.1 V and V ds = -5 V, transfer characteristic curves were measured as a function of V gs of TFT field effect mobility (μFE). The threshold voltage (Vth) is defined as the V G voltage such that I d =W/L×10 -7 A when V ds =-5V. Field effect mobility (μFE) at low drain voltage (V ds =-0.1V), the following equation:
其中W和L是有效的渠道宽度和长度,gm是跨导,Cox是单位面积的栅极绝缘层电容,Vds是漏极和源极之间的电压。报告的场效应迁移率是测得的最大值。Where W and L are the effective channel width and length, gm is the transconductance, Cox is the gate insulating layer capacitance per unit area, and Vds is the voltage between the drain and source. The reported field-effect mobilities are the maximum values measured.
A:样本A(BG大晶粒MIC TFTs)A: Sample A (BG large grain MIC TFTs)
图9(a)为当Vds=-0.1V和Vds=-5V时,Vgs函数的TFT的转移特性曲线。大晶粒BG MIC TFT的电学参数与非BG的电学参数如表1所示。BG大型晶粒MIC TFT的亚阈值摆幅(S)为0.78V/dec,而非BG的为1.02V/dec。此外,有着BG结构的阈值电压(Vth)减少了3.2V,直到-6.6V。另一个明显的改进是栅诱导漏极漏电(GIDL)。BG TFT的漏电流为6.13pA/μm,这是正常的大晶粒MIC TFT在Vgs=10V和Vds=-5V时的1/2000左右。从上面的对比,我们可以看到应用BG技术后,大部分的TFT参数得到显著改善。FIG. 9( a ) is the transfer characteristic curve of TFT as a function of V gs when V ds =-0.1V and V ds =-5V. The electrical parameters of large-grain BG MIC TFT and those of non-BG are shown in Table 1. The subthreshold swing (S) of the BG large-grain MIC TFT is 0.78V/dec, while that of the non-BG is 1.02V/dec. In addition, the threshold voltage (V th ) decreased by 3.2V to -6.6V with the BG structure. Another obvious improvement is Gate Induced Drain Leakage (GIDL). The leakage current of the BG TFT is 6.13pA/μm, which is about 1/2000 of that of a normal large-grain MIC TFT at V gs =10V and V ds =-5V. From the above comparison, we can see that most of the TFT parameters have been significantly improved after applying BG technology.
图9(b)显示的为以Vgs作为函数,BG大晶粒MIC TFT与非BG结构TFT的输出电流比图。我们可以发现,当Vgs和Vds发生变化时,BG TFT与非BGTFT之间的电流比(γ)也会发生变化。当Vds=-0.1V时,在区域1,如图9所示,γ是大约~0.5,这意味着漏电流减少了一半。在第2区的亚阈值区域,γ急剧增加,最大值为~70,这是在第3区域的γ值的20倍左右。当Vds=-5V,在1区域大晶粒MIC TFT显示了独特的漏电流和栅诱导漏极漏电(GIDL),同时,BG大晶粒MIC TFT的GIDL明显抑制到~10-10A和最小电流也下降11倍。如图9(b)所示,γ显著下降到~10-4。值得注意的是,多晶硅TFT关态漏电流的增加主要有2个原因。原因之一为在漏极区,由于施加栅极和漏极电压引起的高电场。漏电流随着Vds的增加而显著增加;第二个原因为靠近漏极区的晶粒边界缺陷密度。对于BG-TFT,在第一区的漏电流的减少也是因为这两个原因,因为BG结构架桥的效果使得晶界缺陷的减少,以及在BG-TFT的有源通道的一系列串行浅结使得电场的减少。在BG线掺硼与TFT源和漏的极性是一致的。通常情况下,非掺杂MIC多晶硅薄膜显示轻微n极性。因此,在第1区域,当Vgs比Vth小时,在没有掺杂的MIC多晶硅是n-极性而掺杂区域呈现p+极性,这就意味着有着BG结构的TFT有源通道变得一系列pn结。这也是为什么GIDL和最小电流都大大下降。Figure 9(b) shows the output current ratio of BG large-grain MIC TFT and non-BG structure TFT with V gs as a function. We can find that when Vgs and Vds are changed, the current ratio (γ) between BG TFT and non-BGTFT is also changed. When V ds = -0.1V, in
在第2区,亚阈值区,BG-线在晶粒的垂直方向对电流的流动方向起到架桥作用,使晶界势垒由BG结构得以降低,与此同时,由于BG线的掺杂,缺陷状态和边界非均匀性得以填补或终结。因此,不仅有着BG结构的TFT阈值电压比没有BG结构的TFT小~3V,同时,有着BG结构的TFT的亚阈值摆幅(S)也从1.02V/decade减少到0.78V/decade。In the second zone, the sub-threshold zone, the BG-line bridges the flow direction of the current in the vertical direction of the grain, so that the grain boundary barrier can be reduced by the BG structure. At the same time, due to the doping of the BG line , defect states and boundary inhomogeneities are filled or terminated. Therefore, not only the threshold voltage of the TFT with the BG structure is ~3V lower than that of the TFT without the BG structure, but also the subthreshold swing (S) of the TFT with the BG structure is also reduced from 1.02V/decade to 0.78V/decade.
在区域3,开电流的增大大约与BG结构的2个因素有关。这是因为,有着BG线的TFT可以被看作成一系列短通道TFTs。因此,BG的TFT有着无热载流子效应的短沟道TFT的好处,在增加开态电流,降低阈值电压及亚阈值斜率摆幅等。In region 3, the increase of on current is related to 2 factors of BG structure. This is because, a TFT with a BG line can be regarded as a series of short-channel TFTs. Therefore, BG's TFT has the benefits of a short-channel TFT without hot carrier effects, increasing the on-state current, reducing the threshold voltage and sub-threshold slope swing, etc.
表1有着BG结构与非BG结构的P型大晶粒MIC TFT的电学参数Table 1 Electrical parameters of P-type large grain MIC TFT with BG structure and non-BG structure
图10(a)和(b)所示的是分别在Vds=-0.1V和Vds=-5V情况下,BG大晶粒MIC TFT和非BG大晶粒MIC TFT的跨导。Figure 10(a) and (b) show the transconductance of BG large-grain MIC TFT and non-BG large-grain MIC TFT under the conditions of V ds =-0.1V and V ds =-5V respectively.
图11(a)和(b)所示的为P型沟道TFT性能上的差异,所示的为一般的大晶粒MIC TFT和BG大晶粒MIC TFT的VTH和GIDL。数据测量来自50个均匀分布在超过4英寸的玻璃晶圆上的TFT。很明显,有着BG结构的TFT比一般的大晶粒MIC TFT的GIDL值要低得多,GIDL的差异性也得到大大提高。同时,与正常的大晶粒MIC TFT相比,BG大晶粒MIC TFT也表现出更小的Vth变化,和绝对的Vth值。Figure 11(a) and (b) show the difference in the performance of P-channel TFTs, and show the V TH and GIDL of a general large-grain MIC TFT and a BG large-grain MIC TFT. Data measurements are taken from 50 TFTs evenly spaced over a 4-inch glass wafer. Obviously, the GIDL value of TFT with BG structure is much lower than that of general large-grain MIC TFT, and the difference of GIDL is also greatly improved. At the same time, compared with normal large-grain MIC TFT, BG large-grain MIC TFT also exhibits smaller V th variation and absolute V th value.
B:样本B(BG小晶粒MIC TFT)B: Sample B (BG small grain MIC TFT)
图12(a)所示的为当Vds=-0.1V和Vds=-5V时,有着BG结构和没有BG结构的小晶粒(或絮状结构)MIC多晶硅TFT的转移特性曲线。图12(b)所示的是以Vgs作为函数,有着BG结构和没有BG结构的小晶粒MIC多晶硅TFT的输出电流比(γ)图。表2列出了BG结构与非BG结构小晶粒MIC多晶硅TFT的电学参数。BG结构TFT与非BG结构TFT的亚阈值摆幅(S)分别是0.8V/dec和1.15V/dec。此外,有着BG结构的TFT的阈值电压(Vth)绝对值是减少了4.5V,降到6.8V。在第2区域,如图12(b)所示,亚阈值区域,当Vds=-0.1V和Vds=-5V时,γ显著增加,并达到最高值的~2×104和~4×103,这比在第3区的γ值大数百或上千的倍。Fig. 12(a) shows the transfer characteristic curves of small grain (or floc structure) MIC polysilicon TFTs with and without BG structure when V ds =-0.1V and V ds =-5V. Figure 12(b) shows the output current ratio (γ) plots of small-grain MIC polysilicon TFTs with and without BG structure, with V gs as a function. Table 2 lists the electrical parameters of small-grain MIC polysilicon TFTs with BG structure and non-BG structure. The subthreshold swing (S) of BG structure TFT and non-BG structure TFT is 0.8V/dec and 1.15V/dec, respectively. In addition, the absolute value of the threshold voltage (V th ) of the TFT with the BG structure is reduced by 4.5V to 6.8V. In the second region, as shown in Fig. 12(b), the subthreshold region, when V ds = -0.1V and V ds = -5V, γ increases significantly and reaches the highest value of ~2×10 4 and ~4 ×10 3 , which is hundreds or thousands of times larger than the gamma value in region 3.
另一个明显的改进的是在1区域的漏电流,如图12(a)所示。当Vgs=10V和Vds=-5V的时,BG小晶粒MIC TFT的漏电流是14.6pA/um,这是正常的小晶粒MIC的TFT的大约1/50。正如图12(a)所示,当Vds的=-5V,在1区域,小晶粒MIC TFT有明显的漏电流和GIDL,而BG小晶粒MIC TFT的GIDL明显抑制到~10-10A和最小电流也减少了3.1倍。如图13(b)所示,γ显着下降~2×10-2。从上面的对比,我们可以看到应用BG技术后,大部分的TFT参数得到显著改善。Another obvious improvement is the leakage current in the 1 region, as shown in Fig. 12(a). When V gs =10V and V ds =-5V, the leakage current of the BG small grain MIC TFT is 14.6pA/um, which is about 1/50 of the normal small grain MIC TFT. As shown in Fig. 12(a), when V ds = -5V, in
表2有着BG结构与非BG结构的P型小晶粒MIC TFT的电学参数Table 2 Electrical parameters of P-type small grain MIC TFT with BG structure and non-BG structure
图13(a)和(b)所示的是分别在Vds=-0.1V和Vds=-5V情况下,BG小晶粒MIC TFT和非BG小晶粒P型MIC TFT的跨导。Figure 13(a) and (b) show the transconductance of BG small-grain MIC TFT and non-BG small-grain P-type MIC TFT under the conditions of V ds =-0.1V and V ds =-5V respectively.
图14(a)和(b)所示的为P型沟道TFT性能上的差异,所示的为一般的小晶粒MIC TFT和BG小晶粒MIC TFT的Vth和GIDL。数据测量来自96个均匀分布在超过4英寸的玻璃晶圆上的TFT。很明显,有着BG结构的TFT比正常的小晶粒MIC TFT的GIDL值要低得多,GIDL的差异性也得到大大提高。同时,与一般的小晶粒MIC TFT相比,BG小晶粒MIC TFT也表现出更小的Vth变化。表3显示了大晶粒的MIC,BG大晶粒MIC,小颗粒MIC和BG小晶粒MIC等4种TFT的Vth和GIDL的均匀性数据。从比较中,我们可以发现,小晶粒MIC TFT比较大晶粒MIC TFT的均匀度更佳,BG大晶粒MIC TFT与BG小晶粒MIC TFT之间也发现同样的效果。由于GIDL的绝对值减少更多,BG TFT表现出更小的GIDL差异。应该指出的是,小晶粒MIC的TFT显示出比BG小晶粒MIC的TFT更小的Vth标准差。这是因为BG线的不均匀性在未来仍需要较大的改进。Figure 14(a) and (b) show the difference in performance of P-channel TFTs, showing the V th and GIDL of a general small-grain MIC TFT and a BG small-grain MIC TFT. Data measurements were taken from 96 TFTs evenly spaced over a 4-inch glass wafer. Obviously, the GIDL value of the TFT with BG structure is much lower than that of the normal small-grain MIC TFT, and the difference of GIDL is also greatly improved. Meanwhile, the BG small-grain MIC TFT also exhibits smaller V th variation compared with the general small-grain MIC TFT. Table 3 shows the uniformity data of V th and GIDL of 4 kinds of TFTs including MIC of large grain, BG large grain MIC, small grain MIC and BG small grain MIC. From the comparison, we can find that the uniformity of the small-grain MIC TFT is better than that of the large-grain MIC TFT, and the same effect is also found between the BG large-grain MIC TFT and the BG small-grain MIC TFT. BG TFTs exhibited smaller differences in GIDL due to greater reduction in absolute value of GIDL. It should be noted that the TFTs of small-grain MICs showed a smaller standard deviation of Vth than the TFTs of BG small-grain MICs. This is because the inhomogeneity of the BG line still needs a large improvement in the future.
表3BG与非BG结构的大晶粒与小晶粒MIC TFT的均匀性比较Table 3 Uniformity comparison of large-grain and small-grain MIC TFTs with BG and non-BG structures
C:样本C(BG SR-MILC TFT)C: Sample C (BG SR-MILC TFT)
图15(a)所示的为当Vds=-0.1V和Vds=-5V时,有着BG结构和没有BG结构的SR-MILC多晶硅TFT的转移特性曲线。图15(b)所示的是以Vgs作为函数,有着BG结构和没有BG结构的P沟道SR-MILC TFT的输出电流比(γ)图。表4列出了BG结构与非BG结构SR-MILC TFT的电学参数。BG结构TFT与非BG结构SR-MILC TFT的亚阈值摆幅(S)分别是0.95V/dec和1.34V/dec。此外,有着BG结构的TFT的阈值电压(Vth)绝对值是减少了4.1V,降到5.9V。在第2区域,如图15(b)所示,亚阈值区域,γ显著增加,并达到最高值的~100,这比在第3区的γ值大20倍。Fig. 15(a) shows the transfer characteristic curves of SR-MILC polysilicon TFTs with and without BG structure when V ds =-0.1V and V ds =-5V. Figure 15(b) shows the output current ratio (γ) plots of P-channel SR-MILC TFTs with and without BG structure as a function of V gs . Table 4 lists the electrical parameters of BG structure and non-BG structure SR-MILC TFT. The subthreshold swing (S) of BG structure TFT and non-BG structure SR-MILC TFT is 0.95V/dec and 1.34V/dec, respectively. In addition, the absolute value of the threshold voltage (V th ) of the TFT with the BG structure is reduced by 4.1V to 5.9V. In
另一个明显的改进的是TFT反向偏置时的漏电流,如图12(a)所示。当Vgs=10V和Vds=-5V的时,BG SR-MILC TFT的漏电流是7.26pA/um,这是一般的SR-MILC的TFT的大约1/32。正如图15(a)所示,当Vds的=-5V,在1区域,SR-MILC TFT有明显的漏电流和GIDL,而BG SR-MILC TFT的GIDL明显抑制到~2×10-10A和最小电流也减少了3倍。如图15(b)所示,γ显着下降~3×10-2。Another obvious improvement is the leakage current when the TFT is reverse biased, as shown in Figure 12(a). When V gs =10V and V ds =-5V, the leakage current of BG SR-MILC TFT is 7.26pA/um, which is about 1/32 of that of general SR-MILC TFT. As shown in Figure 15(a), when V ds = -5V, in
表4有着BG结构与非BG结构的P型SR-MILC多晶硅TFT电学参数Table 4 Electrical parameters of P-type SR-MILC polysilicon TFT with BG structure and non-BG structure
实施例8Example 8
D:各向异性SR-MILC多晶硅TFT和均一性BG多晶硅TFTD: Anisotropic SR-MILC polysilicon TFT and uniform BG polysilicon TFT
本实施例提供一种SR-MILC TFT,图16为TMAH的蚀刻后的SR-MILCTFT的区域微观图。本实施例中,诱导线的宽度是8微米,两条相邻诱导线之间的距离是100微米。金属诱导侧向结晶产生于伸长晶粒和相关连的低角度晶粒边界GBS,低角度晶粒边界主要是沿着MILC方向,如图16虚线圈所示。低角度GBS和水平MILC方向之间的角度通常小于30°。这相对有序的和各向异性的微观结构与那些SPC和LPCVD多晶硅不同,其随机成核和均匀晶粒生长导致各向同性的微观结构和电气性能。采用传统LTPS TFT工艺制作两种类型的P-通道的TFT。所有的TFT有着相同的10微米的有源沟道宽度(W),和从1微米到20微米不等的不同的沟道长度(L)。此外,所有的TFT有源通道位于优良的MILC区域,这意味着每一个TFT有源通道的边缘至少离诱导线和两条诱导线中间的LLGB线7微米。A型TFT电流平行于MILC结晶方向,B型TFT的电流垂直于MILC结晶方向。此外,BG线垂直于电流方向的BG结构被应用到A型和B型的两种薄膜晶体管,以减少这种SR-MILC多晶硅薄膜的各向异性影响。这种斑马线般的BG多晶硅薄膜是由互相平行的0.5μm固有多晶硅线和0.5μm掺硼多晶硅线重复组成。This embodiment provides an SR-MILC TFT, and FIG. 16 is a regional microscopic view of the etched SR-MILC TFT of TMAH. In this embodiment, the width of the induction line is 8 microns, and the distance between two adjacent induction lines is 100 microns. Metal-induced lateral crystallization occurs from elongated grains and associated low-angle grain boundaries GBS, which are mainly along the MILC direction, as shown by the dotted circle in Fig. 16. The angle between the low-angle GBS and the horizontal MILC direction is usually less than 30°. This relatively ordered and anisotropic microstructure differs from those of SPC and LPCVD polysilicon, whose random nucleation and uniform grain growth lead to isotropic microstructure and electrical properties. Two types of P-channel TFTs are fabricated using the traditional LTPS TFT process. All TFTs have the same active channel width (W) of 10 microns, and different channel lengths (L) ranging from 1 micron to 20 microns. In addition, all TFT active channels are located in the excellent MILC region, which means that the edge of each TFT active channel is at least 7 μm away from the induction line and the LLGB line in the middle of the two induction lines. The current of type A TFT is parallel to the crystallization direction of MILC, and the current of type B TFT is perpendicular to the crystallization direction of MILC. In addition, the BG structure in which the BG line is perpendicular to the current direction is applied to two types of thin film transistors of type A and type B to reduce the anisotropic effect of this SR-MILC polysilicon film. This zebra-like BG polysilicon film is composed of repeated parallel 0.5μm polysilicon lines and 0.5μm boron-doped polysilicon lines.
图17为正规的SR-MILC多晶硅TFT在Vds=-5V时典型的对数比例转移曲线,其中,A型TFT电流平行于MILC结晶方向,B型TFT的电流垂直于MILC结晶方向。在这里,TFT的宽度和长度分别为10μm和14μm。除了如图17所示,用点圈表示的亚阈值区域外,基本上所有的TFT显示相同的转移曲线。为了进一步探讨的SR-MILC多晶硅薄膜晶体管的各向异性表现,制作并仔细测量和研究了更多类型的A型和B型的TFT,L尺寸从1微米到20μm。TFT阈值电压(Vth)被定义为当Vds=-0.1V时,使得Id=W/L×10-9A的VG电压。为了突出在亚阈值区域的差异,对于A型和B型TFT,把Vth抽取出并以L为函数显示在图18。Figure 17 is a typical logarithmic ratio transfer curve of a normal SR-MILC polysilicon TFT at V ds = -5V, where the current of the A-type TFT is parallel to the MILC crystallographic direction, and the B-type TFT current is perpendicular to the MILC crystallographic direction. Here, the width and length of the TFT are 10 μm and 14 μm, respectively. Except for the subthreshold region indicated by the dotted circles as shown in Figure 17, essentially all TFTs show the same transfer curves. In order to further explore the anisotropic performance of SR-MILC polysilicon thin film transistors, more types of A-type and B-type TFTs were fabricated, carefully measured and studied, and the L size ranged from 1 micron to 20 μm. TFT threshold voltage (V th ) is defined as V G voltage such that I d =W/L×10 -9 A when V ds =-0.1V. To highlight the difference in the subthreshold region, V th is extracted as a function of L for Type A and Type B TFTs and shown in Figure 18.
如图18所示,当L小于2μm时,A型和B型TFT都表现出基本相同的VTH值和标准偏差(SD)。在亚阈值区,Id是主要的扩散电流和载流子沿着由优良结晶区域提供的高电导路径。SR-MILC的伸长优良晶粒的平均宽度为3~5微米左右,如在图16所示。当L小于2um时,对于A型和B型的TFT,扩散电流从源到漏主要还是在一个晶粒里面。因此,所有的TFT显示了相同的阈值电压和相同S.D.的。随着通道长度的增加,A型的TFT比B型的TFT就会表现出相对较小的Vth。这是因为B型TFT当通道长度大于4μm时,低角度晶粒边界将很有可能会落在有源通道上,它的方向与电流方向垂直。B型TFT内的低角度晶粒边界对于扩散电流来说将会是一个障碍,使得B类TFT的Vth比A类TFT的大。As shown in Fig. 18, when L is less than 2 μm, both Type A and Type B TFTs exhibit substantially the same V TH value and standard deviation (SD). In the subthreshold region, Id is the dominant diffusion current and carriers along the high-conductance path provided by the well-crystallized region. The average width of the elongated grains of SR-MILC is about 3-5 microns, as shown in FIG. 16 . When L is less than 2um, for A-type and B-type TFTs, the diffusion current from source to drain is mainly in one grain. Therefore, all TFTs showed the same threshold voltage and the same SD. As the channel length increases, the Type A TFT exhibits a relatively smaller V th than the Type B TFT. This is because when the channel length of B-type TFT is greater than 4 μm, the low-angle grain boundary will likely fall on the active channel, and its direction is perpendicular to the current direction. The low-angle grain boundaries in the B-type TFT will be an obstacle to the diffusion current, making the Vth of the B-type TFT larger than that of the A-type TFT.
在亚阈值区,多晶硅薄膜晶体管的导电行为主要是由热电子发射控制。当低角度晶粒边界(GBS)横架于电流时,与晶粒边界内的情况相比,对于热离子发射,GB晶界会像一个较高的势垒。当TFT被打开,传导行为主要是由缺陷和/或GB散射控制。图19显示了A和B型的常规SR-MILC TFT的典型线性刻度的I-V曲线。A型和B型薄膜电晶体之间的区别是已用点圈圈出。在Vgs=-18V和Vds=-0.1V时的多晶硅TFT的通道电阻率已被抽取并比较于图20。In the subthreshold region, the conduction behavior of polysilicon TFTs is mainly controlled by thermionic emission. When the low-angle grain boundary (GB S ) traverses the current flow, the GB grain boundary acts like a higher potential barrier to thermionic emission than is the case within the grain boundary. When the TFT is turned on, the conduction behavior is mainly controlled by defects and/or GB scattering. Figure 19 shows typical linear scale IV curves for conventional SR-MILC TFTs of type A and B. The difference between Type A and Type B TFTs is circled with dotted circles. The channel resistivity of the polysilicon TFT at V gs =-18V and V ds =-0.1V has been extracted and compared to FIG. 20 .
电流方向与MILC方向平行的A型TFT通道的电阻率标示为ρp。电流方向垂直于MILC方向的B型TFT通道电阻率标示为ρt。正如在图20所示,当L小于2μm较小,ρp和ρt基本上是相同的,这可以用在亚阈值区域基本相同的Vth值的原因来解释。当L大于4μm时,ρp变得比ρt较小。对于ρt的情况,电流流过垂直的低角度晶界和沿传导方向越过一系列横向晶界的连续载流子激发是必需的。因此,电流是被TFT有源通道内的那些低角度GBS所限制。对于ρp的情况,电流方向是平行于长晶粒。正如我们所知,低角度晶界和MILC方向之间的角度通常小于30度。W/L<1/2的情况下,在通道区域将有可能出现低角度GBS和降低电阻率ρp。因此,电流的流动将遵循一个曲折的模式,从而避免在横向传导中遇到的低角度GBS。然而,A类器件的低角度晶界数通常比B类型TFT晶界数少。因此,这也是SR-MILC多晶硅薄膜晶体管ρp较小的原因。当然,SR-MILC多晶硅薄膜的各向异性导电特性将导致均匀性差的TFT。图21和图22显示抽取的Vth和BG结构的A型和B型TFT的电阻率。BG线周期是1微米。当L小于4μm时,BG结构没有明显改善。对于L大于4μm时,与图18和图20所示的A类、B类TFT不同,有着BG结构,A型和B型TFT的差异会被减小,表现出更好的均匀性。这是因为TFT通道内的两条夹长小晶粒区之间的低角度晶界被掺杂BG结构架桥跨过。因此,使用BG结构,SR-MILC多晶硅薄膜的各向异性效应可以有效地消除。The resistivity of the A-type TFT channel with the current direction parallel to the MILC direction is denoted as ρ p . The B-type TFT channel resistivity with the current direction perpendicular to the MILC direction is denoted as ρ t . As shown in Fig. 20, when L is smaller than 2 μm, ρp and ρt are substantially the same, which can be explained by the substantially same Vth value in the subthreshold region. When L is larger than 4 μm, ρ p becomes smaller than ρ t . For the ρ case , current flow through vertical low-angle grain boundaries and continuous carrier excitation across a series of lateral grain boundaries along the conduction direction are required. Therefore, the current is limited by those low-angle GBs in the active channel of the TFT. For the case of ρ p , the current direction is parallel to the long grains. As we know, the angle between low-angle grain boundaries and MILC directions is usually less than 30 degrees. In the case of W/L<1/2, low angle GB S and lower resistivity ρ p may appear in the channel region. Therefore, the flow of current will follow a meandering pattern, avoiding the low angle GBs encountered in lateral conduction. However, Type A devices generally have fewer low-angle grain boundaries than Type B TFTs. Therefore, this is also the reason why ρ p of the SR-MILC polysilicon thin film transistor is small. Of course, the anisotropic conductive properties of SR-MILC polysilicon films will result in TFTs with poor uniformity. Figure 21 and Figure 22 show the extracted Vth and resistivity of A-type and B-type TFTs of BG structure. The BG line period is 1 micron. When L is smaller than 4 μm, the BG structure is not significantly improved. When L is greater than 4 μm, unlike the A-type and B-type TFTs shown in Figure 18 and Figure 20, it has a BG structure, and the difference between the A-type and B-type TFTs will be reduced, showing better uniformity. This is because the low-angle grain boundary between the two pinched small grain regions in the TFT channel is bridged by the doped BG structure. Therefore, using the BG structure, the anisotropy effect of the SR-MILC polysilicon film can be effectively eliminated.
尽管参照上述的实施例已对本实用新型作出具体描述,但是对于本领域的普通技术人员来说,以上实施例仅用以描述本实用新型的技术方案而非对本技术方法进行限制,本实用新型在应用上可以延伸为其他的修改、变化、应用和实施例,并且因此认为所有这样的修改、变化、应用、实施例都在本实用新型的精神和教导范围内。Although the utility model has been specifically described with reference to the above-mentioned embodiments, for those of ordinary skill in the art, the above embodiments are only used to describe the technical solutions of the present utility model rather than to limit the technical method. The application can extend to other modifications, changes, applications, and embodiments, and all such modifications, changes, applications, and embodiments are therefore considered to be within the spirit and teaching scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201120577247.1U CN202405260U (en) | 2011-08-23 | 2011-12-31 | Active matrix display |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110243267 | 2011-08-23 | ||
CN201110243267.X | 2011-08-23 | ||
CN201110256340.7 | 2011-09-01 | ||
CN201110256340 | 2011-09-01 | ||
CN201120577247.1U CN202405260U (en) | 2011-08-23 | 2011-12-31 | Active matrix display |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202405260U true CN202405260U (en) | 2012-08-29 |
Family
ID=46702891
Family Applications (17)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110351983XA Pending CN102956678A (en) | 2011-08-23 | 2011-11-09 | Polysilicon film |
CN2011103520076A Pending CN102956500A (en) | 2011-08-23 | 2011-11-09 | Preparation method of polysilicon thin-film transistor |
CN2011103519844A Pending CN102956499A (en) | 2011-08-23 | 2011-11-09 | Preparation method of polysilicon film |
CN201120440884.4U Expired - Fee Related CN202405261U (en) | 2011-08-23 | 2011-11-09 | Mask MIC TFT film |
CN2011103519859A Pending CN102956710A (en) | 2011-08-23 | 2011-11-09 | Mask metal induced crystallized polycrystalline silicon thin-film transistor |
CN201110461881.3A Pending CN103762175A (en) | 2011-08-23 | 2011-12-31 | Preparation method for polysilicon thin film with bridged crystal-grain structure |
CN201110461883.2A Pending CN103762176A (en) | 2011-08-23 | 2011-12-31 | Preparation method for polysilicon thin film with bridged crystal-grain structure |
CN201110461863.5A Pending CN103762172A (en) | 2011-08-23 | 2011-12-31 | Preparation method of polysilicon thin film with bridged-grain structure |
CN201110461873.9A Pending CN103779209A (en) | 2011-08-23 | 2011-12-31 | Method for preparing polycrystalline silicon thin-film transistor |
CN201110461865.4A Pending CN103762174A (en) | 2011-08-23 | 2011-12-31 | Preparation method for thin-film transistor |
CN201110461864.XA Pending CN103762173A (en) | 2011-08-23 | 2011-12-31 | Method for preparing polysilicon thin film |
CN201110461875.8A Pending CN103779420A (en) | 2011-08-23 | 2011-12-31 | Polycrystalline silicon thin-film transistor with bridging grain structure |
CN201120577247.1U Expired - Fee Related CN202405260U (en) | 2011-08-23 | 2011-12-31 | Active matrix display |
CN201110461884.7A Pending CN103779391A (en) | 2011-08-23 | 2011-12-31 | Polycrystalline silicon thin film with bridging grain structure and preparation method thereof |
CN2012100512458A Pending CN102956549A (en) | 2011-08-23 | 2012-03-01 | Manufacturing method of active matrix backing plate of field sequential color liquid crystal display |
CN2012100513018A Pending CN102955307A (en) | 2011-08-23 | 2012-03-01 | Field sequential color liquid crystal display based on polycrystalline silicon thin film transistor |
CN2012100512443A Pending CN102956648A (en) | 2011-08-23 | 2012-03-01 | Active matrix rear panel with liquid crystal display |
Family Applications Before (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110351983XA Pending CN102956678A (en) | 2011-08-23 | 2011-11-09 | Polysilicon film |
CN2011103520076A Pending CN102956500A (en) | 2011-08-23 | 2011-11-09 | Preparation method of polysilicon thin-film transistor |
CN2011103519844A Pending CN102956499A (en) | 2011-08-23 | 2011-11-09 | Preparation method of polysilicon film |
CN201120440884.4U Expired - Fee Related CN202405261U (en) | 2011-08-23 | 2011-11-09 | Mask MIC TFT film |
CN2011103519859A Pending CN102956710A (en) | 2011-08-23 | 2011-11-09 | Mask metal induced crystallized polycrystalline silicon thin-film transistor |
CN201110461881.3A Pending CN103762175A (en) | 2011-08-23 | 2011-12-31 | Preparation method for polysilicon thin film with bridged crystal-grain structure |
CN201110461883.2A Pending CN103762176A (en) | 2011-08-23 | 2011-12-31 | Preparation method for polysilicon thin film with bridged crystal-grain structure |
CN201110461863.5A Pending CN103762172A (en) | 2011-08-23 | 2011-12-31 | Preparation method of polysilicon thin film with bridged-grain structure |
CN201110461873.9A Pending CN103779209A (en) | 2011-08-23 | 2011-12-31 | Method for preparing polycrystalline silicon thin-film transistor |
CN201110461865.4A Pending CN103762174A (en) | 2011-08-23 | 2011-12-31 | Preparation method for thin-film transistor |
CN201110461864.XA Pending CN103762173A (en) | 2011-08-23 | 2011-12-31 | Method for preparing polysilicon thin film |
CN201110461875.8A Pending CN103779420A (en) | 2011-08-23 | 2011-12-31 | Polycrystalline silicon thin-film transistor with bridging grain structure |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110461884.7A Pending CN103779391A (en) | 2011-08-23 | 2011-12-31 | Polycrystalline silicon thin film with bridging grain structure and preparation method thereof |
CN2012100512458A Pending CN102956549A (en) | 2011-08-23 | 2012-03-01 | Manufacturing method of active matrix backing plate of field sequential color liquid crystal display |
CN2012100513018A Pending CN102955307A (en) | 2011-08-23 | 2012-03-01 | Field sequential color liquid crystal display based on polycrystalline silicon thin film transistor |
CN2012100512443A Pending CN102956648A (en) | 2011-08-23 | 2012-03-01 | Active matrix rear panel with liquid crystal display |
Country Status (1)
Country | Link |
---|---|
CN (17) | CN102956678A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104241395A (en) * | 2014-09-10 | 2014-12-24 | 京东方科技集团股份有限公司 | Thin film transistor, array substrate and displaying device |
CN106601873A (en) * | 2016-12-16 | 2017-04-26 | 中利腾晖光伏科技有限公司 | CZTS film applied spin coating apparatus and method for preparing CZTS battery |
CN106876479A (en) * | 2017-04-19 | 2017-06-20 | 京东方科技集团股份有限公司 | Thin film transistor (TFT) and preparation method thereof, array base palte and preparation method thereof, display panel |
US9793361B2 (en) | 2014-09-10 | 2017-10-17 | Boe Technology Group Co., Ltd. | Thin film transistor, array substrate and display device |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103151388B (en) * | 2013-03-05 | 2015-11-11 | 京东方科技集团股份有限公司 | A kind of polycrystalline SiTFT and preparation method thereof, array base palte |
CN103235439B (en) * | 2013-04-08 | 2015-08-12 | 北京京东方光电科技有限公司 | A kind of to box substrate and preparation method, touch-screen, display device |
CN104282546A (en) * | 2013-07-08 | 2015-01-14 | 上海和辉光电有限公司 | Method for improving homogeneity of polycrystalline silicon layer |
CN103700688B (en) * | 2013-12-23 | 2016-03-30 | 京东方科技集团股份有限公司 | Color membrane substrates and preparation method thereof, display unit |
CN103700698B (en) * | 2013-12-30 | 2016-06-15 | 北京京东方光电科技有限公司 | The preparation method of a kind of thin film transistor, thin film transistor and display panel |
CN105514023B (en) * | 2014-09-22 | 2018-07-24 | 上海和辉光电有限公司 | A kind of contact hole interface processing method |
CN104505340B (en) * | 2014-11-28 | 2017-12-26 | 信利(惠州)智能显示有限公司 | A kind of preparation method of low-temperature polysilicon film |
CN106033707A (en) * | 2015-03-10 | 2016-10-19 | 上海和辉光电有限公司 | Preparation method for polysilicon film |
CN105575974B (en) * | 2015-12-14 | 2018-08-14 | 深圳市华星光电技术有限公司 | The production method of low temperature polycrystalline silicon TFT backplate |
CN106298802B (en) * | 2016-08-16 | 2019-05-07 | 武汉华星光电技术有限公司 | A kind of LTPS array substrate and manufacturing method, display panel |
CN106328506B (en) * | 2016-08-31 | 2020-04-10 | 上海华力微电子有限公司 | Method for reducing photoresist stripping risk of ion implantation layer |
CA3049152C (en) * | 2017-01-04 | 2024-04-02 | Shih-Hsien Tseng | Pixel unit structure and manufacturing method thereof |
CN109742028B (en) * | 2018-12-25 | 2021-04-02 | 惠科股份有限公司 | Manufacturing method of thin film transistor, thin film transistor and display panel |
DE102019100312A1 (en) * | 2019-01-08 | 2020-07-09 | Parcan NanoTech Co. Ltd. | Controlled ion implantation substrate and method of making a controlled ion implantation substrate |
CN112736087B (en) * | 2019-10-10 | 2024-03-05 | 京东方科技集团股份有限公司 | Manufacturing method of array substrate, array substrate and display panel |
CN110660869A (en) * | 2019-10-27 | 2020-01-07 | 南京飞芯电子科技有限公司 | Method for forming enhancement mode field effect transistor |
CN112563197B (en) * | 2020-11-24 | 2022-03-22 | 惠科股份有限公司 | Active switch, manufacturing method thereof and display panel |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5783047A (en) * | 1980-11-10 | 1982-05-24 | Matsushita Electric Ind Co Ltd | Polycrystalline semiconductor resistor |
TW520072U (en) * | 1991-07-08 | 2003-02-01 | Samsung Electronics Co Ltd | A semiconductor device having a multi-layer metal contact |
JPH06104438A (en) * | 1992-09-22 | 1994-04-15 | Casio Comput Co Ltd | Film transistor |
JPH08139335A (en) * | 1994-11-14 | 1996-05-31 | Casio Comput Co Ltd | Method of manufacturing thin film transistor |
US6108058A (en) * | 1997-04-30 | 2000-08-22 | Tohoku Techno-Brains Corporation | Field sequential Pi cell LCD with compensator |
JPH11354800A (en) * | 1998-06-04 | 1999-12-24 | Hitachi Ltd | Thin-film transistor, its forming method, and liquid crystal display device |
JP4436469B2 (en) * | 1998-09-30 | 2010-03-24 | 三洋電機株式会社 | Semiconductor device |
JP2000133807A (en) * | 1998-10-22 | 2000-05-12 | Seiko Epson Corp | Polycrystalline silicon thin film transistor |
JP2000208771A (en) * | 1999-01-11 | 2000-07-28 | Hitachi Ltd | Semiconductor device, liquid crystal display device, and manufacturing method thereof |
TWI243432B (en) * | 1999-10-29 | 2005-11-11 | Hitachi Ltd | Semiconductor device, method of making the same and liquid crystal display device |
JP3873811B2 (en) * | 2002-05-15 | 2007-01-31 | 日本電気株式会社 | Manufacturing method of semiconductor device |
KR100930362B1 (en) * | 2002-11-04 | 2009-12-08 | 엘지디스플레이 주식회사 | Polycrystalline Silicon Film Formation Method And Manufacturing Method Of Thin Film Transistor Including The Same |
KR100577795B1 (en) * | 2003-12-30 | 2006-05-11 | 비오이 하이디스 테크놀로지 주식회사 | Polycrystalline Silicon Film Formation Method |
TWI266427B (en) * | 2004-06-01 | 2006-11-11 | Yamanashi Tlo Co Ltd | Field-effect transistor and method of manufacturing same |
TWI241027B (en) * | 2004-09-30 | 2005-10-01 | Ind Tech Res Inst | Method of preparing electronic device |
US8088676B2 (en) * | 2005-04-28 | 2012-01-03 | The Hong Kong University Of Science And Technology | Metal-induced crystallization of amorphous silicon, polycrystalline silicon thin films produced thereby and thin film transistors produced therefrom |
US8013957B2 (en) * | 2005-05-21 | 2011-09-06 | The Hong Kong University Of Science And Technology | Transflective liquid crystal device and method of manufacturing the same |
US7790580B2 (en) * | 2006-03-13 | 2010-09-07 | Hong Kong University Of Science And Technology | Metal-induced crystallization of amorphous silicon in thin film transistors |
JP5318862B2 (en) * | 2007-06-22 | 2013-10-16 | ザ・ホンコン・ユニバーシティー・オブ・サイエンス・アンド・テクノロジー | Polycrystalline silicon thin film transistor having a crosslinked particle structure |
JP5295529B2 (en) * | 2007-08-13 | 2013-09-18 | 株式会社ジャパンディスプレイ | Semiconductor device |
CN101834138A (en) * | 2010-02-09 | 2010-09-15 | 广东中显科技有限公司 | Method for preparing transistor device of crystallized thin film |
CN101834211A (en) * | 2010-02-09 | 2010-09-15 | 广东中显科技有限公司 | Polycrystalline silicon thin film based on metal induction |
CN101819999A (en) * | 2010-05-17 | 2010-09-01 | 广东中显科技有限公司 | Multilayer film structure for transverse induced crystallization of low-temperature poly-silicon film |
CN101853784B (en) * | 2010-05-17 | 2012-07-04 | 广东中显科技有限公司 | Method for transversely inducing and crystallizing low-temperature polycrystalline silicon film |
CN101814438A (en) * | 2010-05-17 | 2010-08-25 | 广东中显科技有限公司 | Preparation method of thin film transistor based on induced longitudinal crystallization polycrystalline silicon |
CN102129962A (en) * | 2010-10-28 | 2011-07-20 | 广东中显科技有限公司 | Controllable method for manufacturing polysilicon thin film through metal induction |
CN102082098A (en) * | 2010-12-15 | 2011-06-01 | 四川虹视显示技术有限公司 | Method for producing low-temperature polysilicon thin-film transistor |
-
2011
- 2011-11-09 CN CN201110351983XA patent/CN102956678A/en active Pending
- 2011-11-09 CN CN2011103520076A patent/CN102956500A/en active Pending
- 2011-11-09 CN CN2011103519844A patent/CN102956499A/en active Pending
- 2011-11-09 CN CN201120440884.4U patent/CN202405261U/en not_active Expired - Fee Related
- 2011-11-09 CN CN2011103519859A patent/CN102956710A/en active Pending
- 2011-12-31 CN CN201110461881.3A patent/CN103762175A/en active Pending
- 2011-12-31 CN CN201110461883.2A patent/CN103762176A/en active Pending
- 2011-12-31 CN CN201110461863.5A patent/CN103762172A/en active Pending
- 2011-12-31 CN CN201110461873.9A patent/CN103779209A/en active Pending
- 2011-12-31 CN CN201110461865.4A patent/CN103762174A/en active Pending
- 2011-12-31 CN CN201110461864.XA patent/CN103762173A/en active Pending
- 2011-12-31 CN CN201110461875.8A patent/CN103779420A/en active Pending
- 2011-12-31 CN CN201120577247.1U patent/CN202405260U/en not_active Expired - Fee Related
- 2011-12-31 CN CN201110461884.7A patent/CN103779391A/en active Pending
-
2012
- 2012-03-01 CN CN2012100512458A patent/CN102956549A/en active Pending
- 2012-03-01 CN CN2012100513018A patent/CN102955307A/en active Pending
- 2012-03-01 CN CN2012100512443A patent/CN102956648A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104241395A (en) * | 2014-09-10 | 2014-12-24 | 京东方科技集团股份有限公司 | Thin film transistor, array substrate and displaying device |
WO2016037435A1 (en) * | 2014-09-10 | 2016-03-17 | 京东方科技集团股份有限公司 | Thin film transistor, array substrate and display device |
CN104241395B (en) * | 2014-09-10 | 2017-02-15 | 京东方科技集团股份有限公司 | Thin film transistor, array substrate and displaying device |
US9793361B2 (en) | 2014-09-10 | 2017-10-17 | Boe Technology Group Co., Ltd. | Thin film transistor, array substrate and display device |
CN106601873A (en) * | 2016-12-16 | 2017-04-26 | 中利腾晖光伏科技有限公司 | CZTS film applied spin coating apparatus and method for preparing CZTS battery |
CN106876479A (en) * | 2017-04-19 | 2017-06-20 | 京东方科技集团股份有限公司 | Thin film transistor (TFT) and preparation method thereof, array base palte and preparation method thereof, display panel |
WO2018192217A1 (en) * | 2017-04-19 | 2018-10-25 | 京东方科技集团股份有限公司 | Thin-film transistor and preparation method therefor, array substrate and preparation method therefor, and display panel |
CN106876479B (en) * | 2017-04-19 | 2020-03-06 | 京东方科技集团股份有限公司 | Thin film transistor and preparation method thereof, array substrate and preparation method thereof, and display panel |
US11296235B2 (en) | 2017-04-19 | 2022-04-05 | Boe Technology Group Co., Ltd. | Thin film transistor having a wire grid on a channel region and manufacturing method thereof, array substrate and manufacturing method thereof, and display panel |
Also Published As
Publication number | Publication date |
---|---|
CN103762175A (en) | 2014-04-30 |
CN102956710A (en) | 2013-03-06 |
CN102956499A (en) | 2013-03-06 |
CN103762173A (en) | 2014-04-30 |
CN103762174A (en) | 2014-04-30 |
CN102955307A (en) | 2013-03-06 |
CN102956549A (en) | 2013-03-06 |
CN202405261U (en) | 2012-08-29 |
CN103779209A (en) | 2014-05-07 |
CN103779420A (en) | 2014-05-07 |
CN102956678A (en) | 2013-03-06 |
CN102956500A (en) | 2013-03-06 |
CN102956648A (en) | 2013-03-06 |
CN103762176A (en) | 2014-04-30 |
CN103779391A (en) | 2014-05-07 |
CN103762172A (en) | 2014-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202405260U (en) | Active matrix display | |
US8426865B2 (en) | Polycrystalline silicon thin film transistors with bridged-grain structures | |
CN100399125C (en) | Devices with Thin Film Transistors | |
TWI416588B (en) | Method for producing crystalline tantalum film and thin film transistor | |
CN104538429B (en) | Manufacturing method and structure of AMOLED backplane | |
CN106098628B (en) | The production method and TFT backplate of TFT backplate | |
CN104576399B (en) | A kind of thin film transistor (TFT) and its manufacture method | |
CN105304500B (en) | N-type TFT preparation method | |
CN104992899A (en) | Poly-silicon film preparation method and poly-silicon TFT structure | |
CN104716200B (en) | Thin film transistor (TFT) and preparation method thereof, array base palte and display device | |
US10192903B2 (en) | Method for manufacturing TFT substrate | |
CN103000531A (en) | Manufacturing method for low-temperature polycrystalline silicon thin film transistor | |
CN105551967B (en) | A method of making an N-type thin film transistor | |
CN105575974B (en) | The production method of low temperature polycrystalline silicon TFT backplate | |
CN109411355A (en) | A kind of preparation method of thin film transistor (TFT) | |
CN104599973B (en) | The preparation method of low-temperature polysilicon film transistor | |
CN103325688A (en) | Method for forming channel of thin film transistor and compensating circuit | |
CN105590862A (en) | Thin film transistor (TFT), and preparation method and application thereof | |
CN106057677A (en) | Low-temperature polysilicon thin-film transistor fabrication method | |
CN103258855A (en) | Polycrystalline silicon thin film transistor based on solid-phase crystallization technology and manufacturing method thereof | |
KR20130029272A (en) | Thin film transistor | |
CN108281350B (en) | Solid-phase crystallization method and method for making low-temperature polysilicon TFT substrate | |
CN202487579U (en) | Transistors | |
CN103779206A (en) | Bridging grain polycrystalline silicon thin-film transistor and manufacturing method thereof | |
Hao | Thin Film Transistors Using Nanocrystalline Silicon from Metal Induced Growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120829 Termination date: 20121231 |